ebook img

Distributed source coding : theory and practice PDF

363 Pages·2017·12.016 MB·English
by  ChengSamuelFangYongWangShuang
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Distributed source coding : theory and practice

(cid:2) DistributedSourceCoding (cid:2) (cid:2) (cid:2) (cid:2) Distributed Source Coding TheoryandPractice ShuangWang,YongFang,andSamuelCheng (cid:2) (cid:2) (cid:2) (cid:2) Thiseditionfirstpublished2017 ©2017JohnWiley&SonsLtd RegisteredofficeJohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex, PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowto applyforpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteat www.wiley.com. TherightofShuangWang,YongFang,andSamuelChengtobeidentifiedastheauthorsofthis workhasbeenassertedinaccordancewiththeCopyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor (cid:2) otherwise,exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthe (cid:2) priorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsin printmaynotbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks. Allbrandnamesandproductnamesusedinthisbookaretradenames,servicemarks, trademarksorregisteredtrademarksoftheirrespectiveowners.Thepublisherisnotassociated withanyproductorvendormentionedinthisbook. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Itissoldontheunderstanding thatthepublisherisnotengagedinrenderingprofessionalservicesandneitherthepublishernor theauthorshallbeliablefordamagesarisingherefrom.Ifprofessionaladviceorotherexpert assistanceisrequired,theservicesofacompetentprofessionalshouldbesought LibraryofCongressCataloging-in-Publicationdataappliedfor ISBN:9780470688991 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. CoverdesignbyWiley Coverimage:Topnumbersimage:a_Taiga/Gettyimages Bottommolecularimage:KTSDESIGN/SCIENCEPHOTOLIBRARY/Gettyimages Setin10/12ptWarnockProbySPiGlobal,Chennai,India 10 9 8 7 6 5 4 3 2 1 (cid:2) (cid:2) v Contents Preface xiii Acknowledgment xv AbouttheCompanionWebsite xvii 1 Introduction 1 1.1 WhatisDistributedSourceCoding? 2 1.2 HistoricalOverviewandBackground 2 1.3 PotentialandApplications 3 (cid:2) 1.4 Outline 4 (cid:2) PartI TheoryofDistributedSourceCoding 7 2 LosslessCompressionofCorrelatedSources 9 2.1 Slepian–WolfCoding 10 2.1.1 ProofoftheSWTheorem 15 AchievabilityoftheSWTheorem 16 ConverseoftheSWTheorem 19 2.2 AsymmetricandSymmetricSWCoding 21 2.3 SWCodingofMultipleSources 22 3 Wyner–ZivCodingTheory 25 3.1 ForwardProofofWZCoding 27 3.2 ConverseProofofWZCoding 29 3.3 Examples 30 3.3.1 DoublySymmetricBinarySource 30 ProblemSetup 30 AProposedScheme 31 VerifytheOptimalityoftheProposedScheme 32 3.3.2 QuadraticGaussianSource 35 (cid:2) (cid:2) vi Contents ProblemSetup 35 ProposedScheme 36 VerifytheOptimalityoftheProposedScheme 37 3.4 RateLossoftheWZProblem 38 BinarySourceCase 39 RatelossofGeneralCases 39 4 LossyDistributedSourceCoding 41 4.1 Berger–TungInnerBound 42 4.1.1 Berger–TungScheme 42 CodebookPreparation 42 Encoding 42 Decoding 43 4.1.2 DistortionAnalysis 43 Pr( )→0∶ 44 1 Pr(C ∩ )→0∶ 44 1 2 Pr(C ∩C ∩ )→0∶ 44 1 2 3 Pr( )→0 44 4 Pr( ),Pr( )→0 44 5 6 4.2 IndirectMultiterminalSourceCoding 45 (cid:2) 4.2.1 QuadraticGaussianCEOProblemwithTwoEncoders 45 (cid:2) ForwardProofofQuadraticGaussianCEOProblemwithTwo Terminals 46 ConverseProofofQuadraticGaussianCEOProblemwithTwo Terminals 48 4.3 DirectMultiterminalSourceCoding 54 4.3.1 ForwardProofofGaussianMultiterminalSourceCodingProblem withTwoSources 55 Case1:(1− )≤𝜌2(1− ) 59 2 1 Case2:(1− )>𝜌2(1− ) 62 2 1 4.3.2 ConverseProofofGaussianMultiterminalSourceCodingProblem withTwoSources 63 BoundsforR andR 64 1 2 CollaborativeLowerBound 66 𝜇-sumBound 67 PartII Implementation 75 5 Slepian–WolfCodeDesignsBasedonChannelCoding 77 5.1 AsymmetricSWCoding 77 5.1.1 BinningIdea 78 5.1.2 Syndrome-basedApproach 79 (cid:2) (cid:2) Contents vii HammingBinning 80 SWEncoding 80 SWDecoding 80 LDPC-basedSWCoding 81 5.1.3 Parity-basedApproach 82 5.1.4 Syndrome-basedVersusParity-basedApproach 84 5.2 Non-asymmetricSWCoding 85 5.2.1 GeneralizedSyndrome-basedApproach 86 5.2.2 ImplementationusingIRACodes 88 5.3 AdaptiveSlepian–WolfCoding 90 5.3.1 Particle-basedBeliefPropagationforSWCoding 91 5.4 LatestDevelopmentsandTrends 93 6 DistributedArithmeticCoding 97 6.1 ArithmeticCoding 97 6.2 DistributedArithmeticCoding 101 6.3 DefinitionoftheDACSpectrum 103 6.3.1 Motivations 103 6.3.2 InitialDACSpectrum 104 6.3.3 Depth-iDACSpectrum 105 (cid:2) 6.3.4 SomeSimplePropertiesoftheDACSpectrum 107 (cid:2) 6.4 FormulationoftheInitialDACSpectrum 107 6.5 ExplicitFormoftheInitialDACSpectrum 110 6.6 EvolutionoftheDACSpectrum 113 6.7 NumericalCalculationoftheDACSpectrum 116 6.7.1 NumericalCalculationoftheInitialDACSpectrum 117 6.7.2 NumericalEstimationofDACSpectrumEvolution 118 6.8 AnalysesonDACCodeswithSpectrum 120 6.8.1 DefinitionofDACCodes 121 6.8.2 CodebookCardinality 122 6.8.3 CodebookIndexDistribution 123 6.8.4 RateLoss 123 6.8.5 DecoderComplexity 124 6.8.6 DecodingErrorProbability 126 6.9 ImprovedBinaryDACCodec 130 6.9.1 PermutatedBDACCodec 130 Principle 130 ProofofSWLimitAchievability 131 6.9.2 BDACDecoderwithWeightedBranching 132 6.10 ImplementationoftheImprovedBDACCodec 134 6.10.1 Encoder 134 Principle 134 Implementation 135 (cid:2) (cid:2) viii Contents 6.10.2 Decoder 135 Principle 135 Implementation 136 6.11 ExperimentalResults 138 EffectofSegmentSizeonPermutationTechnique 139 EffectofSurviving-PathNumberonWBTechnique 139 ComparisonwithLDPCCodes 139 ApplicationofPBDACtoNonuniformSources 140 6.12 Conclusion 141 7 Wyner–ZivCodeDesign 143 7.1 VectorQuantization 143 7.2 LatticeTheory 146 7.2.1 WhatisaLattice? 146 Examples 146 DualLattice 147 IntegralLattice 147 LatticeQuantization 148 7.2.2 WhatisaGoodLattice? 149 PackingEfficiency 149 (cid:2) CoveringEfficiency 150 (cid:2) NormalizedSecondMoment 150 KissingNumber 150 SomeGoodLattices 151 7.3 NestedLatticeQuantization 151 Encoding/decoding 152 CosetBinning 152 QuantizationLossandBinningLoss 153 SWCodedNLQ 154 7.3.1 TrellisCodedQuantization 154 7.3.2 PrincipleofTCQ 155 GenerationofCodebooks 156 GenerationofTrellisfromConvolutionalCodes 156 MappingofTrellisBranchesontoSub-codebooks 157 Quantization 157 Example 158 7.4 WZCodingBasedonTCQandLDPCCodes 159 7.4.1 StatisticsofTCQIndices 159 7.4.2 LLRofTrellisBits 162 7.4.3 LLRofCodewordBits 163 7.4.4 MinimumMSEEstimation 163 7.4.5 RateAllocationofBit-planes 164 7.4.6 ExperimentalResults 166 (cid:2) (cid:2) Contents ix PartIII Applications 167 8 Wyner–ZivVideoCoding 169 8.1 BasicPrinciple 169 8.2 BenefitsofWZVideoCoding 170 8.3 KeyComponentsofWZVideoDecoding 171 8.3.1 Side-informationPreparation 171 BidirectionalMotionCompensation 172 8.3.2 CorrelationModeling 173 ExploitingSpatialRedundancy 174 8.3.3 RateController 175 8.4 OtherNotableFeaturesofMiscellaneousWZVideoCoders 175 9 CorrelationEstimationinDVC 177 9.1 BackgroundtoCorrelationParameterEstimationinDVC 177 9.1.1 CorrelationModelinWZVideoCoding 177 9.1.2 OfflineCorrelationEstimation 178 PixelDomainOfflineCorrelationEstimation 178 TransformDomainOfflineCorrelationEstimation 180 9.1.3 OnlineCorrelationEstimation 181 (cid:2) PixelDomainOnlineCorrelationEstimation 182 (cid:2) TransformDomainOnlineCorrelationEstimation 184 9.2 RecapofBeliefPropagationandParticleFilterAlgorithms 185 9.2.1 BeliefPropagationAlgorithm 185 9.2.2 ParticleFiltering 186 9.3 CorrelationEstimationinDVCwithParticleFiltering 187 9.3.1 FactorGraphConstruction 187 9.3.2 CorrelationEstimationinDVCwithParticleFiltering 190 9.3.3 ExperimentalResults 192 9.3.4 Conclusion 197 9.4 LowComplexityCorrelationEstimationusingExpectation Propagation 199 9.4.1 SystemArchitecture 199 9.4.2 FactorGraphConstruction 199 JointBit-planeSWCoding(RegionII) 200 CorrelationParameterTracking(RegionI) 201 9.4.3 MessagePassingontheConstructedFactorGraph 202 ExpectationPropagation 203 9.4.4 PosteriorApproximationoftheCorrelationParameterusing ExpectationPropagation 204 MomentMatching 205 9.4.5 ExperimentalResults 206 9.4.6 Conclusion 211 (cid:2) (cid:2) x Contents 10 DSCforSolarImageCompression 213 10.1 Background 213 10.2 RelatedWork 215 10.3 DistributedMulti-viewImageCoding 217 10.4 AdaptiveJointBit-planeWZDecodingofMulti-viewImageswith DisparityEstimation 217 10.4.1 JointBit-planeWZDecoding 217 10.4.2 JointBit-planeWZDecodingwithDisparityEstimation 219 10.4.3 JointBit-planeWZDecodingwithCorrelationEstimation 220 10.5 ResultsandDiscussion 221 10.6 Summary 224 11 SecureDistributedImageCoding 225 11.1 Background 225 11.2 SystemArchitecture 227 11.2.1 CompressionofEncryptedData 228 11.2.2 JointDecompressionandDecryptionDesign 230 11.3 PracticalImplementationIssues 233 11.4 ExperimentalResults 233 11.4.1 ExperimentSetup 234 (cid:2) 11.4.2 SecurityandPrivacyProtection 235 (cid:2) 11.4.3 CompressionPerformance 236 11.5 Discussion 239 12 SecureBiometricAuthenticationUsingDSC 241 12.1 Background 241 12.2 RelatedWork 243 12.3 SystemArchitecture 245 12.3.1 FeatureExtraction 246 12.3.2 FeaturePre-encryption 248 12.3.3 SeDSCEncrypter/decrypter 248 12.3.4 Privacy-preservingAuthentication 249 12.4 SeDSCEncrypterDesign 249 12.4.1 Non-asymmetricSWCodeswithCodePartitioning 250 12.4.2 ImplementationofSeDSCEncrypterusingIRACodes 251 12.5 SeDSCDecrypterDesign 252 12.6 Experiments 256 12.6.1 DatasetandExperimentalSetup 256 12.6.2 FeatureLengthSelection 257 12.6.3 AuthenticationAccuracy 257 AuthenticationPerformancesonSmallFeatureLength(i.e., N =100) 257 PerformancesonLargeFeatureLengths(i.e.,N ≥300) 258 (cid:2) (cid:2) Contents xi 12.6.4 PrivacyandSecurity 259 12.6.5 ComplexityAnalysis 261 12.7 Discussion 261 A BasicInformationTheory 263 A.1 InformationMeasures 263 A.1.1 Entropy 263 A.1.2 RelativeEntropy 267 A.1.3 MutualInformation 268 A.1.4 EntropyRate 269 A.2 IndependenceandMutualInformation 270 A.3 VennDiagramInterpretation 273 A.4 ConvexityandJensen’sInequality 274 A.5 DifferentialEntropy 277 A.5.1 GaussianRandomVariables 278 A.5.2 EntropyPowerInequality 278 A.6 Typicality 279 A.6.1 JointlyTypicalSequences 282 A.7 PackingLemmasandCoveringLemmas 284 A.8 Shannon’sSourceCodingTheorem 286 (cid:2) A.9 LossySourceCoding—Rate-distortionTheorem 289 (cid:2) A.9.1 Rate-distortionProblemwithSideInformation 291 B BackgroundonChannelCoding 293 B.1 LinearBlockCodes 294 B.1.1 SyndromeDecodingofBlockCodes 295 B.1.2 HammingCodes,PackingBound,andPerfectCodes 295 B.2 ConvolutionalCodes 297 B.2.1 ViterbiDecodingAlgorithm 298 B.3 Shannon’sChannelCodingTheorem 301 B.3.1 AchievabilityProofoftheChannelCodingTheorem 303 B.3.2 ConverseProofofChannelCodingTheorem 305 B.4 Low-densityParity-checkCodes 306 B.4.1 AQuickSummaryofLDPCCodes 306 B.4.2 BeliefPropagationAlgorithm 307 B.4.3 LDPCDecodingusingBP 312 B.4.4 IRACodes 314 C ApproximateInference 319 C.1 StochasticApproximation 319 C.1.1 ImportanceSamplingMethods 320 C.1.2 MarkovChainMonteCarlo 321 MarkovChains 321 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.