ebook img

Distributed Source Coding for Correlated Memoryless Gaussian Sources PDF

0.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Distributed Source Coding for Correlated Memoryless Gaussian Sources

1 Distributed Source Coding for Correlated Memoryless Gaussian Sources Yasutada Oohama Abstract—We consider a distributed source coding problem Subsequently, a similar distributed source coding system was of Lcorrelated Gaussian observations Yi,i=1,2,···,L. Weas- studied by Flynn and R. M. Gray [13]. sumethattherandomvectorYL =t(Y1,Y2,···,YL)isanobser- In this paper we consider a distributed source coding hvaatviionngotfhtehfeoGrmauYssLia=nrAanXdKom+vNecLto,rwXheKre=At(iXsa1,LX×2,K···m,XatKri)x, problem of L correlated Gaussian sources Yi,i = 1,2,···,L 0 1 andNL =t(N1,N2,···,NL)isavectorofLindependentGaus- which are noisy observations of Xi,i = 1,2,···,K. We 0 sian random variables also independent of XK. The estimation assume that YL = t(Y1,Y2, ···,YL) is an observation of 2 error on XK is measured by the distortion covariance matrix. the source vector XK = t(X1,X2,···,XK), having the The rate distortion region is defined by a set of all rate vectors form YL = AXK + NL, where A is a L × K matrix n forwhichtheestimationerrorisupperboundedbyanarbitrary and NL = t(N ,N ,···,N ) is a vector of L independent a prescribed covariance matrix in the meaning of positive semi 1 2 L J definite.Inthispaperwederive explicit outerand innerbounds Gaussian random variables also independent of XK. 3 of the rate distortion region. This result provides a useful tool We consider two distortion criterions based on the covari- 1 to study the direct and indirect source coding problems on this ancematrixoftheestimationerroronXK.Oneisthecriterion Gaussian distributed source coding system, which remain open called the vector distortion criterion distortion region where ] in general. T each of the the diagonal elements of the covariance matrix I IndexTerms—Multiterminalsourcecoding, rate-distortionre- is upper bounded by a prescribed level. The other is the s. gion, CEO problem. criterion called the sum distortion criterion where the trace c of the covariance matrix is upper bounded by a prescribed [ I. INTRODUCTION level. For each of the above two distirion criterionswe derive 4 explicitinnerandouterboundsofthe rate distironregion.We v Distributedsourcecodingofcorrelatedinformationsources also derive an explicit matching condition in the case of the 2 areaformofcommunicationsystemwhichissignificantfrom sum distortion criterion. 8 both theoretical and practical points of view in multi-user WhenK =1,thesourcecodingsystembecomesthatofthe 9 3 sourcenetworks.Thefirstfundamentaltheoryin thosecoding quadratic Gaussian CEO problem investigated by [11], [14]- . systems was established by Slepian and Wolf [1]. They con- [16]. The system in the case of K = L and sum distortion 8 sidered a distributed source coding system of two correlated criterion was studied by Pandya et al. [17]. They derived 0 9 informationsources.Thosetwosourcesareseparatelyencoded lower and upper bounds of the minimum sum rate in the 0 andsenttoasingledestination,wherethedecoderreconstruct rate distortion region. Several partial solutions in the case of v: the original sources. K =L, A=IL and sum distortion criterion are obtained by Xi Intheabovedistributedsourcecodingsystemswecan con- [18]-[22]. The case of K = L, A = IL and vector distortion siderthecasewherethesourceoutputsshouldbereconstructed criterion is studied by [20]. r with average distortions smaller than prescribed levels. Such The remote source coding problem treated in this paper a a situation suggests the multiterminal rate distortion theory. is also referred to as the indirect distributed source coding The rate distortion theory for the above distributed source problem. On the other hand, the multiterminal rate distortion coding system formulated by Slepian and Wolf has been problem in the frame work of distributed source coding is studiedby[2]-[9].Wagneretal.[10]gaveacompletesolution calledthe directdistributedsourcecodingproblem.Asshown to this problem in the case of Gaussian information sources in the paper of Wagner et al. [10] and in the recent work by and quadratic distortion by proving that sum rate part of the Wang et al. [11], we have a strong connection between the inner bound of Berger [4] and Tung [5] is tight. Wang et al. direct and indirect distributed source coding problems. [11] gave a new alternative proof. In this paper we also consider the multiterminal rate dis- Asapracticalsituationofdistributedsourcecodingsystems, tortion problem, i.e., the direct distributed source coding we can consider a case where the distributed encoders can problem for the Gaussian information source specified with not directly access to the source outputs but can access to YL = XL+NL, which corresponds to the case of K = L their noisy observations. This situation was first studied by and A = I . We shall derive a result which implies a strong L Yamamoto and Ito [12]. They call the investigated coding connectionbetweentheremotesourcecodingproblemandthe system the communication system with a remote source. multiterminalratedistortionproblem.Thisresultstatesthatall resultsontheratedistortionregionoftheremotesourcecoding Manuscript received xxx,20XX;revised xxx,20XX. problem can be converted into those on the rate distortion Y.Oohamais withtheDepartment ofInformation Science andIntelligent regionofthemultiterminalsourcecodingproblem.Usingthis Systems, University of Tokushima, 2-1 Minami Josanjima-Cho, Tokushima 770-8506,Japan. result, we drive several new partial solutions to the Gaussian 2 N 1 where Xˆ is the real line in which a reconstructed random X1 X-1 - ?hY1-ϕ(1n) ϕ(1n)(Y1)B sveatriableoifXi takesvalues.ForXK =(X1, X2, ···, XK), XX...K2 XX--2KA --NN?h?h2LYY2L--ϕϕ...(2(Lnn)) ϕϕ(2(Lnn))((YY2L))(cid:3)(cid:3)B-(cid:3)B(cid:3)(cid:3)BBN(cid:3)(cid:23)ψ(n)-XXXˆˆˆ...K12  ϕ(n)(YXˆdLK)===△△ ϕE1(|Xn|XXˆˆˆX)...(K12Y−1)=△X,ˆϕ2(|n|ψψψ2)12K((((,nnnY)))(((2ϕϕϕ),(((nnn...·)))·(((·YYY,ϕLLLL()))n))))(Y,L)), ii i i Fig. 1. Distributed source coding system for L correlated Gaussian dij =△ EhXi−Xˆi,Xj −Xˆji,1≤i6=j ≤K, observations where||a||standsfortheEuclidnormofndimensionalvector aandha,bistandsfortheinnerproductbetweenaandb.Let Σ be a covariance matrix with d in its (i,j) entry. multiterminal rate distortion problem. XK−XˆK ij Let Σ be a given L×L covariancematrix which serves as a d distortion criterion. We call this matrix a distortion matrix. II. PROBLEM STATEMENTAND PREVIOUS RESULTS For a given distortion matrix Σ , the rate vector (R , d 1 A. Formal Statement of Problem R ,···,R ) is Σ -admissible if there exists a sequence 2 L d Inthissubsectionwepresentaformalstatementofproblem. {(ϕ(n), ϕ(n),···, ϕ(n), ψ(n))}∞ such that 1 2 L n=1 Throughout this paper all logarithms are taken to the base natural. Let Xi,i = 1,2,···,K be correlated zero mean limsupRi(n) ≤Ri, for i=1,2,···,L, Gaussian random variable. For each i = 1,2,···,K, X n→∞ i limsup 1Σ (cid:22)Σ , takes values in the real line Xi. We write a k dimensional n→∞ n XK−XˆK d random vector as XK = t(X ,X , ···,X ). We denote 1 2 K where A (cid:22) A means that A − A is positive semi- the covariance matrix of XK by ΣXK. Let YL =△ t(Y1,Y2, definitem1atrix.Le2tRL(Σd|ΣXKYL2)deno1tethesetofallΣd- ···,YL) be an observation of the source vector XK, having admissible rate vectors. We often have a particular interest in the form YL =AXK+NL, where A is a L×K matrix and the minimum sum rate part of the rate distortion region. To NL = t(N1,N2,···,NL) is a vector of L independent zero examine this quantity, we set mean Gaussian random variables also independent of XK. {F(oXr i(t=),1X,2(,t·)·,··,·L·,,XσN2i(ts)t)a}n∞ds fboer athsetavtiaorniaanrcyemoefmNoir.ylLesest Rsum,L(Σd|ΣXKYL)=△ min L Ri . mult1iple Ga2ussian sourKce. Fotr=e1ach t = 1,2,···, XK(t) =△ ∈RL(R(Γ1,,RD2K,·|·Σ·,XRKL)YL)(Xi=1 ) t(X1(t),X2(t),···,Xk(t)) has the same distribution as XK. We considertwo typesof distortioncriterion.For each distor- A random vector consisting of n independent copies of the tion criterion we define the determination problem of the rate random variable Xi is denoted by distortion region. Problem 1. Vector Distortion Criterion: Fix K × K X =△ (X (1),X (2),···,X (n)). i i i i invertible matrix Γ and positive vector DK = (D , D ,··· 1 2 For each t = 1,2,···, Yi(t),i = 1,2,···,L is a vector of L ,DK).ForgivenΓandDK,theratevector(R1,R2,···,RL) correlated observations of XK(t), having the form YL(t) = is (Γ,DK)-admissible if there exists a sequence {(ϕ(n), 1 AXK(t)+NL(t),whereNL(t),t=1,2,···,areindependent ϕ(n),···, ϕ(n), ψ(n))}∞ such that 2 L n=1 identically distributed (i.i.d.) Gaussian random vector having the same distribution as NL. We have no assumption on the limsupR(n) ≤Ri, for i=1,2,···,L, n→∞ number of observations L, which may be L≥K or L<K. limsup Γ 1Σ tΓ ≤D , for i=1,2,···,K, The distributed source coding system for L correlated n→∞ n XK−XˆK ii i Gaussian observations treated in this paper is shown in Fig. h (cid:16) (cid:17) i where [C] stands for the (i,j) entry of the matrix C. 1. In this coding system the distributed encoder functions ij Let R (Γ,DK|Σ ) denote the set of all (Γ,DK)- ϕ ,i=1,2,···,L are defined by L XKYL i admissible rate vectors. When Γ is equal to the K × K ϕ(in) :Xin →Mi =△ {1,2,···,Mi} . identity matrix IK, we omit Γ in RL(Γ,D|ΣXKYL) to simply write R (D|Σ ). Similar notations are used for For each i= 1,2,···,L, set Ri(n) =△ n1 logMi, which stands other sets or qLuantitieXs.KYTLo examine the sum rate part of for the transmission rate of the encoder function ϕ(n). The R (Γ,DK|Σ ), define i L XKYL joint decoder function ψ(n) = (ψ(n), ψ(n), ···,ψ(n)) is 1 2 K L defined by R (Γ,DK|Σ )=△ min R . sum,L XKYL i ψi(n) :M1×···×ML →Xˆin,i=1,2,···,K, ∈RL(R(Γ1,,RD2K,·|·Σ·,XRKL)YL)(Xi=1 ) 3 Problem 2. Sum Distortion Criterion: Fix K ×K positive and set definiteinvertiblematrixΓandpositiveD.ForgivenΓandD, Rˆ(in)(Σ |Σ ) the rate vector(R ,R ,···,R ) is (Γ,D)-admissible if there L d XKYL 1 2 L existsasequence{(ϕ(n),ϕ(n),···,ϕ(n),ψ(n))}∞ suchthat =△ conv RL : There exists a random vector 1 2 L n=1 UL ∈G(Σ ) such that (cid:8) d limsupR(n) ≤R , for i=1,2,···,L, i R ≥I(U ;Y |U ) n→∞ i S S Sc limsuptr Γ 1Σ tΓ ≤D. Xi∈S n→∞ n XK−XˆK for any S ⊆Λ.} , h (cid:16) (cid:17) i where conv{A} stands for the convex hull of the set A. Set To examine the sum rate part of R (Γ,D|Σ ), define L XKYL Rˆ(in)(Γ,DK|Σ ) L XKYL L △ R (Γ,D|Σ )= min R . sum,L XKYL i △ ∈R(RL(1Γ,R,D2,|·Σ··X,RKLY)L)(Xi=1 ) =convΓΣdtΓ∈[SK(DK)RL(Σd|ΣXKYL), LetSK(DK)beasetofallK×K covariancematriceswhose Rˆ(Lin)(Γ,D|ΣXKYL)  (i,i) entry do not exceed D for i = 1,2,···,K. Then we i △ have =conv RL(Σd|ΣXKYL). tr[ΓΣ[dtΓ]≤D  RL(Γ,DK|ΣXKYL)= RL(Σd|ΣXKYL),(1) Define   ΓΣdtΓ∈[SK(DK) Σ =△ (Σ−1 +tAΣ−1A)−1 R (Γ,D|Σ )= R (Σ |Σ ). (2) XK|YL XK NL L XKYL L d XKYL tr[ΓΣ[dtΓ]≤D and set dK(ΓΣ tΓ)=△ [ΓΣ tΓ] ,[ΓΣ tΓ] , Furthermore, we have XK|YL XK|YL 11 XK|YL 22 ···,[ΓΣ tΓ] . (cid:0) XK|YL LL R (Γ,D|Σ )= R (Γ,DK|Σ ). (3) L XKYL L XKYL We can show that Rˆ(in)(Σ |Σ ), Rˆ(in)(Γ(cid:1),DL|Σ ), Ki=[1Di≤D and Rˆ(Lin)(Γ,D|ΣXKLYL) sdatisXfyKtYhLe folloLwing properXtyK. YL Property 1: P In this paper we establish explicit inner and outer bounds of R (Σ |Σ ). Using the above bounds and equations (1) L d XKYL a) ThesetRˆ(in)(Σ |Σ )isnotvoidifandonlyifΣ ≻ and (2), we give new outer boundsof R (Γ,D|Σ ) and L d XKYL d L XKYL Σ . R (Γ,DK|Σ ). XK|YL L XKYL b) The set Rˆ(in)(Γ,DK|Σ ) is not void if and only if L XKYL DK >dK(Γ Σ tΓ). XK|YL c) The set Rˆ(in)(Γ,D|Σ ) is not void if and only if B. Inner Bounds and Previous Results L XKYL D >tr[ΓΣ tΓ]. XK|YL In this subsection we present inner bounds of R (Σ On inner bounds of R (Σ |Σ ), R (Γ,DL|Σ L d L d XKYL L XKYL |ΣXKYL), RL(Γ,DL |ΣXKYL), and RL(Γ,D |ΣXKYL). ), and RˆL(Γ,D|ΣXKYL), we have the following result. Those inner bounds can be obtained by a standard technique Theorem 1 (Berger [4] and Tung [5]): For any Σ ≻ d developed in the field of multiterminal source coding. Σ , we have XK|YL △ Set Λ = {1,2,···,L}. For i ∈ Λ, let U be a random i Rˆ(in)(Σ |Σ )⊆R (Σ |Σ ). variable taking values in the real line U . For any subset L d XKYL L d XKYL i S ⊆Λ, weintroducethenotationUS =(Ui)i∈S. Inparticular For any Γ and any DK > dK(ΓΣXK|YLtΓ), we have U = UL = (U , U , ···,U ). Define Λ 1 2 L Rˆ(in)(Γ,DK|Σ )⊆R (Γ,DK|Σ ). L XKYL L XKYL G(Σd)=△ UL : UL is a Gaussian For any Γ and any D >tr[ΓΣXK|YLtΓ], we have random vector that satisfies (cid:8) Rˆ(in)(Γ,D|Σ )⊆R (Γ,D|Σ ). U →Y →XK →Y →U , L XKYL L XKYL S S Sc Sc UL →YL →XK The above three inner bounds can be regarded as variants of the inner bound which is well known as that of Berger [4] for any S ⊆Λ and and Tung [5]. Σ (cid:22)Σ XK−ψ(UL) d WhenK =1andL×1columnvectorAhastheformA= for some linear mapping t[11···1], the system considered here becomes the quadratic ψ :UL →XˆK.} Gaussian CEO problem. This problem was first posed and 4 investigated by Viswanathan and Berger [14]. They further b) Suppose that rL ∈ A (Σ ). If rL still belongs to assumed ΣNL =σ2IL. Set σX2 =△ ΣX and AL(Σd), then L d (cid:12)rS=0 (cid:12) Rsum(D|σX2 ,σ2)=△ liminfRsum,L(D|ΣXYL). JS(|Σd|,rS|rSc)|rS=0 = JS(rS|rSc)|rS=0 L→∞ =0. Viswanathan and Berger [14] studied an asymptotic form of R (D|σ2 ,σ2) for small D. Subsequently, Oohama [15] Property 3: Fix rL ∈A (Σ ). For S ⊆Λ, set sum X L d determined an exact form of R (D|σ2 ,σ2). The region sum X △ RL(D|ΣXYL) was determined by Oohama [16]. fS =fS(rS|rSc)=JS(|Σd|,rS|rSc). In the case where K = L and Γ = A = I , Oohama L By definition, it is obvious that f ,S ⊆ Λ are nonnegative. [18]-[20] derived inner and outer bounds of R (D|Σ ). S L XLYL △ Oohama [19] also derived explicit sufficient conditions for We can show that f ={fS}S⊆Λ satisfies the followings: innerandouterboundstomatchandfoundexamplesofinfor- a) f =0. ∅ mation sources for which rate distortion region are explicitly b) f ≤f for A⊆B ⊆Λ. A B determined.In [20], Oohama derived explicit outer boundsof c) f +f ≤f +f . A B A∩B A∪B R (Σ |Σ ), R (DL |Σ ), and R (D |Σ ). L d XLYL L XLYL L XLYL Ingeneral(Λ,f)iscalledaco-polymatroidifthenonnegative Recently, Wagner et al. [10] have determined R (D2| 2 functionρon2Λ satisfiestheabovethreeproperties.Similarly, Σ ). Their result is as follows. X2Y2 we set Theorem 2 (Wagner et al. [10]): For any D2 > d2([Σ XK| YL]), we have f˜S =f˜S(rS|rSc)=△ JS(rS|rSc), f˜= f˜S . S⊆Λ R (D2|Σ )=Rˆ(in)(D2|Σ ). n o 2 X2Y2 2 X2Y2 Then (Λ,f˜) also has the same three properties as those of Their method for the proof depends heavily on the specific (Λ,f) and becomes a co-polymatroid. property of L = 2. It is hard to generalize it to the case of To describe our result on R (Σ |Σ ), set L d XKYL L≥3. R(out)(θ,rL|Σ ) L XKYL III. MAIN RESULTS =△ RL : R ≥J (θ,r |r ) i S S Sc A. Inner and Outer Bounds of the Rate Distortion Region i∈S (cid:8) X Inthissubsectionwestateourresultonthecharacterizations for any S ⊆Λ.} , of RL(Σd |ΣXKYL), RL(Γ,DK |ΣXKYL), and RL(Γ,D R(out)(Σ |Σ ) L d XKYL |Σ ). To describe those results we define several func- tioXnsKYanLd sets. For ri ≥ 0,i ∈ Λ, let Ni(ri), i ∈ Λ be =△ R(Lout)(|Σd|,rL|ΣXKYL), L independent Gaussian random variables with mean 0 and rL∈A[L(Σd) varianceσN2i/(1−e−2ri).LetΣNL(rL) beacovariancematrix R(Lin)(rL) fortherandomvectorNL(rL).FixnonnegativevectorrL.For =△ RL : R ≥J (r |r ) θ >0 and for S ⊆Λ, define i S S Sc i∈S Σ−1 =△ Σ−1 , (cid:8) Xfor any S ⊆Λ.} , NSc(rSc) NL(rL) rS=0 (cid:12)(cid:12) e2ri R(Lin)(Σd|ΣXKYL) (cid:12) JS(θ,rS|rSc)=△ 21log+θ(cid:12)Σ−X1K +iY∈tSAΣ−N1Sc(rSc)A(cid:12), =△ convrL∈A[L(Σd)R(Lin)(rL|ΣXKYL) . JS(rS|rSc)=△ 21log(cid:12)(cid:12)(cid:12)Σ−X(cid:12)(cid:12)Σ1K−X+1Kt+AΣtA−NΣ1L(−NrL1Sc)A(rS(cid:12)(cid:12)(cid:12)ciY∈)AS(cid:12)(cid:12)e2ri, sWatePiscrfoaynpteshrhetyofw4o:ltlhoTawthiReng(Lsinpe)tr(soΣpRder|Σ(LtiynX.)(KΣYdL|Σ)XanKdYRL(L)ouat)n(dΣdR|Σ(LoXuKt)Y(ΣLd)  (cid:12) (cid:12)  |Σ ) are not void if and only if Σ ≻Σ .  (cid:12) (cid:12)  XKYL d XK|YL where Sc =Λ−S and log+x(cid:12) =△ max{logx,0}. Set(cid:12) Our result on inner and outer bounds of RL(Σd|ΣXKYL) is as follows. AL(Σd)=△ rL ≥0: Σ−X1K +tAΣ−N1L(rL)A −1 (cid:22)Σd . Theorem 3: For any Σd≻ ΣXK|YL, we have We can sho(cid:26)w that forh S ⊆ Λ, JS(|Σd|,i rS|rSc)(cid:27)and R(Lin)(Σd|ΣXKYL)⊆Rˆ(Lin)(Σd|ΣXKYL) JS(rS|rSc) satisfy the following two properties. ⊆RL(Σd|ΣXKYL)⊆R(Lout)(Σd|ΣXKYL). Property 2: a) If rL ∈A (Σ ), then for any S ⊆Λ, Proof of this theorem is given in Section V. This result L d includestheresultofOohama[20]asaspecialcase byletting JS(|Σd|,rS|rSc)≤JS(rS|rSc). K = L and Γ = A = IL. From this theorem we can 5 derive outer and inner bounds of R (Γ,DK| Σ ) and R(in)(Γ,D|Σ ) L XKYL L XKYL R (Γ,D|Σ ). To describe those bounds, set L XKYL R(Lout)(Γ,DK|ΣXKYL) =conv R(Lin)(rL) . △ (out) rL∈B[L(Γ,D)  = R (Σ |Σ ), L d XKYL The followingresult is obtained as asimple corollary from ΓΣdtΓ∈[SK(DK) Theorem 3. R(Lin)(Γ,DK|ΣXKYL) Corollary 1: For any Γ and any DK > dK(ΓΣXK|YLtΓ), we have =△ conv R(in)(Σ |Σ ) ,  L d XKYL  R(in)(Γ,DK|Σ )⊆Rˆ(in)(Γ,DK|Σ ) ΓΣdtΓ∈[SK(DK)  L XKYL L XKYL R(Lout)(Γ,D|ΣXKYL)  ⊆RL(Γ,DK|ΣXKYL)⊆R(Lout)(Γ,DK|ΣXKYL). =△ R(Lout)(Σd|ΣXKYL), For any Γ and any D >tr[ΓΣXK|YLtΓ], we have tr[ΓΣ[dtΓ]≤D R(in)(Γ,D|Σ ) R(Lin)(Γ,D|ΣXKYL)⊆Rˆ(Lin)(Γ,D|ΣXKYL) L XKYL ⊆R (Γ,D|Σ )⊆R(out)(Γ,D|Σ ). L XKYL L XKYL =△ conv R(in)(Σ |Σ ) .  L d XKYL  ThoseresultincludestheresultofOohama[20]asaspecial tr[ΓΣ[dtΓ]≤D  case by letting K = L and Γ = A = I . Next we compute L Set   θ(Γ,D,rL) to derive a more explicit expression of R(Lout)(Γ A(rL)=△ Σ :Σ (cid:23)(Σ−1 +tAΣ−1 A)−1 , ,D|ΣXKYL).Thisexpressionwillbequiteusefulforfindinga d d XK NL(rL) sufficientconditionfortheouterboundR(out)(Γ,D|Σ ) θ(Γ,DK,rL)=△ n max |Σd| , o to be tight. Let αi = αi(rL),i = 1,2,L···,K be KXKeiYgLen Σd:Σd∈AL(rL), values of the matrix ΓΣdtΓ∈SK(DK) θ(Γ,D,rL)=△ max |Σd| . Γ−1 Σ−X1K +tAΣ−N1L(rL)A tΓ−1. Σd:Σd∈AL(rL), (cid:16) (cid:17) tr[ΓΣdtΓ]≤D Let ξ be a nonnegative number that satisfy Furthermore, set K BL(Γ,DK) [ξ−α−i 1]++α−i 1 =D. =△ rL ≥0:Γ(Σ−1 +tAΣ−1 A)−1tΓ∈S (DK) , Xi=1(cid:8) (cid:9) XK NL(rL) K Define nB (Γ,D) o L K =△ rL ≥0:tr[Γ(Σ−1 +tAΣ−1 A)−1tΓ]≤D . ω(Γ,D,rL)=△ |Γ|−2 [ξ−α−1]++α−1 . XK NL(rL) i i It cann easily be verified that R(out)(Γ, DK|Σ )o, R(in)( iY=1(cid:8) (cid:9) Γ, DK|Σ ), R(out)(Γ, DL|Σ ), andXKRY(Lin)(Γ,LD| The function ω(Γ,D,rL) has an expression of the so-called XKYL L XKYL L water filling solution to the following optimization problem: Σ ) satisfies the following property. XKYL Property 5: K ba)) YTThhLee)ssaeerttessnRRo(t(Liinvn)o)((iΓΓd,,iDDf a|KΣnd|ΣoXnKlyY)iLfa)nDdaKnRd>(Roud(LtoK)u(Γ(t)Γ,(ΣDΓ,X|DΣKK|Y|LΣtXΓK)). ω(Γ,D,rL)=|Γ|−2 ξiαKiim=≥11aξ,xii∈≤ΛD,iY=1ξi. (4) L XKYL L XK YL are not void if and only if D >tr[ΓΣ tΓ]. Then we have the following thePorem. XK|YL c) Theorem 4: For any Γ and any positive D, we have R(out)(Γ,DK|Σ ) θ(Γ,D,rL)=ω(Γ,D,rL). L XKYL = R(Lout)(θ(Γ,DK,rL),rL|ΣXKYL), A more explicit expression of R(out)(Γ,D|Σ ) using L XKYL rL∈BL[(Γ,DK) ω(Γ,D,rL) is given by R(in)(Γ,DK|Σ ) L XKYL R(out)(Γ,D|Σ ) L XKYL =conv R(Lin)(rL|ΣXKYL) , =△ R(Lout)(ω(Γ,D,rL),rL|ΣXKYL). rL∈BL[(Γ,DK)  rL∈B[L(Γ,D) (out) R (Γ,D|Σ ) L  XKYL  ProofofthistheoremwillbegiveninSectionV.Theabove = R(out)(θ(Γ,D,rL),rL|Σ ), expression of the outer bound includes the result of Oohama L XKYL rL∈B[L(Γ,D) [20] as a special case by letting K =L and Γ=A=IL. 6 B. Matching Condition Analysis If (i′,i′′)6=(1,1), then the value of D|FΣor L ≥)3,⊆wRe(pinr)e(sDen|tΣa suffic)ie.nWtecocnodnistiidoenrftohreRfo(Llolouwt)(inΓg, [tQitΓ−1(Σ−X1K +tAΣ−N1L(uL)A)Γ−1Qi]i′i′′ XKYL L XKYL L condition on θ(Γ,D,rL). =[tQ tΓ−1Σ−1 Γ−1Q ] + u t(aˆ Q )(aˆ Q ) Condition: For any i∈Λ, e−2riθ(Γ,D,rL) is a monotone i XK i i′i′′ j j i j i i′i′′ j=1 decreasing function of r ≥0. X (cid:2) (cid:3) i does not depend on u . Note that the matrix We call this condition the MD condition. The following is i a key lemma to derive the matching condition.This lemma is tQ tΓ−1(Σ−1 +tAΣ−1 A)Γ−1Q i XK NL(uL) i due to Oohama [19], [21]. Lemma 1 (Oohama [19],[21]): If θ(Γ,D,rL) satisfies the has the same eigen values as those of MD condition on BL( Γ,D), then tΓ−1(Σ−1 +tAΣ−1 A)Γ−1. XK NL(uL) R(Lin)(Γ,D|ΣXKYL)=RL(Γ,D|ΣXKYL) We recall here that αi = αj(uL),j = 1,2,···,K are K =R(out)(Γ,D|Σ ). eigenvaluesoftheabovetwomatrices.Letα =α (uL) L XKYL min min and α =α (uL) be the minimum and maximum eigen max max Based on Lemma 1, we derive a sufficient condition for valuesamongα ,j =1,2,···,K.AccordingtoOohama[19], θ(Γ,D,rL) to satisfy the MD condition. This sufficient con- j [21], we have the following lemma on those eigen values. dition is closely related to the distribution of eigen values of Lemma 2 (Oohama[19],[21]): For each i = 1,2,···,L, tΓ−1(Σ−1 +tAΣ−1 A)Γ−1. we have XK NL(rL) Define αmin(uL)≤||aˆi||2ui+ηi(uL[i])≤αmax(uL), ui =△ σN21i(1−e−2ri), for i=1,2,···,L. (5) ∂∂αuji ≥0, for j =1,2,···,K, K ∂∂αuji =||aˆi||2. j=1 From (5), we have X Thefollowingisakeylemmatoderiveasufficientcondition 1 σ2 for the MD condition to hold. 2ri =log σ12 N−i ui . Lemma 3: If αmin(uL) and αmax(uL) satisfy Ni 1 1 1 By the above transformation we regard − ≤ , α (uL) α (uL) ||aˆ ||2 1 +η (uL) min max i σ2 i [i] tΓ−1(Σ−1 +tAΣ−1 A)Γ−1 Ni XK NL(rL) for i=1,2,···,L and θ(Γ,D,rL) as functions of uL, that is, on B (Γ,D), then θ(Γ,D,uL) satisfies the MD condition on L B (Γ,D). tΓ−1(Σ−1 +tAΣ−1 A)Γ−1 L XK NL(rL) Proofof Lemma3 will bestated in SectionV. Letα∗ be max =tΓ−1(Σ−1 +tAΣ−1 A)Γ−1, the maximum eigen value of XK NL(uL) and θ(Γ,D,rL) = θ(Γ,D,uL). Let aˆ be the (i,j) entry of tΓ−1(Σ−1 +tAΣ−1A)Γ−1. ij XK NL AΓ−1. Set aˆ =△ [aˆ aˆ ···aˆ ]. Let Q be a K×K unitary i i1 i2 iK From Lemmas 1-3 and an elementary computation we obtain matrix. We consider the following matrix: the following. tQtΓ−1(Σ−1 +tAΣ−1 A)Γ−1Q Theorem 5: If we have XK NL(uL) L tr[ΓΣXK|YLtΓ]<D ≤ αK∗+1 , =tQtΓ−1Σ−1 Γ−1Q+ u t(aˆ Q)(aˆ Q). max XK j j j then j=1 X For each i = 1,2,···,L, choose the K ×K unitary matrix R(Lin)(Γ,D|ΣXK)=Rˆ(Lin)(Γ,D|ΣXK) Q = Qi so that aˆiQi = [||aˆi||0···0]. For this choice of =RL(Γ,D|ΣXKYL)=R(Lout)(Γ,D|ΣXKYL). Q=Q , set i In particular, η =η (uL) i i [i] R (Γ,D) sum,L =△ tQ tΓ−1Σ−1 Γ−1Q + u t(aˆ Q )(aˆ Q ) , i XK i 11 j j i j i 11 L Σ−1 +tAΣ−1 A wher(cid:2)e uL[i] =△ u1···ui−1u(cid:3)i+1··Xj·6=uiL. (cid:2)Similar notation(cid:3)s are =rL∈mBLi(nΓ,D)Xi=1ri+ 21log(cid:12)(cid:12)(cid:12) XK Σ−X1KNL(rL) (cid:12)(cid:12)(cid:12). used for other variables or random variables. Then we have Proof of Theorem 5 will be stated i(cid:12)n Sec(cid:12)tion V. From  (cid:12) (cid:12)  this theorem, we can see that if the value of D is very [tQ tΓ−1 Σ−1 +tAΣ−1 A Γ−1Q ] i XK NL(uL) i 11 close to tr[ΓΣ tΓ], R(in)(Γ, D|Σ ) and R(out)(Γ, XK|YL L XKYL L =||aˆ ||2u +(cid:16)η . (cid:17) D|Σ ) match. i i i XKYL 7 Let R (Σ |Σ ) denote the set of all Σ -admissible rate L d YL d vectors. N We consider two types of distortion criterion. For each 1 X1- ?h- Y1 Y-1 ϕ(1n) ϕ(1n)(Y1)J dthisetorarttieondisctroirtetiroionnrewgieond.efine the determination problem of N J Yˆ Problem 3. Vector Distortion Criterion: For given L×L X2- ?h2- Y2 Y-2 ϕ(2n) ϕ(2n)(Y2) J-JJ^(cid:1)(cid:21)φ(n)-Yˆ...12 {i·n·(v·ϕe,(rRnti)Lb,l)ϕe(imns)a,(t·Γr·i,x·D,ΓϕL()an-na),ddmφD(insLs)i)b}>l∞e 0if,sutthhceehrerthataeetxivsetsctoar s(eRq1u,eRnc2e, (cid:1)   1 2 L n=1 . . (cid:1) Yˆ  . .  L . N . (cid:1)   limsupR(n) ≤R , for i=1,2,···,L, L i XL- ?h-YL Y-L ϕ(Ln) ϕ(Ln)(YL)(cid:1)(cid:1) linnm→→s∞∞up Γ n1ΣYL−YˆL tΓ ii ≤Di, for i=1,2,···,L. h (cid:16) (cid:17) i Fig. 2. Distributed source coding system for L correlated Gaussian LetR (Γ,DL|Σ ) denotethe set ofall (Γ,DL)-admissible sources L YL rate vectors. The sum rate part of the rate distortion region is defined by IV. APPLICATION TO THEMULTITERMINALRATE L DISTORTION PROBLEM R (Γ,DL|Σ )=△ min R . sum,L YL i proInblethmisfsoerctGioanuswsieancoinnsfiodremrathtieonmsuolutirtceermsipneaclifiraetde dwiistthorYtioLn. ∈(RRL1(,ΓR,2D,·L··|,ΣRYLL))(Xi=1 ) We consider the case where K =L and A=IL. In this case Problem4.SumDistortionCriterion:ForgivenL×Linvert- we have YL = XL +NL. The Gaussian random variables ible matrix Γ and D >0, the rate vector (R ,R ,···,R ) is 1 2 L Yi,i = 1,2,···,L are L-noisy components of random vector (Γ,D)-admissibleifthereexistsasequence{(ϕ(n),ϕ(n),···, XL. The Gaussian random vector XL can be regarded as ϕ(n), φ(n))}∞ such that 1 2 a “hidden” information source of YL. Note that (XL,YL) L n=1 satisfies Y →XL →Y for any S ⊆Λ. S Sc limsupR(n) ≤R , for i=1,2,···,L, i n→∞ A. Problem Formulation and Previous Results limsuptr Γ 1Σ tΓ ≤D. n YL−YˆL n→∞ The distributed source coding system for L correlated h (cid:16) (cid:17) i Gaussian source treated here is shown in Fig. 2. Definitions Let R (Γ,D|Σ ) denote the set of all admissible rate L YL of encoder functions ϕi,i = 1,2,···,L are the same as the vectors. The sum rate part of the rate distortion region is previousdefinitions.Thedecoderfunctionφ(n) =(φ1(n),φ2(n), defined by ···,φ(n)) is defined by L L φ(in) :M1×···×ML →Yˆin,i=1,2,···,K, Rsum,L(Γ,D|ΣYL)=△ min Ri . whereYˆiisthereallineinwhichestimationsofYitakevalues. ∈(RR1L,(RΓ2,D,··|·Σ,RYLL))(Xi=1 ) For YL =(Y , Y , ···, Y ), set 1 2 L Relations between R (Σ |Σ ), R (Γ,DL|Σ ), and Yˆ φ(n)(ϕ(n)(YL)) L d YL L YL 1 1 RL(Γ, D|ΣYL) are as follows. Yˆ φ(n)(ϕ(n)(YL)) YˆL = .2=△  2 .  , Yˆ..L φ(Ln)(ϕ(n..)(YL)) RL(Γ,DL|ΣYL)=ΓΣdtΓ[∈SL(DL)RL(Σd|ΣYL), (6) d˜ =△ E||Y −Yˆ||2,  RL(Γ,D|ΣYL)= RL(Σd|ΣYL). (7) ii i i d˜ =△ EhY −Yˆ ,Y −Yˆ i,1≤i6=j ≤L. tr[ΓΣ[dtΓ]≤D ij i i j j Furthermore, we have LetΣ beacovariancematrixwithd˜ inits(i,j)entry. YL−YˆL ij adFmoisrsiablgeivifenthΣerde,etxhiestsraatesevqeucetonrce(R{(1ϕ,R(n2),,·ϕ··(n,)R,L··)·,isϕΣ(nd)-, RL(Γ,D|ΣYL)= RL(Γ,DL|ΣYL). (8) ψ(n))}∞ such that 1 2 L Li=[1Di≤D n=1 P limsupR(n) ≤Ri, for i=1,2,···,L, We firstpresentinnerboundsofRL(Σd |ΣYL), RL(Γ,DL n→∞ |Σ ), and R (Γ, D|Σ ). Those inner bounds can be limsup 1Σ (cid:22)Σ . YL L YL n YL−YˆL d obtained by a standard technique of multiterminal source n→∞ 8 coding. Define where G˜(Σd)=△ UL : UL is a Gaussian R∗i,2(Di|ΣY2)=△ (cid:8) random vector that satisfies (R ,R ):R ≥ 1log+ (1−ρ2) 1 1+ ρ2 ·s , U →Y →XL →Y →U 1 2 i 2 Di 1−ρ2 S S Sc Sc UL →YL →XL n R3−i ≥ 12logh 1s (cid:16) (cid:17)i for any S ⊂Λ and for some 0<(cid:2) s(cid:3)≤1 . Σ (cid:22)Σ YL−φ(UL) d o for some linear mapping Since R∗i,2(Di|ΣY2), i = 1,2 serve as outer bounds of R (D2|Σ ), we have φ:UL →YˆL.} 2 Y2 and set R2(D2|ΣY2)⊆R∗1,2(D1|ΣY2)∩R∗2,2(D2|ΣY2). (9) Rˆ(in)(Σ |Σ ) Wagneretal.[10]derivedtheconditionwheretheouterbound L d YL in the right hand side of (9) is tight. To describe their result =△ conv RL : There exists a random vector set UL ∈G˜(Σ ) such that (cid:8) d △ D ={(D ,D ):D ,D >0, 1 2 1 2 R ≥I(U ;Y |U ) i S S Sc max{D ,D }≤min{1,ρ2min{D ,D }+1−ρ2}}. i∈S 1 2 1 2 X for any S ⊆Λ.} , Wagner et al. [10] showed that if D2 ∈/ D, we have Rˆ(in)(Γ,DL|Σ ) R2(D2|ΣY2)=R∗1,2(D1|ΣY2)∩R∗2,2(D2|ΣY2). L YL Next we consider the case of D2 ∈ D. In this case by an =△ conv Rˆ(Lin)(Σd|ΣYL) , elementarycomputationwecanshowthatRˆ(2in)(D2|ΣY2)has ΓΣdtΓ[∈SL(DL)  the following form: Rˆ(Lin)(Γ,D|ΣYL)  Rˆ(in)(D2|Σ ) 2 Y2 =△ conv Rˆ(in)(Σ |Σ ) . =R∗1,2(D1|ΣY2)∩R∗2,2(D2|ΣY2)∩R∗3,2(D2|ΣY2),  L d YL  tr[ΓΣ[dtΓ]≤D  where Then we have the following result.   R∗ (D2|Σ ) Theorem 6 (Berger [4] and Tung [5]): For any positive 3,2 Y2 △ definite Σ , we have = (R ,R ): R +R d 1 2 1 2 Rˆ(Lin)(Σd|ΣYL)⊆RL(Σd|ΣYL). n ≥ 21log (1−ρ2)β2∗ · D11D2 , For any invertible Γ and any DL >0, we have β∗ =△ 1+ 1+ 4ρh2 ·D D . io (1−ρ2)2 1 2 Rˆ(Lin)(Γ,DL|ΣYL)⊆RL(Γ,DL|ΣYL). The boundary of Rˆ(qin)(D2|Σ ) consists of one straight line 2 Y2 For any invertible Γ and any D >0, we have segment defined by the boundary of R∗3,2(D2|ΣY2) and two curved portions defined by the boundaries of R∗ (D |Σ ) Rˆ(Lin)(Γ,D|ΣYL)⊆RL(Γ,D|ΣYL). and R∗2,2(D2|ΣY2). Accordingly, the inner b1o,2und1estYa2b- TheinnerboundRˆ(in)(DL|Σ )forΓ=I iswellknown lished by Berger [4] and Tung [5] partially coincides with L YL L R (D2|Σ )attwocurvedportionsofitsboundary.Recently, astheinnerboundofBerger[4]andTung[5].Theabovethree 2 Y2 Wagner et al. [10] have completed the proof of the opti- inner bounds are variants of this inner bound. Optimality of Rˆ(2in)(D2|ΣY2) was first studied by Oohama mRality(oDf2R|ˆΣ(2in)()D. T2|hΣeiYr2r)esbuyltdisetaesrmfoinllionwgst.he sum rate part [9]. Without loss of generality we may assume that sum,2 Y2 Theorem 8 (Wagner et al. [10]): ForanyD2 ∈D,wehave 1 ρ Σ = ρ∈[0,1). Y2 ρ 1 Rsum,2(D2|ΣY2)= min (R1+R2) (cid:20) (cid:21) (R1,R2) For i=1,2, set ∈Rˆ(2in)(D2|ΣY2) 1 β∗ 1 R (D |Σ )=△ R (D2|Σ ). = log (1−ρ2) · . i,2 i Y2 2 Y2 2 2 D D 1 2 D3[−i>0 h i AccordingtoWagneretal.[10],theresultsofOohama[15] Oohama [9] obtained the following result. and [16] play an essential role in deriving their result. Their Theorem 7 (Oohama [9]): For i=1,2, we have methodfor the proofdependsheavily onthe specific property R (D |Σ )=R∗ (D |Σ ), of L=2. It is hard to generalize it to the case of L≥3. i,2 i Y2 i,2 i Y2 9 B. New Partial Solutions Conversely, we fix {(ϕ(n), ϕ(n),···, ϕ(n), φ(n))}∞ , arbi- 1 2 L n=1 In this subsection we state our results on the characteriza- trary. For each n=1,2,···, using the estimation YˆL of YL tionsofR (Σ |Σ ),R (Γ,DL|Σ ),andR (Γ,D|Σ ). given by L d YL L YL L YL Beforedescribingthoseresultswederiveanimportantrelation φ(n)(ϕ(n)(YL)) betweenremotesourcecodingproblemandmultiterminalrate 1 φ(n)(ϕ(n)(YL)) distortion problem. We first observe that by an elementary YˆL = 2 .  , computation we have  ..  φ(n)(ϕ(n)(YL)) XL =A˜YL+N˜L, (10)  L    where A˜ = (Σ−1 +Σ−1)−1Σ−1 and N˜L is a zero mean we construct an estimation XˆL of XL by (13). Then using XL NL NL (11)and(13),weobtain(14).Hencewehavetherelation(15). GaussianrandomvectorwithcovariancematrixΣ =(Σ−1 N˜L XL The following proposition provides an important strong +Σ−1)−1.TherandomvectorN˜L isindependentofYL.Set NL connection between remote source coding problem and mul- titerminal rate distortion problem. B =△ A˜−1Σ tA˜−1 =Σ +Σ Σ−1Σ , N˜L NL NL XL NL Proposition 1: For any positive definite Σ , we have d bL =△ t([B] ,[B] ,···,[B] ), 11 22 LL R (Σ |Σ )=R (A˜(Σ +B)tA˜|Σ ). L d YL L d XLYL B˜ =△ ΓBtΓ, For any invertible Γ and any DL >0, we have ˜bL =△ t([B˜] ,[B˜] ,···,[B˜] ). 11 22 LL R (Γ,DL|Σ )=R (ΓA˜−1,DL+˜bL|Σ ). L YL L XLYL From (10), we have the following relation between XL and YL: For any invertible Γ and any D >0, we have XL =A˜YL+N˜L, (11) R (Γ,D|Σ )=R (ΓA˜−1,D+tr[B˜]|Σ ). L YL L XLYL where N˜L is a sequence of n independentcopies of N˜L and Proof: Suppose that RL ∈ RL(A˜(Σd + B)tA˜|ΣXLYL). is independent of YL. Now, we fix {(ϕ(1n), ϕ(2n),···, ϕL(n), Thenthereexists{(ϕ1(n),ϕ2(n),···,ϕL(n),ψ(n))}∞n=1 suchthat ψ(n))}∞ , arbitrary. For each n = 1,2,···, the estimation n=1 limsupR(n) ≤R , for i=1,2,···,L, XˆL of XL is given by n→∞ i limsup 1Σ (cid:22)A˜(Σ +B)tA˜. ψ(n)(ϕ(n)(YL)) n→∞ n XL−XˆL d 1 XˆL =ψ2(n)(ϕ(n...)(YL)) . UA˜s−i1nXgˆXLˆ.LT,hwenefcroonmstr(u1c6t),awneeshtaimveation YˆL of YL by YˆL= ψL(n)(ϕ(n)(YL)) linm→s∞upn1ΣYL−YˆL Using this estimation, we construct an estimation YˆL of YL =limsupA˜−1 1Σ tA˜−1−B by n→∞ n XL−XˆL YˆL =A˜−1XˆL, (12) (cid:22)A˜−1A˜(Σd+(cid:16)B)tA˜tA˜−1−(cid:17)B =Σd, which implies that RL ∈ R (A˜(Σ +B)tA˜|Σ ). Thus which is equivalent to L d XLYL R (Σ |Σ )⊇R (A˜(Σ +B)tA˜|Σ ) XˆL =A˜YˆL. (13) L d YL L d XLYL is proved. Next we prove the reverse inclusion. Suppose that From (11) and (13), we have RL∈RL(Σd|ΣYL).Thenthereexists{(ϕ1(n),ϕ2(n),···,ϕ(Ln), φ(n))}∞ such that XL−XˆL =A˜(YL−YˆL)+N˜L. (14) n=1 limsupR(n) ≤R , for i=1,2,···,L, i Since YˆL is a function of YL, YˆL−YL is independent of linm→s∞up 1Σ (cid:22)Σ . N˜L. Computing 1Σ based on (14), we obtain n→∞ n YL−YˆL d n XL−XˆL Using YˆL, we construct an estimation XˆL of XL by XˆL= n1ΣXL−XˆL =A˜ n1ΣYL−YˆL tA˜+ΣN˜L. (15) A˜YˆL. Then from (15), we have (cid:16) (cid:17) From (15), we have limsup 1Σ n XL−XˆL n→∞ n1ΣYL−YˆL =A˜−1 n1ΣXL−XˆL −ΣN˜L tA˜−1 =limsupA˜ n1ΣYL−YˆL tA˜+ΣN˜L n→∞ =A˜−1(cid:16)n1ΣXL−XˆL tA˜−1−(cid:17) B. (16) (cid:22)A˜ΣdtA˜t+(cid:16)ΣN˜L =A˜(Σ(cid:17)d+B)tA˜t, (cid:16) (cid:17) 10 which implies thatRL ∈ R (A˜(Σ +B)tA˜ |Σ ). Thus, define L d XLYL RL(Σd|ΣYL)⊆RL(A˜(Σd+B)tA˜|ΣXLYL) Σ−VS1(rSc) =△ Σ−V1L(rL) rS=0 , (cid:12) (cid:12) L is proved. Next we prove the second equality. We have the (cid:12) |ΣYL +B| e2ri followRingL(cΓh,aDinLo|Σf eYqLu)alities: J˜S(θ,rS|rSc)=△ 12log+θ|ΣYL|(cid:12)Σ−Y1L +iY=Σ1−VS1c(rSc)(cid:12),  (cid:12) (cid:12) ==ΓΣdtΓ[∈SL(DL)RRLL((ΣΓAd˜|(ΣΣYdL+) B)tA˜|ΣXLYL) J˜S(rS|rSc)=△ 21log(cid:12)(cid:12)(cid:12)ΣΣ−Y−Y1L1L++ΣΣ(cid:12)−V−VS11Lc((rrSLc))(cid:12)(cid:12)(cid:12)  . (cid:12) (cid:12) (cid:12) ΓΣdtΓ[∈SL(DL) Set (cid:12) (cid:12) (cid:12) (cid:12) = RL(A˜(Σd+B)tA˜|ΣXLYL) A˜ (Σ )=△ rL ≥0: Σ−1 +Σ−1 −1 (cid:22)Σ . ΓA˜−1A˜(Σd+[B)tA˜tA˜−1tΓ L d YL VL(rL) d −ΓBtΓ∈SL(DL) (cid:26) h i (cid:27) Define four regions by = R (A˜(Σ +B)tA˜|Σ ) L d XLYL ΓA˜−1A˜∈(SΣLd(+D[BL)+tA˜b˜Lt()ΓA˜−1) R(Lout)(θ,rL|ΣYL)=△ RL : i∈SRi ≥J˜S(θ,rS|rSc) = RL(Σˆd|ΣXLYL) (cid:8) Xfor any S ⊆Λ.} , Σˆd=A˜(Σd+B[)tA˜≻ΣXL|YL, R(out)(Σ |Σ )=△ R(out)(|Σ +B|,rL|Σ ), ΓA˜−1Σˆdt(ΓA˜−1)∈SL(DL+˜bL) L d YL L d YL =R (ΓA˜−1,DL+˜bL|Σ ). rL∈A[˜L(Σd) L XLYL R(in)(rL|Σ )=△ RL : R ≥J (r |r ) L YL i S S Sc Thusthesecondequalityisproved.Finallyweprovethethird i∈S (cid:8) X equality. We have the following chain of equalities: for any S ⊆Λ.} , RL(Γ,D|ΣYL) R(Lin)(Σd|ΣYL)=△ conv R(Lin)(rL|ΣYL) . = RL(Σd|ΣYL) rL∈A[L(Σd)  tr[ΓΣ[dtΓ]≤D The functions and sets defined above have properties shown = R (ΓA˜(Σ +B)tA˜|Σ ) in the following. L d XLYL Property 6: tr[ΓΣ[dtΓ]≤D = R (A˜(Σ +B)tA˜|Σ ) a) ForanypositivedefiniteΣd,G˜(Σd)=G(A˜(Σd+B)tA˜). L d XLYL tr[ΓA˜−1A˜(Σd[+B)tA˜tA˜−1tΓ] −tr[ΓBtΓ]≤D b) For any positive definite Σd, we have = RL(A˜(Σd+B)tA˜|ΣXLYL) Rˆ(in)(Σ |Σ )=Rˆ(in)(A˜(Σ +B)tA˜|Σ ). L d YL L d XLYL tr[ΓA˜−1A˜(Σd[+B)tA˜t(ΓA˜−1)] ≤D+tr[B˜] c) For any positive definite Σ and any S ⊆Λ, we have d = R (Σˆ |Σ ) L d XLYL J˜ (|Σ +B|,r |r )=J (|A˜(Σ +B)tA˜|,r |r ), S d S Sc S d S Sc Σˆd=A˜(Σd+B[)tA˜≻ΣXL|YL, J˜ (r |r )=J (r |r ). tr[ΓA˜−1Σˆdt(ΓA˜−1)]≤D+tr[B˜] S S Sc S S Sc =RL(ΓA˜−1,D+tr[B˜]|ΣXLYL). d) For any positive definite Σd, A˜L(Σd) = AL(A˜(Σd + B)tA˜). Thus the third equality is proved. e) For any positive definite Σ , we have d Proposition1impliesthatallresultsontheratedistortionre- gionsfortheremotesourcecodingproblemscanbeconverted R(Lout)(Σd|ΣYL)=R(Lout)(A˜(Σd+B)tA˜|ΣXLYL), intothoseonthemultiterminalsourcecodingproblems.Inthe R(in)(Σ |Σ )=R(in)(A˜(Σ +B)tA˜|Σ ). L d YL L d XLYL followingwe deriveinner and outer boundsof R (Σ |Σ ), L d YL R (Γ,DL|Σ ), and R (Γ,D|Σ ) using Proposition 1. From Theorem 3, Proposition 1 and Property 6, we have L YL L YL the following. WefirstderiveinnerandouterboundsofR (Σ |Σ ).For L d YL Theorem 9: For any positive definite Σ , we have r ≥ 0,i ∈ Λ, let V (r ), i ∈ Λ be L independent Gaussian d i i i rLaentdoΣm variabbleesawcitohvamrieaannce0manatdrixvarfioarnctheeσrN2ain/d(oem2riv−ec1to)r. R(Lin)(Σd|ΣYL)⊆Rˆ(Lin)(Σd|ΣYL) VL(rLV)L.(FriLx)nonnegativevectorrL.Forθ >0andforS ⊆Λ, ⊆RL(Σd|ΣYL)⊆R(Lout)(Σd|ΣYL).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.