ebook img

Dissipative Structures in Supersonic Turbulence PDF

0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dissipative Structures in Supersonic Turbulence

DissipativeStructures inSupersonic Turbulence Liubin Pan,1 Paolo Padoan,1 and Alexei G. Kritsuk1 1Department of Physics, University of California, San Diego, CASS/UCSD 0424, 9500 Gilman Drive, La Jolla, CA 92093 Weshow that density-weighted moments of the dissipation rate, ǫl, averaged over ascale l, insupersonic turbulence can be successfully explained by the She and Le´veˆque model [Phys. Rev. Lett. 72, 336 (1994)]. Ageneral methodisdeveloped tomeasurethetwoparametersofthemodel, γ andd,baseddirectlyontheir physical interpretations as the scaling exponent of the dissipation ratein the most intermittent structures (γ) andthedimensionofthestructures(d). Wefindthatthebest-fitparameters(γ = 0.71andd = 1.90)derived fromtheǫl scalingsinasimulationofsupersonicturbulenceatMach6agreewiththeirdirectmeasurements, confirmingthevalidityofthemodelinsupersonicturbulence. 9 0 PACSnumbers: 0 2 Supersonicturbulenceisubiquitousinthecoldinterstellar plainedlater. Thismodelisverysuccessfulinpredictingζpin n medium [1] and is believedto play a crucialrole in the pro- incompressibleturbulencewithhighaccuracy. a J cess of star formation [2, 3]. If supersonic turbulence were In this Letter, we study the fluctuations of the dissipation characterizedbyuniversalstatistics, asoftenassumedforin- rate in supersonic hydrodynamic(HD) turbulence using nu- 7 1 compressibleturbulence,theuniversalitycouldconstitutethe mericalsimulations. We showthatthe simulationresultsfor foundationsfor a statistical theory of star formation. In this the scaling exponents, τ , are well represented by eq. (1), p ] Letterwefocusonthestatisticalpropertiesofthemostinter- suggestingtheSLformulationforthescalingbehaviorofthe h p mittentstructures(MISs)ofsupersonicturbulence. dissipation rate, originally proposed for incompressible tur- - Thetheoryoffully developedturbulenceassumesthatthe bulence,maybeappliedtosupersonicturbulenceaswell. We o scaling behavior of small-scale fluctuations in the inertial present a method to directly measure the parameters γ and r t range is flow-independent,e.g., the momentsof the velocity d accordingto their physicalinterpretation,which is general s a difference,hδv(l)pi =h(v(x+l)−v(x))pi ∝lζp,haveuni- andnotlimitedtothesupersonicregimeofinteresthere. This [ versalscalingexponents,ζ . Theuniversalstateforfullyde- methodcan be used to test the validity of the physicalinter- p 3 velopedincompressibleturbulenceproposedbyKolmogorov pretationoftheSLmodelinanyofitsapplications.Forsuper- v in1941(K41)[4],withζp = p/3,hasbeenshowntodeviate sonicturbulence,wefindthattheparametersderivedwiththis 0 significantly from ζ measured in both experiments and nu- methodareinexcellentagreementwiththevaluesthatbestfit p 3 mericalsimulations,atp>3. Thisdiscrepancyisduetospa- τ ,whichconfirmsthephysicalinterpretationofthemodel. 3 p tial fluctuations in the dissipation rate, neglected in the K41 Insteadofdirectlyinvestigatingthestatisticsofthedissipa- 1 . theory[6]. Thescalingexponentsoftheaverageenergydis- tionrate, moststudiesofthis modelare primarilyconcerned 8 sipation,ǫ ,overascalel(seeeq. (3))givecorrectionstothe withthescalingexponent,ζ ,ofthevelocitydifference,δv(l). 0 l p K41theory,referredtoasintermittencycorrections[5,7]. A Themodelpredictsζ =(1−γ)p/3+γ(1−βp/3)/(1−β), 8 p 0 carefulstudyoffluctuationsintheenergydissipationisessen- whichfollowsfromtherefinedsimilarityhypothesis,δv(l)∼ : tialforunderstandingintermittencyinturbulence. ǫ1/3l1/3, and eq (1). Assuming that the largest available ki- v l i TheintermittencymodelbySheandLe´veˆque[7](hereafter netic energyin the strongest structures is ∼ U2, with U be- X the SL model) is based on a hierarchy of dissipative struc- ing the rms velocity, and that the timescale in these struc- r turesofdifferentintensitylevels, characterizedbytheratios, tures follows the usual Kolmogorov scaling, t ∝ l2/3, She a l ǫl(p) = hǫpl+1i/hǫpli, of successive moments of ǫl. With in- and Le´veˆque argued that ǫ(∞) ∼ U2/tl ∝ l−2/3, i.e., γ = creasing order, p, ǫ(p) represents structures of increasing in- 2/3[21]. With this γ and with d = 1, correspondingto fil- l tensity and ǫ(∞) corresponds to the MISs. By invoking a amentarydissipativestructures,thevaluesofζp predictedby l thismodelagreewithexperimentalresultsofincompressible hypothetical“hiddensymmetry”thatrelatesthishierarchyof turbulencewithanaccuracyofabout1%[8]. structures to the most intermittent ones, the model predicts Although not directly measured from the MISs, (cf. [9]), thescalingexponents,τ ,oftheenergydissipationmoments, p hǫpi∝lτp,ofallorders,p, γ =2/3hasbeenadoptedinmostapplicationsofthemodelto l incompressible[10]andsupersonicMHDturbulence[11,12]. τ =−γp+γ(1−βp)/(1−β). (1) Thedimensiondwasobtainedeitherfromtheassumedgeom- p etryoftheMISs(d = 2forcurrentsheetsorshocksinMHD Theparameterγisthescalingexponentofthedissipationrate orsupersonicturbulence),orfromthebestfittothenumerical in the MISs, ǫ(l∞) ∝ limp→∞lτp+1−τp ∝ l−γ, and β is re- velocitystructurefunctions[12,13].Theseworkshaveshown latedtoγ andtotheHausdorffdimension,d,oftheMISsby thattheSLmodelwith2DMISsisgenerallyconsistentwith γ/(1−β)=D−d,whereD =3forthree-dimensional(3D) simulationsofMHDandhighlycompressibleturbulence. turbulence. Thephysicalmeaningofthisrelationwillbeex- However, a strict verification of the validity of this model 2 requires a demonstration that the parameters that fit τ also p havethedeclaredphysicalmeaning,otherwisetheagreement γ = 0.71, d = 1.90 0 betweenthe modeland the simulationsmay be a mere coin- cidence. Inthepresentworkwethusobtainγ anddbothby adirectmeasurementfromtheirinterpretations,andbyfitting -0.5 τ . We are also interested in deriving the dimension of the p MISs in supersonic HD turbulence where about 1/3 kinetic τp -1 energydissipates in dilatationalmodesand 2/3 in solenoidal modes, with strongest shocks generally coinciding with the locationsofstrongestshearandvortices. -1.5 Measuringτ .–Wetakethe10243simulationofsupersonic p HDturbulenceforisothermalidealgaswitharmsMachnum- -2 ber of 6 from reference [14]. The simulation employs the 0 1 2 3 4 p piecewiseparabolicmethodtosolvetheEulerequation[17]. We focusonthestatistics ofǫ . Thedissipationrateperunit l FIG.1: Scalingexponents, τp, of thedissipationrate, ǫl, averaged massatagivenpositionandtimeiscalculatedby[15], over 9 snapshots. Error bars indicate snapshot-to-snapshot varia- tions.Thebestfitgivesγ =0.71andd=1.90. ǫ(x,t)=(2Re)−1(∂ v +∂ v −(2/3)δ ∂ v )2 (2) i j j i ij k k whereReistheeffectiveReynoldsnumbercontrolledbynu- Wecalculatemomentsofǫ fromeq. (4)for9snapshotsof l mericaldissipation. Wecomputethevelocitygradientsatthe oursimulation,coveringmorethan5dynamicaltimes.Weob- resolutionscaleandassumeReisconstant. tainτ fromleast-squarefitstothelog (hǫpi)-log (l)curves Wecalculatetheaveragedissipationrate,ǫl(x,t),atascale ineacphsnapshot. Theresultsaresho1w0ninl Fig. 11,0wherethe l around x, from the definition given in [5] (generalized to data points and the error bars are, respectively, the average accountfordensityfluctuations), exponents and the standard deviations over the 9 snapshots. The error bars are negligible for p < 2, meaning that there 1 ǫ (x,t)= ρ(x+x′,t)ǫ(x+x′,t)dx′ (3) arelittle snapshot-to-snapshotvariationsfortheexponentsat l ρ (x,t)V(l) Z l loworders. Thescatterincreaseswiththeorder,andtheerror |x′|<l bar at p = 4 is alreadysignificant(7%). We find that, start- whereV(l) = 4πl3/3is thevolumeofa sphericalregionof ingfromp=4,thelog10(hǫpli)-log10(l)curvesarenolonger size l, and ρ (x,t) = 1/V(l) ρ(x + x′,t)dx′ is the wellfitbystraightlinesandthuswe onlyshow resultsup to l |x′|<l the4thorder. Note,however,thatthe4thordermomentofǫ average density of that region.RFor convenience, we divide l correspondsto12thordermomentofδv(l). thesimulationboxintocubes(insteadofspheres)ofdifferent Comparing with eq. (1), we find that the SL model with sizesinourcomputations. Themoments,hǫpi,ofǫ ,canbeevaluatedby γ = 0.71and β = 0.35 (d = 1.90)givesan excellentfit to l l the numericaldata. The fit shows that the SL model can be 1 successfully applied to the density-weighted statistics of the hǫpli= ρ¯V Z ǫpl(x,t)ρl(x,t)dx (4) dissipation rate in supersonicturbulence. As mentionedear- lier,ademonstrationthatthebest-fitparametersindeedcarry whereV isthetotalvolumeofthesystemandρ¯istheoverall theirphysicalmeaningisneededto verifythevalidityof the averagedensity. WehaveusedtheFavre[16]densityweight- model. Tothisend,wedirectlymeasuretheparametersfrom ingfactor,ρ /ρ¯,toaccountforthedensityvariationsincom- the simulation data. A fairly large range of parameter pairs, l pressibleturbulence. Withthisdensityweighting,thefirstor- (0.67-078)forγ,andacorrespondingrangeof(2.04-1.60)for der moment, i.e., hǫ i, is independent of scale l, as follows d, can give acceptable (but poorer) fits to the numerical re- l fromeqs. (3)and(4),resultingin τ = 0 (see Fig. 1). This sultsforτ withinthe2σ errorbars. IftheSLmodelworks, 1 p suggeststhat,iftherefinedsimilarityhypothesisappliestosu- adirectmeasurementwouldfixtheseparameters. personic turbulence, the density-weighted third-order veloc- Measuringγ.–Weobtainγ directlybymeasuringtheaver- ity structurefunctionin compressibleturbulencewouldhave age dissipation rate profile aroundthe MISs. We first locate ζ = 1,anexactresultforincompressibleturbulence,known theMISsinthecomputationaldomain,byselectingcellswith 3 as Kolmogorov’s 4/5 law [14]. Since the SL formula, eq. dissipation rate larger than a given threshold, ǫ , set to be th (1), gives τ = 0, it is appropriate to compute the density- close to the maximum dissipation rate over the domain, ǫ . 1 m weightedmomentsfromthesimulationdataandcomparewith Wewillcallthesecellsthedissipationpeaks.Wethenusecu- the model. The Hausdorffdimensionof the MISs we obtain bicboxesofdifferentsizes,l,tocovereachpeak,andevaluate fromfittingτ isthusdensity-weightedinthesenseofdensity- theaveragedissipationrateineachbox,ǫ (l),througheq.(3) p p weightingineq. (4). Foravalidcomparison,wewillinclude (with x at the peak). Taking the average over all peaks, we density-weightinginourdirectmeasurementofd. obtainanaveragedissipationrate,hǫ (l)i,asafunctionofthe p 3 0 d=1.92 0.710 -1 d=1.90 d=1.90 0.705 -0.5 γ 〉]m 0.700 -2 ε〉〈ε(l)/p -1 0.3 εt h0/.ε5m 0.7 [P(l)]10 -3 2.00 〈log[10 -1.5 11γ=//320 .mm70aa5xx log -4 d11..9905 γ=0.710 2/3 max 0.1 0.2 0.3 γ=0.710 -5 εth/εm -2 0 0.5 1 1.5 2 0 0.5 1 1.5 2 log (l) log (l) 10 10 FIG. 2: Average dissipation rate, hǫp(l)i, (normalized to average FIG.3:Probabilityoffindingcubesofsizelwithaveragedissipation maximum, hǫmi) around dissipation peaks selected by thresholds, ratelarger than 1/6, 1/4 and 1/3 ǫml−0.71. Scaling exponents of 1/3,1/2and2/3ǫm. Best-fitlinesgiveγ =0.705,0.710and0.710, P(l)correspondtod=1.92,1.90and1.90,respectively. Theinset respectively.Theinsetshowsconvergenceofmeasuredγwithǫth. showsconvergenceofmeasureddwithǫth. cubesize,l. Theslopeoftheprofileisexpectedtobetheex- e.g., using a box-countingmethod, is challenging. Here we ponent, γ. We calculated the average ǫ (l) in two different take a simpler approach: we compute the probability, P(l), p ways: withandwithouttheaveragedensityρp(l)inaboxof of finding an MIS in a cube of size l, and derive d from the sizelasaweightingfactor. Wefindlittledifferencebetween scalingofP(l)withl,basedonthephysicalargumentgiven the slopesobtainedin the two ways, implyinga weak corre- above We need a criterion to judge whether a cube of size l lationbetweenthedissipationrateandthedensityaroundthe in the simulation box contains an MIS at that scale. Based peaks[22]. Weincreasethethresholdandcheckwhetherthe on the log-Poisson version of the SL model [8, 19], we find slopeofǫ (l)converges. Theconvergedslopeistheparame- that the appropriatecriterionis thatthe cube in questionhas p terγ thatwepursue. anaveragedissipationratelargerthanathresholdthatscales OurresultisshowninFig. 2forthreethresholds,1/3,1/2 likeǫ l−γ withl.Thefactorl−γ accountsforthedecreaseof th and2/3ǫ .Thethreecurvesaretheaverageoverallthepeaks the average dissipation rate in the MISs with scale. We will m inthesame9snapshotsusedtocalculateτ . Theprofilesare letǫ approachǫ inthesimulationbox. p th m approximatedwellbypowerlaws(exceptatl =1,i.e.,atthe The chosen threshold is justified as follows. The SL resolutionscale)andwefindγ =0.705,0.710and0.710,re- model is equivalent to a log-Poisson distribution for ǫ , i.e., l spectively, for the three thresholds. This value is very close P(ǫ )dǫ = (l/L)(D−d)Σ∞ λnP (ln(ǫ lγ) − ln(ǫ¯Lγ) − l l n=0n! L l to2/3proposedbySheandLe´veˆque,suggestingthattheKol- nln(β))dln(ǫ ) where L is the integral scale, ǫ¯the overall l mogorov scaling for the timescale in the MISs, tl ∝ l2/3, dissipation rate, and λ = (D −d)ln(L/l)[3, 20]. The dis- applies also to supersonic turbulence. The measured γ con- tribution,P (ln(ǫ /ǫ¯)), of the dissipationrate, ǫ , atL, de- L L L vergesto0.71atthethresholdof1/2ǫ ,whichconcideswith pendson the drivingforce and is thus non-universal. At the m the value obtained from the best fit to τp. Besides showing integral scale, ǫL is approximatelyequal to ǫ¯, thus PL(x) is the applicability of the SL model to supersonic turbulence, supposed to be narrow and decrease very rapidly with in- wehavethusverifiedthattheparameterγ carriestheprecise creasing x. If the SL model is valid for supersonic turbu- physicalmeaninginthemodel. lence,theprobability,P(l),offindingaregionofsizel with Measuring d.–The Hausdorff dimension, d, enters the SL ǫ > ǫ l−γ is given by the cumulative probability P(l) = l th model through the following argument, which also provides (l/L)(D−d)Σ∞ λn P (x)dxwhere n=0n! ln(ǫth/ǫ¯)−γln(L)−nln(β) L an explanation of the relation γ/(1− β) = D −d. In the landLareinunitsofRtheresolutionscale.Duetotherapidde- limit p → ∞, the contribution to hǫpi would be primarily creaseofP (x)withx, foralargeǫ thecontributionfrom l L th from the MISs at scale l. Since the average dissipation rate the n-th term to P(l) decreases quickly with n because the in regions of size l containing MISs goes like l−γ, we have lowerintegrallimitincreaseswithn(sinceβ <1).Asǫ in- th hǫpi ∝ l−γpP(l), in the limit p → ∞, where P(l) is the creases,thecontributionwouldbemoreandmoredominated l probabilityoffindingaregionofsizelthathostsadissipative by the n = 0 term, which is ∝ l(D−d). Therefore, in our structureof the highestlevelat scale l. A geometricconsid- measurement,weincreaseǫ andcheckwhetherthescaling th eration suggests that P(l) ∝ lD−d if the dimension of the exponentof P(l) converges. If the SL model is correct, the MISsis d [18]. This giveshǫpi ∝ l−γp+D−d as p → ∞. It convergedexponentisexpectedtobethecodimensionD−d l immediatelyfollowsfromeq. (1)thatγ/(1−β)=D−d. oftheMISsandtoagreewiththatderivedfromτ . Tobecon- p Directly measuring the Hausdorffdimension of the MISs, sistentwiththedensity-weightingin thedissipationratemo- 4 ments,eachcubethatsatisfiesthecriterionisgivenaweight- plicationsandbyNASAHighEndComputingProgram. ingfactorproportionaltotheaveragedensityinthecube. Noteaddedinproof.–TheauthorsaregratefultoDr. Chris Fig.3showsthescalingofP(l)withl(averagedfromthe9 McKeeforpointingoutanerrorinEq.(2)inanearlydraftof snapshots),for3differentǫ :1/6,1/4,and1/3ǫ .Forthe3 th m thisLetter. choicesofǫ ,thescalingexponentsofP(l)are,respectively, th 1.08,1.10,and1.10(meaningd = 1.92,1.90and1.90). As ǫ increases,dconvergesto1.90,whichagainagreesexactly th withthebest-fitvaluefromthescalingofthedissipationrate moments. Togetherwiththemeasurementofγ,thisestimate [1] R.B.Larson,Mon.Not.Roy.Astron.Soc.,194,809,1981;M. of d validates the extension of the SL model to supersonic H.HeyerandC.M.Brunt,ApJ,615,L45,2004.P.Hily-Blant, turbulence,andconfirmsthevalidityofthephysicalinterpre- E.FalgaroneandJ.Pety,A&A,481,367,2008 tationoftheparameters. [2] P.Padoan and A.Norlund, ApJ, 576, 870, 2002; P Padoanet Inconclusion,wehavestudiedthestatisticsofenergydis- al.,ApJ,661,972,2007 sipationinsupersonicHDturbulenceatMachnumberM =6 [3] L.PanandP.Padoan,astro-ph/0806.4970,2008. [4] A.N.Kolmogorov,Dokl,Akad,NaukSSSR,30,301,1941 using numericalsimulations. We have computedthe scaling [5] A.N.Kolmogorov,J.FluidMech.13,82,1962 exponents, τ , of density-weighted moments of the dissipa- p [6] TheremarkbyLaudaupresentedinascientificdiscussionwas tion rate, ǫ , averaged over a scale l, and found that the SL l incorporatedinthefirstedition(inRussian)ofthebook: L.D. intermittency model with γ = 0.71 and d = 1.9 gives an Landau and E. M. Lifshitz, Mechanics of Continuous Media excellent fit to the measured τp. We stress that, with den- (Gostechnicisdat,Moscow,1944) sity weighting, τ = 0, suggesting a linear scaling for the [7] Z-S.SheandE.Leveque,Phys.Rev.Lett,72,336,1994 1 density-weighted 3rd order velocity structure function. We [8] Z-S.SheandE.C.Waymire,Phys.Rev.Lett,74,262,1995 havedevelopedageneralmethodtodirectlymeasureγandd, [9] Z-S.She,K.Ren,G.S.Lewis,andH.L.Swinney,Phys.Rev. E,64,016308,2001 whichprovidesavaliditytestofthephysicalinterpretationof [10] W-C.MullerandD.Biskamp,Phys.Rev.Lett.,84,475,2000; themodel. We haveshownthattheparametersmeasureddi- J.Cho,A.Lazarian,andE.T.Vishniac,ApJ,564,291,2002 rectlyareexactlyequaltothevaluesthatbestfitτp. Wehave [11] S.Boldyrev,ApJ,569,841,2002 thusverifiedthattheSLmodelcanbesuccessfullyappliedto [12] P. Padoan, R. Jimenez, A. Nordlund, and S. Boldyrev, Phys. supersonicturbulence. Investigationswith other Mach num- Rev.Lett.,92,191102,2004 bers,especiallylargerones,wouldadvanceourunderstanding [13] A.G.Kritsuk,P.Padoan,R.Wagner,andM.L.Norman,AIPC, of the energy dissipation in supersonic turbulence. At large 932,393,2007 [14] A.G.Kritsuk,M.L.Norman,P.Padoan,andR.Wagner,ApJ, enoughM, there may exist an asymptoticstate (possibly al- 665,416,2007 ready reached at M = 6), where the scaling of the energy [15] L.D.LandauandE.M.Lifshitz,FluidMechanics(Pergamon dissipationrate(i.e.,τ )wouldbeuniversalandindependent p Press,1987),pg.194,eq.(49.5). ofM,andsowouldγ andd. Thisconjectureisbasedonthe [16] C.R.Favre,Acd.Sci.,Paris,Ser.A,246,2576,1958 observationthat,atM ≥ 6, anequilibriuminkineticenergy [17] P.ColellaandP.R.Woodward,J.Comp.Phys.,54,174,1984; partitionbetweenthesolenoidalmodes(2/3)andthepotential I.V.Sytineetal.,J.Comp.Phys.,158,225,2000 modes(1/3)isalwaysestablished(foranisothermalequation [18] U.Frisch,Turbulence,CambridgeUniversityPress,1995 [19] B.Dubrulle,Phys.Rev.Lett.,73,959,1994 ofstate),regardlessoftheirenergyratiointhedrivingforce. [20] L.Pan,J.C.Wheeler,andJ.Scalo,ApJ,681,470,2008 This research was partially supported by a NASA ATP [21] A direct check for theaccuracy of thisargument can bedone grant NNG056601G, by NSF grants AST-0507768, AST- withourmethodformeasuringγ. 0607675 and NRAC allocation MCA07S014. We utilized [22] Wedonotusedensityweightingforhǫp(l)ishowninFig.2.It computing resources provided by the San Diego Supercom- ismoreappropriatetouseitintheprobabilityoffindingMISs puterCenter,bytheNationalCenterforSupercomputingAp- ateachscalewhenmeasuringd.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.