ebook img

Dissecting accretion and outflows in accreting white dwarf binaries PDF

1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dissecting accretion and outflows in accreting white dwarf binaries

Dissecting accretion and outflows in accreting white dwarf binaries 5 1 0 2 n a White Paper in Support of the Mission Concept of the J 2 Large Observatory for X-ray Timing 1 ] E H . h Authors p - o D.deMartino1,G.Sala2,S.Balman3,F.Bernardini1,4,A.Bianchini5,M.Bode6, tr J.-M.Bonnet-Bidaud7,M.Falanga8,J.Greiner9,P.Groot10,M.Hernanz11,G.Israel12, s a J.Jose2,C.Motch13,M.Mouchet14,A.J.Norton15,A.Nucita16,M.Orio17,J.Osborne18, [ G.Ramsay19,P. Rodriguez-Gil20,S.Scaringi9,21,A.Schwope22,I.Traulsen22,F.Tamburini5 1 v 7 6 1 INAF–OsservatorioAstronomicodiCapodimonte, Barcelona,Spain 7 Naples,Italy 12INAF–OsservatoriodiMonteporzio,Rome,Italy 2 2 Univ.PolitecnicadeCatalunyaandIEEC,Barcelona, 13ObservatoireAstronomiquedeStrasbourg,Stras- 0 Spain bourg,France . 1 3 MiddleEastTechnicalUniversity,Ankara,Turkey 14LUTH,ObservatoiredeMeudonandUniversitéParis 0 4 NewYorkUniversityAbuDhabi,AbuDhabi,United Diderot,Paris,France 5 ArabEmirates 15TheOpenUniversity,WaltonHall,UnitedKingdom 1 5 UniversitádiPadova,Padova,Italy 16UniversitádelSalento,Lecce,Italy : v 6 LiverpoolUniversity,Liverpool,UnitedKingdom 17INAF–OsservatorioAstronomicodiPadova,Padova, Xi 7 CEASaclay,DSM/Irfu/Serviced’Astrophysique, Italy Gif-Sur-Yvette,France 18UniversityofLeicester,Leicester,UnitedKingdom r a 8 InternationalSpaceScienceInstitute(ISSI),Bern, 19ArmaghObservatory,Armagh,UnitedKingdom Switzerland 20InstitutodeAstrofisicadeCanarias,LaLaguna,Spain 9 MaxPlanckInstitutfürExtraterrestrischePhysik, 21InstituteofAstronomy,Leuven,Belgium Garching,Germany 22Leibniz-InstitutfürAstrophysikPotsdam(AIP),Pots- 10RadboudUniversity,Nijmegen,TheNetherlands dam,Germany 11InstituteofSpaceSciences,ICE(CSIC-IEEC), Dissectingaccretionandoutflowsinaccretingwhitedwarfbinaries Preamble TheLargeObservatoryforX-rayTiming,LOFT,isdesignedtoperformfastX-raytimingandspectroscopy with uniquely large throughput (Feroci et al. 2014). LOFT focuses on two fundamental questions of ESA’s Cosmic Vision Theme “Matter under extreme conditions”: what is the equation of state of ultra- dense matter in neutron stars? Does matter orbiting close to the event horizon follow the predictions of generalrelativity? ThesegoalsareelaboratedinthemissionYellowBook(http://sci.esa.int/loft/ 53447-loft-yellow-book/)describingtheLOFT missionasproposedinM3,whichcloselyresembles theLOFT missionnowbeingproposedforM4. TheextensiveassessmentstudyofLOFT asESA’sM3missioncandidatedemonstratesthehighlevel ofmaturityandthetechnicalfeasibilityofthemission,aswellasthescientificimportanceofitsunique core science goals. For this reason, the LOFT development has been continued, aiming at the new M4 launch opportunity, for which the M3 science goals have been confirmed. The unprecedentedly large effectivearea,largegrasp,andspectroscopiccapabilitiesofLOFT’sinstrumentsmakethemissioncapable of state-of-the-art science not only for its core science case, but also for many other open questions in astrophysics. LOFT’s primary instrument is the Large Area Detector (LAD), a 8.5m2 instrument operating in the 2–30keVenergyrange,whichwillrevolutionisestudiesofGalacticandextragalacticX-raysourcesdown totheirfundamentaltimescales. ThemissionalsofeaturesaWideFieldMonitor(WFM),whichinthe 2–50keVrangesimultaneouslyobservesmorethanathirdoftheskyatanytime,detectingobjectsdownto mCrabfluxesandprovidingdatawithexcellenttimingandspectralresolution. Additionally,themissionis equippedwithanon-boardalertsystemforthedetectionandrapidbroadcastingtothegroundofcelestial brightandfastoutburstsofX-rays(particularly,Gamma-rayBursts). This paper is one of twelve White Papers that illustrate the unique potential of LOFT as an X-ray observatoryinavarietyofastrophysicalfieldsinadditiontothecorescience. Page2of12 Dissectingaccretionandoutflowsinaccretingwhitedwarfbinaries 1 Summary Accreting white dwarf binaries, cataclysmic variables, symbiotics, double-degenerates and novae, represent idealastrophysicalenvironmentstostudyaccretionandoutflowprocessesinawidevarietyofplasmaconditions. AmongthewhitedwarfaccretorsonefindsthepossibleprogenitorsofSupernovaetypeIa. Theyaresources ofX-rayemissionwhosepropertiesstronglydependonfundamentalparameterssuchastheaccretionrate,the massandthemagneticfieldoftheaccretingwhitedwarf. Thus,understandingtheprocessesofX-rayemission andtheevolutionofcloseaccretingwhitedwarfbinariesisofutmostimportanceinawidercontext. TheX-rays powerfullydiagnosetheconditionsshapingtheaccretionflowclosetothewhitedwarfaswellasthemechanisms ofmassejectionandenergetics. Inrecentyearsaccretingwhitedwarfbinarieshavesurprisinglybeenfoundtobe hardX-rayemitterswithahugevarietyofspectralandvariabilitycharacteristics. Understandingtheunderlying physicalprocessesrequireshighsensitivityandtimingcapabilitiesasofferedbytheLOFT mission. Thethree mainquestionstobeaddressedare: Howdoesmatteraccreteontowhitedwarfs? LOFT willaddressthisbystudyingselectedsamplesoften • magneticandnon-magneticsystemseachtodetectforthefirsttimelow-amplitudefastaperiodicand periodicvariabilitiesinthehardX-raysandperformingphase-resolvedspectroscopy. Howdoesmassejectionworkinnovaexplosions? LOFT willinvestigatethisbymonitoring threenovae • ∼ peryeartodetecttheonsetofhardX-rayemissionanditsspectralvariabilityalongoutburstaswellasto characteriseforthefirsttimefastvariabilityinthehardX-rayregime. Whatcausesdwarfnovaeoutburstdiversityandwhataretheconditionsfordisc-jetlaunching? LOFT • willaddressthisbyfollowing threedwarfnovaeperyearthroughtime-resolvedspectroscopyandfast ∼ timinginthehardX-rayswithunprecedenteddetails. Thus LOFT will be crucial to measure the spectral and temporal properties of the poorly known hard X-ray tailsinthesesystems. WhenLOFT isexpectedtobeoperational,widefieldareasurveyswillhaveprovided statisticallysignificantsamplestoallowdetailedinvestigationincoordinationwiththelargefacilitiesforeseenin thepost-2020timeframe. 2 Introduction Accretingwhitedwarf(WD)binariesrepresentthemostcommonendproductsofclosebinaryevolution. They encompass various classes of systems: the cataclysmic variables (CVs) in which the donor (secondary) star is a late type main sequence star in a close orbit (P 1.4–14hr), the AM CVn stars where the donor is orb ∼ a (semi)degenerate He-rich star in an ultracompact binary (P 10–65min) and the symbiotics where the orb ∼ donor star is a late type giant or Mira star in wide (P years) orbit. Mass transfer occurs either through orb ∼ Roche-Lobe overflow in the CVs and AMCVn stars or via stellar wind in the symbiotics. These binaries display a wide range of timescales of variabilities (from sec–mins up to months–years) that make them an ideal laboratory to study accretion/ejection processes in non-relativistic regimes. Disc instabilities, disc-jet connection and magnetic accretion, that are common processes occurring in a wide variety of astrophysical objectsfrompre-mainsequencestarstoBHbinaries,makeaccretingWDsachallenginglinktounveiluniversal connections. Furthermore, thermonuclear runaways occurring during nova explosions have the potential to unveil the accretion/ignition mechanisms, the chemical enrichment of the interstellar medium as well as the effectsofaccretionontotheWDthatmaydriveitsmasstogrowovertheChandrasekharlimitandexplodeas SNIa,akeyaspectforourunderstandingoftheprogenitors. Inaddition,populationstudiesofgalacticX-ray sourceshaverecentlyrecognizedacrucialroleofaccretingWDbinaries. Ofparticularimportanceistheorigin oftheGalacticRidgeX-rayEmission(GRXE),oneofthegreatmysteriesinX-rays,thoughttobecomposedof Page3of12 Dissectingaccretionandoutflowsinaccretingwhitedwarfbinaries 20 50 10 3 CD IndBY Cam V834A CMen Her −1V e 10 2 d fraction [%] 1105 V709 CaNsY LuApO PVs1c2−−2 3 00 S..15g rkkss 234000 Magnetic field stren −1alized counts s k 110 e g m Puls 5 −− 15..00 kkss th [MG Nor10 −1 − 10.0 ks 10 ] 4 o ati 2 0 0 R 0 10 1 10 2 10 3 10 4 2.0 5.0 10.0 20.0 LAD count rate [cts s−1] Energy [keV] Figure1: Left: Feasibilityofdetectingfast 1HzQPOsinLADlightcurvesegmentsofdifferentlength(fromtopto ∼ bottom: 0.1–10ks). ThegreylinesshowtheminimumamplitudesvsLADcountratesforwhichperiodicitiescanbe detectedata4σconfidencelevel,basedonZ2 statistics(Buccherietal. 1983). VerticallinesshowtheexpectedLAD 1 countratesforasampleofX-rayhardmCVsduringbrightstates,derivedfrompower-lawfitstoSwift/BATspectrafrom Baumgartneretal.(2013). Thesamplecoversawiderangeofmagneticfieldstrengthsfrom11MG(CDInd)to40MG (BYCam)forthePolarsandB.10MGfortheIntermediatePolars. Right: Simulated10ksLADspectraofafaintmCV (blue;RXJ2133+51,aftermodelB2ofAnzolinetal. 2009)andabrightpolar(AMHer)(red)withF =3.5 10 11 and2.1 10 10ergcm 2s 1,respectively. Bothcompositespectracompriseabsorption,amulti-tem3−p2e0rkaetVurepost×-sho−ck − − − × region,aComptonreflectioncontinuumandaGaussianFeKαfluorescentline. Theresidualscomparedtomodelsnot accountingforreflection(lowerpanel)elucidatetheopportunitiesopenedbyLOFT evenforfaintobjectsandtheprospects forphase-resolvedspectroscopy. anon-negligiblepopulationofCVs(Revnivtsevetal. 2009;Revnivtsevetal. 2011;Yuasaetal. 2012;Hong 2012;Warwick2014). TheX-raydomainiscrucialtounderstandthephysicalconditionofmatterclosetothecompactstar. Despite importantprogressachievedinrecentyears,therearemanyopenquestionsthatstilldeservefullexploitation, buthamperedbythelowquiescentluminosities(L 1029 33ergs 1)andtheunpredictabilityoflarge-scale X − − ∼ variations, that can reach luminosities of 1032 1034ergs 1 in dwarf novae (DNe) outbursts and up to − ∼ − 1038ergs 1 inNovaexplosions. Theuniquecombinationofhightemporal,moderatespectralcapabilitiesand − ∼ sensitivityofthe ladinstrument, aswellasthewidefieldcoverageoftheWFMinstrumentonboardLOFT,willbecrucialto uncoverthewiderangeofvariabilitiesinthemostlyunexploredhardX-raydomain. The major scientific goals are here summarized for accreting WD binaries for which LOFT will provide breakthroughresults. InSect.3wewilladdresshowLOFT willallowtostudyX-rayoscillationsandaperiodic variability to probe details of the accretion flow and its instabilities in CVs. In Sect. 4 we will discuss the importance of the evolution and onset of hard X-ray emission in novae. In Sect. 5 we will address LOFT’s capability to investigate the large diversity in the X-ray behaviours in DN outbursts and whether in these scaled-downsystemsofNS/BHbinariesadisc-jetconnectionisalsoatwork. Finally,inSect.6theimportance ofsuchX-raymissionwillbediscussedinthecontextofforeseenfacilitiesinotherwavelengthdomainsinthe post-2020timeframe. Page4of12 Dissectingaccretionandoutflowsinaccretingwhitedwarfbinaries 3 How does matter accrete onto WDs? Probing accretion through oscillations 3.1 Accretion in WDs AccretionofmatterontoWDcantakeplacethroughadisc,aring-likestructureoranaccretionstreamdepending ontheWDmagneticfieldstrength,thebinaryorbitalperiodandmassaccretionrate. Thephysicalconditions ofthematerialimpingingontotheWDandemittingX-raysarestilltobeinvestigated. Innon-magneticCVs theWDmagneticfieldstrengthislowenough,B . 105G,toallowtheformationofanaccretiondiscand WD X-raysareemittedatthediscBoundaryLayer(BL).InhighlymagnetisedCVs(mCVs),B & 107G,material WD isdirectlyaccretedontotheWDpolesflowingalongthemagneticfieldlines. Apartialaccretiondisccanbe formedatintermediatefieldstrengths. AttheWDpolesastand-offshockisformed. Thepost-shockaccretion columnisthoughttocoolviabremstrahlung(hardX-rays),recombinationprocessesandcyclotronradiation. TherelativeproportionofthesecoolingmechanismsstronglydependsontheWDmagneticfield(Fischer& Beuermann2001). BoththeBLandtheshockradiateintheX-raysasubstantialfractionofgravitationalenergyandthustheir structureandstabilitycanbeefficientlyprobedthroughspectralandtemporalX-rayproperties. Ofparticular importanceistheWDmassthatcanbedeterminedeveninfaintsources,thankstotheextendedcoverageand uniquesensitivityofLOFT inthehardX-rays. ThisiscrucialtounderstandtheroleofWDbinariesasSNIa progenitors. Mostly unexplored are non-periodic variations that uncover a wide range of timescales (from a fewsectohundreds-thousandsofsec). Theseareobserveduptonowmainlyatopticalwavelengths,inboth non-magneticandmagneticsystems. SearchesofX-raycounterpartswerecarriedoutinafewbrightsystems leadingtopartial,sometimescontroversialresults. 3.2 QPOs in magnetic cataclysmic variables Oneofthemostchallengingaspectsistheoriginof1–10squasi-periodic-oscillations(QPOs)inmCVs. Optical narrowQPOswithafewpercentamplitudeweredetectedinsomemCVsofthepolartype(Middleditchetal. 1997), but not in all of them. If these represent oscillations arising in the post-shock region they should be detectedintheX-raysaswell. AttemptstosearchtheX-raycounterpartshashoweverfailedsofar,providing onlyupperlimits (. 10–20%)(Beardmore& Osborne1997;Imamuraetal. 2000;Pandel&Cordova2002; Ramsay et al. 2007; Bonnet-Bidaud et al. 2014), mainly due to the lack of adequate sensitivity in the hard X-rays. TheoriginofQPOsinmCVsisdebated,buthasgreatpotentialtoallowanunderstandingofradiative shocks. ExtendedshocksarepredictedtobethermallyunstablegivingrisetoQPOs,inbothopticalandX-ray domains. QPO characteristics (frequency, amplitude and phase) are related to the cooling timescales of the emittingplasma(Wu2000). Pureradiativeshockswerehoweverstronglyquestionedonthebasisofstability studies. Inparticular,inthepresenceofstrongmagneticfields(& 107G),cyclotroncoolinghasasignificant roleindampingoscillations. Alternativeinhomogeneousaccretionornoise-drivenshockoscillationmodels werealsoinvoked(Steiman-Cameronetal. 1994). Animportantconstrainonthemodelscanbeprovidedby variationsofamplitudeandphaseoftheoscillationsandtheirenergydependence. Theloweramplitudesofthe 0.3-1HzQPOstogetherwiththeirstrongdependenceontherotationalphasemade,uptonow,thedetection a challenge because it requires high sensitivity in the hard X-rays, where bremsstrahlung dominated shocks emitmost. ThehighsensitivityandenergycoverageoftheLADwillbethencrucialtodetectfastX-ray QPOs in mCVs down to amplitudes of 1% (Fig. 1, left panel). To fully test the shock structure stability, a welldefinedsampleof 10hardX-rayemittingmCVscoveringawiderangeofWDmagneticfieldstrengthsis ∼ needed. ThisshouldincludemoderatefieldPolarsandthelow-fieldIntermediatePolarstobeobservedalong their rotational cycles (few tens of minutes to a few hours, depending on their magnetic field strength). The sampleshouldalsoincludethefewknowneclipsingsystemstoallowdirectmeasuresofthesizeandbrightness distributions over the accretion spot thus uncovering the complex interplay between the magnetic field and Page5of12 Dissectingaccretionandoutflowsinaccretingwhitedwarfbinaries matterintheaccretionregions. Inthiswayitwillbepossibletoprobeshockstabilityagainstawiderangeof physicalconditionsofthepost-shockregiontobetracedwithphase-resolvedspectroscopyalongthespincycle (Fig1,rightpanel). ParticularlyimportantwillbetheabilitytoconstraintheComptonreflectioncomponents, ubiquitousinthesesystems,throughthefluorescenceFe Kαlineandcontinuumthatpeaksinthe10–30keV range. 3.3 Rapid Oscillations in dwarf novae Rapidfluxoscillations(DNOs)of 3–40sareobservedinhighmassaccretionrateCVs–mostlyduringDN ∼ outbursts(seealsoSect.5)andmainlyatopticalwavelengthswithafewdetectionsintheEUVorsoftX-rays (seereviewinWarner2004). TheopticalDNOsarefoundtohavehighcoherenceandlowamplitude( 1 2%). ∼ − Theyrelatetotheoutburstevolution,appearingduringtherise,persistingatmaximumanddisappearingduring thedeclineofoutbursts. Theirperioddecreasesduringtherisetothemaximum,whileitincreasesduringthe outburstdecay. ThefewsystemsmonitoredintheX-raysshowthatDNOsduringoutburstsoccurinthesoft X-rays. Ontheotherhand,low-coherenceandlongperiod(mins)QPOswithamplitudes 10 40%aremainly ∼ − observedinthehardX-raysandgenerallyappearduringthehardX-rayturn-onattheendofopticaloutbursts (Wheatleyetal. 1996). Theircharacteristicperiodsandamplitudesvaryalongtheoutburst,butthesechangesdo notseemtoberelatedtospectralvariations(Wheatleyetal. 2003). The optical QPOs and DNOs (period ratio 15) correlate as the low and high-frequency QPOs of LMXBs strengtheningtheevidenceofageneralrelationinallinteractingbinaries,irrespectiveofwhethertheprimary is a BH, NS or WD (Warner et al. 2003). They are thought to be manifestations of disc accretion onto a verylow-magneticfieldcompactobject. TheopticalDNOsarebelievedtobeduetomagneticcouplinginan equatorialbeltwhiletheQPOstoreprocessingintheaccretiondiscoroscillationinthediscitself(Warner2004). ThehardX-rayQPOscannothavethesameoriginandmayreflectvariationsinthemassaccretionrateatthe innerBL.TheirappearanceisrelatedtothetransitionfromopticallythicktoopticallythinoftheBLandthus haveagreatpotentialtoinferdetailsofBLregimes. ThestudyoffastoscillationsintheX-raysisthuscrucial buthamperedsofarduetothelackofX-raycoverageoverabroadenergyrangeandadequatemonitoringofthe differentevolutionofoutbursts(seeSect.5foroutburstdiversity). LOFT willbeabletodetecttheoscillations andmonitorthefrequencychangealongoutburstevenwhensourceswillreachquiescentfluxes. 3.4 Aperiodic variability Broad-bandvariability(flickering)isknowntobeanubiquitousfeatureamongstallaccretingcompactbinaries. Inparticular,bothX-rayandopticalaperiodicvariabilitiesinCVshavebeenrecognisedforoveradecade. A “fluctuatingaccretiondiscmodel”,wherevariationsinthemasstransferrategeneratedthroughoutthedisccouple, multiplicatively,togiverisetotheobservedflickering,wasoriginallydevelopedforX-raybinaries(XRBs)and ActiveGalacticNuclei(AGN)(Arevaloetal. 2006;Ingram&vanderKlis2013). Thismodelwassuccessfully appliedtohighS/Nopticallightcurvesofthenova-likeMVLyr(Scaringietal. 2012;Scaringi2014). Itwas alsoappliedtotheX-raylightcurvesofafewnon-magneticCVsinquiescence(Balman&Revnivtsev2012) allowingtoinferdisctruncationfromtheobservedbreakintheX-raypowerspectra. Apossibleinfluenceofthe weakmagneticfieldsinthesesystemswasalsoclaimed(Anzolinetal. 2010). TheX-rays,especiallythehard range,diagnosetheinnerdiscregionsandhencearecrucialtoestablishthedrivingmechanismandwhether discsaretrulytruncatedinquiescence. ThisrequiresmuchhigherS/Nachievedsofar,becausethesesystems areratherfaintinquiescence. HighqualityandhightemporalresolutionlightcurveswillbeobtainedbyLOFT allowingthefirstfaircomparisonofX-rayflickeringinCVswiththoseofXRBs. LOFT thusholdsthepotential tounifyaperiodicvariabilityacrossallaccretingcompactsources,irrespectiveoftheaccretortype. TostudybothX-rayQPOsandflickeringinnonmagneticCVs,asampleof 10systemsneedstobeexplored ∼ both in quiescence and outburst (see also Sect. 5). The sample should encompass a range of orbital periods, Page6of12 Dissectingaccretionandoutflowsinaccretingwhitedwarfbinaries henceofmasstransferrates,toovercomeselectioneffectsandtodefinethestatisticalpropertiesofnon-periodic variabilities. Fig.3,rightpanel,showsthegreatcapabilityofLOFT todetectQPOsandthefrequencybreak expectedforasourceatcomparablefluxlevelsofSSCygduringtheturn-onofhardX-raysattheendofthe opticaloutburst. 4 How does mass ejection work in nova explosions? NovaoutburstsoccurwhenthepressureatthebaseoftheaccretedenvelopeontheWDinaclosebinarysystem ishighenoughtoinitiateahydrogenthermonuclearrunawaythatleadstotheejectionofapartoftheaccreted envelope; theexplosiondoesnotdisrupttheWD,sothattheclassicalnova(CNe)phenomenonrecursevery 103–105years. Recurrentnovae(RNe)showoutburstsrecurringoverahumanlifetimescale. Abouthalfofthem havelongorbitalperiodswitharedgiantcompanion(symbioticRNe,SyRN).RNearethoughttohostamassive WD,closetotheChandrasekharlimitandtheirhighmasstransferrateenablefrequentoutbursts. Theyarethus consideredcandidateSNIaprogenitors, withthefinalfateoftheWDdependingonthebalancebetweenthe massaccretionandejectionprocesses. NovaeareluminousX-raysources(seestatisticsandreviewsinOrioetal. 2001;Orioetal. 2012;Schwarz etal. 2011),withemissionspanningfromtheverysofttothehardX-rayenergyrange. WhilethesoftX-rays probethecontinuousnuclearburningontheH-richenvelopeontheWDsurface,thehardX-raysarebelieved totracemassoutflowsandtheonsetofresumedaccretion(Mukai&Ishida2001;Bodeetal. 2006;Sokoloski etal. 2006;Nelsonetal. 2012;Orioetal. 2014). Thedetailsofthemassoutflow,theshapingandevolution oftheejectedshellarestillverypoorlyknown. Recenteffortsinthestudyoftheejectamorphologyinclude modellingoftheopticalandX-rayemissionlineprofilesandradioimaging(O’Brienetal. 2006;Orlandoetal. 2009;Ribeiroetal. 2013;Chomiuketal. 2014),butbetterqualityX-raydataatanearlypost-outburststagewill beessentialtoprogress. Ourlackofadetailedknowledgeoftheprocessesoccurringintheexpandingejectahasbeenrecentlyevident withtheunprecedenteddetectionbyFermi/LATofveryhighenergy(VHE)gammaraysatenergieslargerthan 100MeV in four novae, during the first 2–3 weeks after outburst (Ackermann et al. 2014). In fact, particle accelerationearlyaftertheexplosionwaspredictedfortheSyRNRSOph2006outburst(Tatischeffetal. 2007). Such a mechanism produces gamma rays, which could not be detecetd before the advent of Fermi in 2008. RSOphshowedcopiousX-rayfluxinthe10–50keVrangefromthebeginningoftheoutburstandforabout 3weeks,withRXTE andSwift/BAT(Sokoloskietal. 2006;Bodeetal. 2006). Thefactthatthefirstgamma-ray novadetectedbyFermi/LATwastheSyRNV407Cyg2010(Abdoetal. 2010)wasinitiallyinterpretedasbeing aprocessrelatedtothestrongshocksoftheexpandingejectacollidingwiththedenseredgiantwind. However, theadditionalFermi-LATdetectionsofthreemorenovaewithoutgiantcompanionsshowthattheacceleration of particles to high energies also occurs in the CNe ejecta, without invoking the dense red giant wind of the SyRN.ThefurtherdetectionofevolvingradioemissionfromnovaV959Monhasrecentlybeenshowntobea newtooltopinpointthelocationoftheparticleaccelerationresponsibleforthegamma-raysdetectedbyFermi (Chomiuketal. 2014). Thus,themonitoringoftheearlyhardX-rayemissionofnovaeincoordinationwith radiocoveragehastheuniquepotentialtounderstandwhetherhardX-raysaretrulyrelatedtotheprocessesof particleacceleration. ThecentralsupersoftX-raysourceshowsvariabilityandperiodicitiesonmanydifferenttimescales,ranging from days to less than a minute. Periodicities of several hours can be attributed to orbital modulation, as in V5116Sgr(Salaetal. 2008)whilethosewithtimescalesoffractionsofhourscanberelatedtotheWDspin. Variationsat 19–37minwerefoundinsomenovaealsoinM31(Leibowitzetal. 2006;Dobrotka&Ness2010; ∼ Nessetal. 2011;Pietschetal. 2011)). Incontrast,atransient35smodulationfoundinthesoftX-rayemission ofRSOphwassuggestedtoberelatedtoH-burninginstabilities(Nessetal. 2007;Osborneetal. 2011). Such shortperiodoscillationshavenowbeenfoundinseveralothernovae. However,thelackofenoughsensitivity Page7of12 Dissectingaccretionandoutflowsinaccretingwhitedwarfbinaries Figure2: Simulations of the spectral evolu- (cid:13) (cid:14) (cid:14) tion of the SyRN RS Oph over its outburst, (cid:12)(cid:12) (cid:12)(cid:13) (cid:12)(cid:13) (cid:12)(cid:13) L()*1(cid:0)(cid:21)+ bothasseenbyLAD(upperpanel)andbythe F(cid:11) F(cid:11)(cid:12) F(cid:11)(cid:12) F(cid:11)(cid:12) D(cid:3)(cid:4)(cid:5) WFM (lower panel). The spectra include a thermalplasmamodel(mekal)withsolarabun- 0 D(cid:3)(cid:4)(cid:6) 0 dances, evolving from kT = 8.2keV and a 40 flux of 3.2 10−9ergcm−2s−1 (0.5–20keV) -(cid:24) onday3,do×wntokT =2.5keVandafluxof ’ & 0 4.3×10−10ergcm−2s−1(0.5–20keV)onday17 -(cid:24)% 300 (afterSokoloskietal. 2006). ThehighX-ray $% n fluxduringthefirst17dayswouldtriggerthe (cid:25)# WtraFlMevoinluftuilolnrewsoilllubtieonfomlloodweeadnbdydtehtaeilLeAdDsp.ec- (cid:29)(cid:30)(cid:31) !" (cid:2)000 D(cid:3)(cid:4)(cid:7)(cid:10) (cid:28) D(cid:3)(cid:4)(cid:7)(cid:8) (cid:26)(cid:27) (cid:25) n D(cid:3)(cid:4)(cid:7)(cid:9) 0 0 0 (cid:1) 0 W,.*1(cid:0)(cid:21)+ 4 -(cid:24) ’ & -(cid:24) 3 % $% n # (cid:25) " ! (cid:2) (cid:29)(cid:30)(cid:31) (cid:28) (cid:26)(cid:27) (cid:25) n (cid:1) 0 2 5 1(cid:0) 2(cid:0) E(cid:15)(cid:16)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:16)(cid:22)(cid:23) haspreventedhigh-resolutiontimingstudiesinthehardX-raysoriginatingintheejectaand,possibly,inthe processofresumingaccretion. LOFT willbeuniquelyabletobothmonitorwiththeWFMtheskyforbrightnovaoutbursts,andfollowthem withLADtocharacterisespectralvariabilityaswellasfastvariabilitiesinthehardX-rayemissionthatwould yieldinformationontheprocessesoccurringduringmassejection. ThebrightestandfastestRN,withfluxofthe sameorderofmagnitudeasthatofRSOph(locatedat1.6kpc,Hjellmingetal. 1986),wouldtriggertheWFM evenatadistanceof5kpcimmediatelyaftertheoutburst(Fig.2,lowerpanel). ThustheWFMwithitslarge fieldofviewisanidealinstrumenttodiscoverthem. FornovaenotbrightenoughtotriggertheWFM,LAD observationswouldbetriggeredfewdaysafteropticaldiscoveryandanalysiswithsomepre-establishedtrigger criterion (based on distance, and/or fast evolution of the nova). Simulations show that the early hard X-ray emission(asforexampledetectedinRSOphwithRXTEandSwift/BAT(Sokoloskietal. 2006;Bodeetal. 2006))willprovideahighrateintheLAD(Fig.2,upperpanel)toallowfasttimingstudiesforthecontinuumon timescalesshorterthanasecondorafewminsforfluxesusuallydetectedinhardX-raysfornovaeinoutburst, aswellastoinferspectralvariations(e.g.,theFelinecomplex)downtotensofminutes. Inthiswayitwillbe Page8of12 Dissectingaccretionandoutflowsinaccretingwhitedwarfbinaries possibletoprobeindetailstheejectionprocessandtheshocksintheexpandingshellsduringtheoutburst. ThankstotheSwiftobservationsofnovaeinthelastfewyears,weknowthataroundhalfofthediscovered GalacticnovaearehardX-raysources(intheSwift/XRThardbandupto10keV).Thisrepresentsatotalof2–3 novaeperyear. TheLAD’sexceptionaleffectiveareawouldprovidespectrawithhighstatisticsforallofthem, makingpossiblethefirstaccuratestudyofasampleof 10novaeduringthelifetimeofLOFT.Furthermore, ∼ whethersomenovaeremainhardX-rayemittersseveralyearsaftereruption,possiblyduetoamagneticnature oftheWD,isanexcitingissue(Hernanz&Sala2002)thatLOFT willbeabletoaddress. 5 What causes DN outburst diversity and what are the conditions for disc-jet launching? DNoutbursts(L 1032–1034ergs 1)arebelievedtobeduetodiscinstabilities. Theknowledgeofviscosityis X − ∼ crucialtounderstandangularmomentumtransportinaccretiondiscs. Progresscanbemadebystudyingthose phenomenathatchangeonviscoustimescales. ThegreatadvantageofDNearetheiroutbursttimescales(hence viscoustimescales)ofonlyafewdaysorweeks,whichare,thus,easytoaccess. DNoutburstsarecharacterized byopticalbrighteningby2–5maglastingtypicallyforaweekandrecurrencetimeofseveraltensofdays. Much longeroutburstrecurrencetimesoccurinlowmassaccretionratesystems. Theoutburstcyclesareunderstoodas duetodiscinstabilities(Lasota2001). Howeververylittleisknownabouttheinnerdiscregionsandhowthey changefromoutbursttoquiescence. ThesearebesttracedintheX-rayregime(Baskilletal. 2005). TheX-ray outburstspectrumhasshownhintsofthepresenceofmorethanonethermalcomponent: asoft(5–30eV)and ahardone(10keV).Theformeroriginatesfromtheboundarylayeralthoughthefluxistoolowcomparedto boundarylayermodels. Thismaybeattributedtoadensitygradientintheopticallythickboundarylayerso thatahotopticallythinlayerisstillpresentandemitshardX-rays(Done&Osborne1997),thoughcolderand weak(Popham1999). ThehardX-rayfluxinsteadrecoversthequiescentlevelattheendoftheopticaloutburst. Onlyafewsystemshadintensemulti-wavelengthmonitoringcoveringmultipleoutbursts(Collins&Wheatley 2010). SomeDNeshowanoptical/X-rayanti-correlatedbehaviour,wherethehardX-rayfluxissuppressed duringopticaloutburst. Others,likeSSCyg(Wheatleyetal. 2003;McGowanetal. 2004)ortheoldnovaand magneticCVGKPer(Evansetal. 2009),havealsoshownincreasesofhardX-raysduringthetransitionphase fromopticalquiescencetooutburstaswellasduringthefadingoftheoutbursts. HoweverthereareDNe,likeU Gem(Güveretal. 2006)orGWLib(Bycklingetal. 2009),thatdonotshowhardX-raysuppression,butX-ray enhancementduringopticaloutburst. SSCygalsoshowedsimilarbehaviourduringanomalousoutbursts. The diversityofbehavioursdependsonseveralfundamentalparameters(Narayan&Popham1993),butstillfarfrom beingunderstood. Arecentproposalthatdiversitymightberelatedtoacriticalvalueoftheaccretionratethat dividesopticallythinandopticallythickBLregimes(Fertigetal. 2011)needstobeassessedwithobservations ofalargesampleofDNe. BesidestheonsetofDNOsandQPOsduringoutburst,DNehaveshownanotherstrikingsimilaritytotransient LMXBs,furthersuggestinguniversalrelationsamongaccretingWDs,NSandBHs. Thesurprisingdetectionof atransientradioemissioninSSCygitselfduringoutburst(Koerdingetal. 2008)wasinterpretedastheonsetof aradiojet. DNewerebelievedtobeunabletopowerjets. Theinferredjetpowerandtherelationtotheoutburst cycle were found analogous to those seen in XRBs, thus suggesting that the disc-jet coupling mechanism is ubiquitous. TheadditionaldetectionofradioemissionfromV3885Sgr,aCVaccretingatahighratecomparable toSSCyg(Koerdingetal. 2011),seemstosupportthatradiojetsalsooccurinbothsteadyandtransientCVs. It hasbeenrecentlyshownthatnova-likeCVscanhaveopticallythininefficientaccretiondiscboundarylayer (ADAF-like)(Balmanetal. 2014),allowingthepossibilitytoretainenergytopowerjets. Ifthiswerethecase,a radio/X-raycorrelation,similartothatobservedinNSandBHbinaries(Coriatetal. 2011),shouldbepresentin thesesystems. Sofar,ahandfulofDNehavebeenobservedthroughmultipleoutburstsanditiscrucialtoobservesystems spanning a range of orbital periods with adequate multi-outburst coverage. Bright outbursts such as those Page9of12 Dissectingaccretionandoutflowsinaccretingwhitedwarfbinaries 50 0 Anomalous Outburst 1 00 SS Cyg SS Cyg 1 Outburst 40 1 00 Quiescence −1V 1 00 e 0 −1ounts s k 10 Power 1001 c ed  1 aliz 10 m or 1 n 0. 1 1 0 0.2 5 10 20 10−3 0.01 0.1 Energy [keV] Frequency [Hz] Figure3: Left: Fromtoptobottom: Simulated10ksLADspectraofSSCygduringanomalousandnormaloutburstsand inquiescence(F = 7,2,0.3 10 10ergcm 2s 1,respectively). SpectraarebasedonMcGowanetal. 2004that 3−20keV × − − − includeathermalcomponent(mekal)andagaussianat6.4keV(EW = 82eV).Thetemperaturevariesfrom26keVto 20keVinoutburstsdecreasingto8keVinquiescence,recoveredat.4%level. Right: Simulated6kspowerspectraof SSCygduringtwophasesofX-rayturn-onduringanormaloutburst(F =2,1.5 10 10ergcm 2s 1,redandblack linesrespectively). Abrokenpowerlawwithbreakfrequency2 1032−H20zkeiVsassumed×. Th−eQPOsha−ve−periodsof155s − × (blackline)and245s(redline)andrmsamplitudesof40%and30%,respectively(afterWheatleyetal. 2003). displayedbySSCygorGKPerwillbeeasilydetectedbytheWFMandthenfollowed-upbytheLAD(Fig.3, left panel), allowing spectral parameters to be determined at accuracy better than 4%. Fainter sources down tothefluxlevelsasthatofGWLib( 2 10 11ergcm 2s 1)canbemonitoredbytheLADfromtheirearly − − − ∼ × phasesonwardsthroughToOalertsfromopticalground-basedtelescopes. Itwillbepossibletorecoverthehard X-raysuppressionandre-appearancetounderstandthediversityofbehaviours. Acrucialdeterminationwillbe theWDmassthroughthestudyofthehardX-raytails. ShortorbitalperiodDNe(.2hr)havelong(several yrs)dutycyclesandlong(months)outburstdurations,whilelong(&3hr)orbitalperiodDNedisplayshorter durations ( weeks) and duty cycles (months) of outbursts. The monitoring of a sample of 10 DNe during ∼ ∼ LOFT lifetime,withmultipleoutburstcoverageforthosewithshortdutycycles,willallowtocharacterisenot onlythespectralevolutionoftheoutbursts,butalsothenon-periodicvariations(seeSect.3)withunprecedented detailsintheharddomain. Furthermore,properToOalertswithradiofacilitieswillbecrucialtoexplorewhether theX-rayandradioluminositiesarerelated,thusprovingthesuspecteddisc-jetconnectionuniversalamong LMXBsandCVs. 6 Context in post-2020 time frame MostofthesciencegoalsthatcanbeachievedbyLOFT willgreatlybenefitfromforeseensynergiesamong facilitiesinthepost-2020timeframeindifferentenergydomains. PopulationofgalactichardX-raysources: RecentstudiesofGRXE(Revnivtsevetal. 2009;Revnivtsev • et al. 2011; Yuasa et al. 2012; Warwick 2014) and galactic bulge (Hong 2012) have revealed the contributionofdiscretefaintsourcesthatabove2–3keVaremostidentifiedasmCVs. Thisimpliesthat the galactic X-ray source composition should take into account a large population of faint hard CVs. TheSwift/BATandINTEGRAL/IBIShardX-raysurveyshaveindeedrevealedthat 7–8%ofdetected ∼ sources( 20%ofgalacticsources)areaccretingWDbinaries,mostofthemagnetictype. Surprisingly,a ∼ numberofhardX-rayemittingnon-magneticCVs(mostsymbiotics)werealsoidentified. Thesecouldbe Page10of12

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.