ebook img

Diss Report 1ere annee PDF

161 Pages·2015·10.85 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Diss Report 1ere annee

Année 2014 Université de Haute-Alsace, Mulhouse École Doctorale Jean-Henri Lambert Laboratoire MIPS Thèse présentée par Thomas Bier pour obtenir le grade de Docteur de l’Université de Haute-Alsace Discipline : Électronique, Électrotechnique et Automatique Disaggregation of Electrical Appliances using Non-Intrusive Load Monitoring (Arrêté Ministériel du 30 mars 1992) Soutenue publiquement le 17 décembre 2014 devant le jury composé de: Pr. Yassine Ruichek Université de Technologie de Belfort-Montbéliard Rapporteur Pr. Michel Paindavoine Université de Bourgogne Rapporteur Pr. Alain Dieterlen Université de Haute-Alsace Examinateur Pr. Dirk Benyoucef University of Furtwangen Examinateur Dr. Djaffar Ould-Abdeslam Université de Haute-Alsace Co-encadrant Pr. Jean Mercklé Université de Haute-Alsace Directeur Pr. Pierre Raymond European Laboratory for Sensory Intelligence Invité Acknowledgment A PhD thesis cannot be performed without the help of many people. During my PhD, many people have contributed to the success of this. Especially some people be thanked here. First,Iwouldliketothankmysupervisor,Prof. JeanMercklefortheirexcellentadvice and constant support. His experience in the training of graduate students helped me a lot. I acknowledge my advisor Prof. Djaffar Ould-Abdeslam from TROP for the assistance and guidance. His administrative support has simplified much. A special thanks goes to Prof. Dirk Benyocuef for his support and motivation. Since the beginning of my studies, he has always given me constructive approaches. IwouldalsoliketogivethankstomylabcolleaguesfromReSPinGermanyandTROP in France, especially to my fellow student Philipp Klein. I would like to thank my parents for their unremitting support. Since I have started to study electrical engineering they stay by my side. Finally, I would like to acknowledge the financial support provided by the state of Baden-Wuerttemberg through the Smart Metering projects, without which my PhD would not have been possible. iii Acronyms ADALINE ADAptive LInear NEuron ANN Artificial Neural Network AWGN Additive white Gaussian Noise ED Event Detection FP False Positives FPR False Positive Rate FT Fourier Transformation IALM Intrusive Appliance Load Monitoring MLP Multi Layer Perceptron MS Measurement System MSE Mean Squared Error NALM Non-Intrusive Appliance Load Monitoring NILM Non-Intrusive Load Monitoring PDF Probability Density Function PDS Power Density Spectrum PPV Positive Predicted Value SNR Signal to Noise Ratio ST S-Transformation STFT Short-Time Fourier Transformation TP True Positives TPR True Positive Rate v Contents 1 Introduction 1 1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Systems, Approaches and Applications . . . . . . . . . . . . . . . . . . 2 1.3 Research of the ReSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Problem Statement in the Thesis . . . . . . . . . . . . . . . . . . . . . 6 1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Pattern Recognition for NALM 9 2.1 General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Types of Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Evaluation of Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 Statistical Quality Criteria. . . . . . . . . . . . . . . . . . . . . 12 2.3.2.1 Recall, True Positive Rate . . . . . . . . . . . . . . . . 13 2.3.2.2 Precision, Positive Predicted Value . . . . . . . . . . . 13 2.3.2.3 Combined Measures . . . . . . . . . . . . . . . . . . . 13 2.3.3 Determining a Rate . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Time Frequency Analyze . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1 Fourier Transformation . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Short-Time Fourier Transformation . . . . . . . . . . . . . . . . 15 2.4.2.1 Transformation . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2.2 Power Density Spectrum . . . . . . . . . . . . . . . . 16 2.4.3 S-Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 State of Art for NALM 19 3.1 State of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.2 Transient State . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.3 Newer Approaches for NALM Systems . . . . . . . . . . . . . . 24 3.2 State of Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 Analyse of the Signals for NALM 27 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.1 Appliance Model . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.2 Normalization of the Signals P, Q and S . . . . . . . . . . . . . 32 4.3 Real Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.1 Additive White Gaussian Noise . . . . . . . . . . . . . . . . . . 34 vii Contents 4.3.2 Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.3 Quantization Error . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4 Measurement System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.4.1 Existing Databases . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4.3 3-Phase Measurement System . . . . . . . . . . . . . . . . . . . 38 4.4.3.1 Measurement Boxes . . . . . . . . . . . . . . . . . . . 38 4.4.3.2 Switching and Detection Box . . . . . . . . . . . . . . 44 4.4.4 One-Phase Measurement System . . . . . . . . . . . . . . . . . 45 4.4.5 Validation of the Measurements . . . . . . . . . . . . . . . . . . 45 4.5 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.5.1 Appliances in Residential Buildings . . . . . . . . . . . . . . . . 47 4.5.2 Own Measurements . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5.2.1 One-Phase Measurements Stand Alone. . . . . . . . . 48 4.5.2.2 One-Phase Measurements Simulation . . . . . . . . . 49 4.5.2.3 Measurements in Residential Buildings. . . . . . . . . 50 4.6 Analysis of the Appliance Signals . . . . . . . . . . . . . . . . . . . . . 50 4.6.1 Transient Response . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6.2 P, Q and S of the Appliances . . . . . . . . . . . . . . . . . . . 52 4.6.3 Steady State Behavior of Automates . . . . . . . . . . . . . . . 52 4.7 Filtering of the Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5 Event Detection and Detector 59 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.4 Event Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 68 5.4.1 General Structure of the Event Detector . . . . . . . . . . . . . 68 5.4.2 High-Pass Filter for the Event Detection . . . . . . . . . . . . . 69 5.4.2.1 Approach of Hart . . . . . . . . . . . . . . . . . . . . 69 5.4.2.2 High-Pass Filters from Image Processing . . . . . . . 70 5.4.2.3 The Gradient Operators . . . . . . . . . . . . . . . . . 71 5.4.2.4 Laplace-Operator . . . . . . . . . . . . . . . . . . . . 73 5.4.2.5 Simulation of the High-Pass Filters . . . . . . . . . . . 74 5.4.3 Complex Filter Structure . . . . . . . . . . . . . . . . . . . . . 76 5.4.3.1 Approach of Canny . . . . . . . . . . . . . . . . . . . 76 5.4.3.2 Improvement of Canny Filter by Perona . . . . . . . . 78 5.4.3.3 Simulation of Peronas Filter . . . . . . . . . . . . . . 81 5.4.4 Short Time Fourier Transformation . . . . . . . . . . . . . . . . 83 5.4.4.1 Simulation of the STFT . . . . . . . . . . . . . . . . . 84 5.4.5 Classification Function . . . . . . . . . . . . . . . . . . . . . . . 87 5.4.5.1 Threshold for the Classifier . . . . . . . . . . . . . . . 88 5.4.5.2 Simulation of the Classifier . . . . . . . . . . . . . . . 89 5.5 Results for the Event Detection . . . . . . . . . . . . . . . . . . . . . . 90 5.5.1 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . 90 5.5.2 Best Signal for the Event Detection . . . . . . . . . . . . . . . . 91 viii Contents 5.5.3 Results of the Event Detection Methods . . . . . . . . . . . . . 91 5.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6 Classification 97 6.1 General Description of Neural Networks . . . . . . . . . . . . . . . . . 98 6.1.1 Biological Systems . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.1.2 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.3 Applications for Artificial Neural Networks . . . . . . . . . . . 100 6.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2.2 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.2.3 Structure of Networks . . . . . . . . . . . . . . . . . . . . . . . 102 6.2.4 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 104 6.2.4.1 Learning Rule for the Perceptron . . . . . . . . . . . . 105 6.2.4.2 Learning Rule for the MLP . . . . . . . . . . . . . . . 105 6.2.5 Design of a MLP . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.2.6 ADALINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2.6.1 Structure of an ADALINE . . . . . . . . . . . . . . . 107 6.2.6.2 Learning Rule ADALINE . . . . . . . . . . . . . . . . 108 6.3 ADALINE for the Classification . . . . . . . . . . . . . . . . . . . . . . 109 6.3.1 ADALINE for Parameter Estimation . . . . . . . . . . . . . . . 109 6.3.2 Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.4 MLP for the Classification . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.1 Features for the Classification . . . . . . . . . . . . . . . . . . . 115 6.4.1.1 Train the MLP . . . . . . . . . . . . . . . . . . . . . . 116 6.4.2 Results of the Classification Method . . . . . . . . . . . . . . . 116 6.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7 Conclusion and Perspectives 121 A Measurements and Measurement System 127 A.1 Signals for NALM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 A.2 Measurements in the Laboratory . . . . . . . . . . . . . . . . . . . . . 129 A.3 Measurements in Residential Buildings . . . . . . . . . . . . . . . . . . 131 A.4 Harmonics of the Current . . . . . . . . . . . . . . . . . . . . . . . . . 132 A.5 Transient Responses of Appliances . . . . . . . . . . . . . . . . . . . . 134 List of Figures 137 List of Tables 143 B Bibliography 145 ix

Description:
Année 2014. Université de Haute-Alsace, Mulhouse Jean Merckle for their excellent advice and constant support. His experience in the training of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.