NuclearPhysicsB Proceedings Supplement NuclearPhysicsBProceedingsSupplement00(2013)1–3 Dispersive analysis of τ− → π−π0ν Belle data τ DanielGo´mezDumma,PabloRoigb aIFLP,CONICET−Dpto.deF´ısica,UniversidadNacionaldeLaPlata,C.C.67,1900LaPlata,Argentina. bGrupdeF´ısicaTeo`rica,InstitutdeF´ısicad’AltesEnergies,UniversitatAuto`nomadeBarcelona,E-08193Bellaterra,Barcelona,Spain. 3 1 0 2 Abstract n WeanalyseBelledataonthedecayτ− →π−π0ν usingadispersiverepresentationofthevectorformfactorwhichis a τ J consistentwithchiralsymmetryandpreservesanalyticityandunitarityexactly.Wefittheunknowntheoreticalparam- 0 etersfromthedata,determiningthevaluesoftherelatedlow-energyobservables(cid:68)r2(cid:69)π andcπ. Theimplementation 3 ofisospinbreakingeffectsisalsodiscussed[1]. V V ] Keywords: Taudecays,dispersionrelations,chiralLagrangian,hadronicformfactors,mesonresonances h p - p 1. Introduction light-flavoured QCD allows to build an effective field e theory, known as Chiral Perturbation Theory (χPT) h Thevectorformfactorofthepion,Fπ(s),encodesall [ unknown strong interaction dynamics iVn τ− → π−π0ντ [lo7w, 8-e,n9e,rg1y0]p,awrthoicfhthiessapbelcetrtuomd,esbcurtibfaeilasccautrlaatregleyrtihne- 1 decays[2]. Itisdefinedas variant masses [11]. In this region, new particles (ρ, v √ K(cid:63), a , ...) are excited and their momenta and masses 7 <π−(p )π0(p )|d¯γµu|0>= 2(p −p )µFπ(s),(1) 1 π− π0 π− π0 V are large enough to prevent their use in the expansion 6 1 with s=(pπ− + pπ0)2. Thisformfactorisnotonlyrele- parametersoftheeffectivetheory. Thereforethesenew 7 vantfortheunderstandingofthehadronizationofQCD activedegreesoffreedomhavetobeincludedintheac- 1. currents at low energies (see [3]), but also represents a tion, andanewexpansionparameterisneeded. Inthis 0 crucialingredientfortheevaluationoftheleadingorder respect,theinverseofthenumberofcoloursoftheQCD 3 (LO) hadronic contribution to the anomalous magnetic gaugegrouphasproventobeausefulquantitytobuild 1 moment of the muon, which provides a very stringent theexpansionupon[12,13,14]. Amodelizationofthis : v probe of new physics [4]. In addition, from the high- ideainthemesonsectorforthreeflavoursisprovidedby Xi energyperspective,theππchannelis(togetherwiththe ResonanceChiralTheory(RχT)[15,16,17,18],which three pion channel) essential to follow the spin in the recoverstheχPTresultsatnext-to-leadingorder(NLO). r a Higgs di-tau decay channels at LHC [5], and thus to Sinceitisknownthatthelightestresonancesdominate determine its spin and CP properties with the help of the dynamics, the infinite tower of states predicted in TAUOLA[6]. the NC → ∞ limit can be restricted to the first excita- tions,takingintoaccountasmanystatesasrequiredby thedata. Inaddition,itisseenthattheinclusionofres- 2. Theoreticalsetting onancewidthsisessentialtodescribetheobservedphe- In τ− → π−π0ν decays the electroweak part of nomenology,althoughwidthsariseatNLOinthe1/NC τ expansion. In principle, one can take into account this the process is theoretically under control, while the effectbycomputingoff-shellwidthsconsistentlywithin hadronization of the quark currents is more involved RχT [19, 20]. On the other hand, as in any effective since in the spanned energy region QCD is essentially theory,thesymmetrypropertiesdeterminetheoperators non perturbative. The approximate chiral symmetry of /NuclearPhysicsBProceedingsSupplement00(2013)1–3 2 allowedintheLagrangian,butleavethecorresponding M2 = (cid:110) (cid:104) V (cid:105)(cid:111) .(5) couplingconstantsunknown. However,theQCDshort- M2 1+ s (cid:60)e A (s)+ 1A (s) −s−iM Γ (s) distance behaviour of the Green functions and related V 96π2F2 π 2 K V V formfactors[15,16,17,18,21,22,23,24,25,26]pro- Thustherelevant(I = 1, J = 1)phaseshiftistakento videasetofrelationsamongthesecoefficientsthatren- be dersRχTmorepredictive. (cid:61)mFπ(s)(0) tanδ1(s)= V . (6) 1 (cid:60)eFπ(s)(0) V 3. Vectorformfactorofthepionandfitstodata Thisisnowusedasinputforathree-subtracteddisper- Different approaches have been developed to deal sionrelationfortheformfactor. Inthiswayonegets wpuitthatitohnedoifveFrsVπe(se)neartgyNNreLgiOmeins.χFPoTr s[2<7,M2ρ28,,th2e9c,o3m0-] FVπ(s) = exp(cid:26)α1s+ α22s2 pcarobvileitsyuusepfutol.1InGoerVd,eurntoitaernizlaartgioenthteecdhonmiqauienso[f31a,pp3l2i]- +s3 (cid:90) ∞ ds(cid:48) δ11(s(cid:48)) . (7) π (s(cid:48))3(s(cid:48)−s−i(cid:15)) and the Omne`s solution to the dispersion relation have 4m2π been employed [33, 34, 35]. Finally, in order to reach Kinematical isospin corrections can be easily in- energiesuptoMτ,theinclusionoftheρ(cid:48)resonance[36] cluded in Eq. (7) by considering different masses for andevenatowerofresonances,inspiredintheN →∞ C thechargedandneutralpionsandkaons. Inaddition,at limit[37,38], havebeenproposed. FromtheRχTLa- the same order one should also take into account elec- grangian, including only the ρ(770) multiplet one ob- tromagnetic corrections [2, 40], which enter through a tains local term felm and a global factorG (s) [41]. Thus local EM F G s weconsiderthreepossibleexpressionsfortheformfac- Fπ(s)=1+ V V , (2) V F2 M2 −s tortoperformourfitstoBelledata: V where F is the pion decay constant in the chiral limit, • FitI,correspondingtoFVπ(s)fromEq.(7). M = M , and F andG measurethestrengthofthe V ρ V V • FitII,sameasIbutwiththeinclusionofkinemat- ρππandρVµ couplings, respectively, andVµ standsfor icalcorrections(m (cid:44)m ,m (cid:44)m ). π± π0 K± K0 the quark vector current. If the vanishing of the form factoratlargeenergiesisrequired,therelationF G = • Fit III, including kinematical and electromagnetic V V F2isobtained,yieldingFπ(s)= MV2 . Nowonecando corrections. V M2−s V better[33]andmatchthisexpressiontotheNLOresult Ourfittingparametersare M ,F,α andα . Itisfound ρ 1 2 inχPT.Finalstateinteractionsareincludedthroughthe thatwithouttheinclusionofadditionalresonances,one so-called chiral loop functions AP(s,µ2 = Mρ2). Then, canobtaingoodfitstoBelledatafors(cid:46)1.5GeV2.The the unitarity and analyticity constraints determine the bestfitresultstothefirst30points(centralvalueofthe Omne`sexponentiationofthefullloopfunction,leading bin corresponding to 1.525 GeV2, with 0.05 GeV2 bin to width)areshowninTable1,wherewehaveconsidered M2 (cid:40) −s (cid:34) 1 (cid:35)(cid:41) the 1/NππdNππ/ds distribution measured by Belle (this FVπ(s)= M2 −V sexp 96π2F2 Aπ(s)+ 2AK(s) . (3) includes error correlations). These fits show, firstly, V that the dispersive description of the form factor can Hereonecannotsimplyincludetheresonancewidthby indeed successfully account for the experimental data replacingM2−sbyM2−s−iM Γ (s)inthepropagator, up to s (cid:46) 1.5 GeV2, and secondly, that the approach V V V V sincethiswoulddoublecount(cid:61)m[A (s)]andanalytic- employed by the Belle Collaboration (named here as P itywouldbeviolatedatNNLOinthechiralexpansion. II) is indeed an adequate one, as it yields the lowest Wefollowinsteadaproceduresimilartothatproposed χ2/ndf valuesaccordingtoourfits. Noticethat, given inRef.[39]fortheKπvectorformfactor,inwhichuni- thelowenergythresholdforthisdecay,thesubtraction tarity and analyticity are satisfied exactly. The starting constantsarefixedatarelativelylowenergyscale,and pointisaformfactorasinEq.(2),wheretheloopfunc- thedispersiverepresentationturnsouttobeinsensitive tionsareresummedintothedenominator: to the dynamics at large energies. In order to get a re- sultfortheformfactorthatcanbevalidupto s = M2, M2 τ FVπ(s)(0) = M2 (cid:110)1+ s (cid:104)A (Vs)+ 1A (s)(cid:105)(cid:111)−s (4) ttheremeexdpiaretesseionnerginiesEqto. a(7p)hceannombeeneo.lgo.gimcaaltlcyheaddeaqtuainte- V 96π2F2 π 2 K /NuclearPhysicsBProceedingsSupplement00(2013)1–3 3 function[1]likethatgiveninRef.[42](includedinthe on this topic with M. Davier, H. Hayashii, G. Lo´pez newversionofTAUOLA[43]),ortheGounaris-Sakurai Castro and A. Pich are acknowledged. We thank parametrization[44]usedbyBelle[45]. Hayashii Hisaki for providing us with Belle correla- In the table, the errors quoted in single brackets are tion matrix. This work has been partially funded by thoseresultingonlyfromthefit,i.e.neglectingthesys- CONICET (Argentina) under grant # PIP 02495, and tematic errors arising from our theoretical approach. byANPCyT(Argentina)undergrant#PICT2011-0113 Thesearee.g.givenbytheenergyrangetobefitted,the and by the Spanish grants FPA2007-60323, FPA2011- numberofsubtractionsandthevalueoftheupperinte- 25948andbytheSpanishConsoliderIngenio2010Pro- gration limit in the dispersive integral. In order to es- grammeCPAN(CSD2007-00042). timatetheassociatedtotalerrorswehaveextendedour fit up to energies in the range [1.325,1.525] GeV2, we References havetakenintoaccounttheresultsfor2and4subtrac- tions, and we have taken s∞ in the range [4,∞] GeV2. [1] D.G.Dumm,P.Roig, arXiv:1301.6973. Inthiswayweendupwiththenumbersquotedindou- [2] V.Cirigliano,G.Ecker,H.Neufeld,PLB513(2001)361. blebracketsinTable1. Noticethattheinputvaluesfor [3] E.Passemar,B.Moussallam,theseProceedings. [4] S.Actis,etal.,Eur.Phys.J.C66(2010)585–686. the ρ mass and width still need to be translated to the [5] H.Yokoya,J.Ben´ıtez,theseProceedings. physicalpolevalues,whicharereasonablylower[1]. [6] O.Shekhovtsova,Z.Was,theseProceedings. It is seen that our results show a lower χ2/ndf for [7] S.Weinberg,PhysicaA96(1979)327. [8] J.Gasser,H.Leutwyler,AnnalsPhys.158(1984)142. our fitting options I and II, compared to that obtained [9] J.Gasser,H.Leutwyler,Nucl.Phys.B250(1985)465. foroptionIII.Thus,thebestagreementwiththedatais [10] J.Bijnens,G.Colangelo,G.Ecker,JHEP9902(1999)020. reachedbyincludingSU(2)isospinbreakingonlykine- [11] G.Colangelo,etal.,Phys.Rev.D54(1996)4403–4418. matically, although comparable results are obtained in [12] G.’tHooft,Nucl.Phys.B72(1974)461. [13] G.’tHooft,Nucl.Phys.B75(1974)461. theisospinsymmetriccase. [14] E.Witten,Nucl.Phys.B160(1979)57. Finally, we have also computed the low-energy ob- [15] G.Ecker,etal.,Nucl.Phys.B321(1989)311. (cid:68) (cid:69)π servables r2 andcπ appearinginthelow-sexpansion [16] G.Ecker,etal.,Phys.Lett.B223(1989)425. of Fπ(s). OuVr resultVs are quoted in Table 2, together [17] V.Cirigliano,etal.,Nucl.Phys.B753(2006)139–177. V [18] K.Kampf,J.Novotny,Phys.Rev.D84(2011)014036. withthoseobtainedinpreviousanalyses. Itisseenthat [19] D.Go´mezDumm,A.Pich,J.Portole´s,Phys.Rev.D62(2000) the values are entirely compatible, while the errors are 054014. foundtobeslightlyreducedthankstothegoodquality [20] D. G. Dumm, P. Roig, A. Pich, J. Portole´s, Phys.Lett. B685 (2010)158–164. ofpresentBelledata. [21] P.Ruiz-Femen´ıa,A.Pich,J.Portole´s,JHEP0307(2003)003. [22] V.Cirigliano,etal.,Phys.Lett.B596(2004)96–106. 4. Conclusions [23] V.Cirigliano,etal.,JHEP0504(2005)006. [24] D. G. Dumm, P. Roig, A. Pich, J. Portole´s, Phys.Rev. D81 We have elaborated a dispersive representation of (2010)034031. [25] Z.-H.Guo,P.Roig,Phys.Rev.D82(2010)113016. Fπ(s),whichpreservesanalyticityandunitarityexactly V [26] D.G.Dumm,P.Roig,Phys.Rev.D86(2012)076009. andreproducesthelow-energylimitofχPTuptoNLO. [27] J.Gasser,H.Leutwyler,Nucl.Phys.B250(1985)517–538. We have performed different fits to Belle experimental [28] J.Gasser,U.G.Meissner,Nucl.Phys.B357(1991)90–128. [29] J.Bijnens,G.Colangelo,P.Talavera,JHEP9805(1998)014. data, which allow to determine our four input model [30] J.Bijnens,P.Talavera,JHEP0203(2002)046. parameters. The fits show a good agreement with the [31] J.DeTroco´niz,F.Yndura´in,Phys.Rev.D65(2002)093001. data,andnosignificantimprovementisfoundafterthe [32] J.Oller,E.Oset,J.Palomar,Phys.Rev.D63(2001)114009. inclusion of isospin breaking corrections. In addition, [33] F.Guerrero,A.Pich,Phys.Lett.B412(1997)382–388. [34] A.Pich,J.Portole´s,Phys.Rev.D63(2001)093005. fromourfitswehaveevaluatedthelow-energyquanti- (cid:68) (cid:69)π [35] C.Hanhart,Phys.Lett.B715(2012)170–177. ties r2 and cπ, which turn out to be consistent with [36] J.Sanz-Cillero,A.Pich,Eur.Phys.J.C27(2003)587–599. V V previousdeterminations. Ourframeworkisalsoableto [37] C.Dom´ınguez,Phys.Lett.B512(2001)331–334. providegoodqualityfitstoσ(e+e− → π+π−)scattering [38] C.Bruch,etal.,Eur.Phys.J.C39(2005)41–54. [39] D.R.Boito, R.Escribano, M.Jamin, Eur.Phys.J.C59(2009) atlowenergies, whichcanbeusedtodetermineaππ,LO µ 821–829. fromτdecaysande+e−scatteringconsistently. [40] V.Cirigliano,G.Ecker,H.Neufeld,JHEP0208(2002)002. [41] F.Flores-Ba´ez,etal.,Phys.Rev.D74(2006)071301. [42] P.Roig,Nucl.Phys.Proc.Suppl.225(2012)161–164. Acknowledgements [43] O. Shekhovtsova, T. Przedzinski, P. Roig, Z. Was, arXiv:1203.3955[hep-ph]. P.R. congratulates the organizers for the profitable [44] G.Gounaris,J.Sakurai,Phys.Rev.Lett.21(1968)244–247. and enjoyable TAU’12 Conference where discussions [45] M.Fujikawa,etal.,Phys.Rev.D78(2008)072006. /NuclearPhysicsBProceedingsSupplement00(2013)1–3 4 Parameter FitValue(I) FitValue(II) FitValue(III) M 0.8431(5)((17)) 0.8280(4)((14)) 0.8276(4)((21)) ρ F 0.0901(2)((5)) 0.0902(2)((4)) 0.0906(2)((4)) π α 1.87(1)((3)) 1.84(1)((3)) 1.81(1)((2)) 1 α 4.29(1)((7)) 4.34(1)((7)) 4.40(1)((6)) 2 χ2/ndf 1.37 1.39 1.56 Γ (M2) 0.207(1)((3)) 0.194(1)((3)) 0.192(1)((4)) ρ ρ Table1: FitresultstotheBelle1/NππdNππ/dsdistribution,includingcorrelationsbetweenerrors. Theerrorsinsingleanddouble bracketscorrespondtothosearisingonlyfromthefitandthoseobtainedafterconsideringtheoreticalsystematics, respectively. EnergyunitsaregiveninGeVpowers.Γ (M2)isobtainedusingthefittedvaluesofM andF andisgivenonlyforreference. ρ ρ ρ π Determination (cid:68)r2(cid:69)π (GeV−2) cπ (GeV−4) V V Ourfit 10.86(14) 3.84(3) BijnensandTalavera[30] 11.22(41) 3.85(60) PichandPortole´s[34] 11.04(30) 3.79(4) Table2:Low-energyobservablesofthevectorpionformfactoruptothequadraticterm.Wegivetheresultsfromourfit,theO(p6) χPTanalysisinRef.[30]andthedispersiveanalysisinRef.[34].