ebook img

Dispersion of flocculated particles in simple shear and elongational flows PDF

149 Pages·1998·5.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dispersion of flocculated particles in simple shear and elongational flows

DISPERSIONOFFLOCCULATEDPARTICLES INSIMPLESHEARANDELONGATIONALFLOWS By XUELIANGZHANG ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1998 ACKNOWLEDGMENTS Iwouldliketoexpressmysincereappreciationtothefollowingpeoplefortheirhelp andsupportthroughoutmystudyattheUniversityofFlorida: Dr. Renwei Mei, my advisor, constantly gave me his trust, advice, guidance and patience. Without his commitmenttotheproject,thisdissertationcouldn'thavebeencompleted.Dr.Roger Tran-Son-Tay, my co-advisor, offered me a great deal ofhelpful advice and expert guidance in my experimental work. Dr. James F. Klausner, as a member ofmy supervisorycommittee,gavemealotofguidanceandadvice,especiallyinmyearly experimental work. Dr. Wei Shyy and Dr. Corin Segal served as members on my supervisory committee, reviewed my proposal and dissertation, and made valuable comments.Dr.BrijM.MoudgilandDr.HassanEl-Shallgavemetheirguidancesand helps.Ms. EmmanuelleDemayandMr. PhilippeVigneronaidedmeinsomeofmy experiments.Mr.RonBrownhelpedmeinthesetupofexperimentalapparatuses.Dr.A. Zamam,Mr.J.Adler,Dr.J.S.Zhu,andDr.S.Mathurassistedmeinmakingfloesand usesomeinstruments. TheEngineeringResearchCenter(ERC)forParticleScience&Technologyatthe UniversityofFlorida,theNationalScienceFoundation(Grantnumber:EEC-9402989), andtheindustrialpartnersoftheERCprovidedthefinancialresourcesfortheproject. Inaddition,mycolleaguesandfriendsattheUniversityofFlorida,Dr.JianLiu,Dr. GuobaoGuo,Dr.HongOyang,MsHongShang,andMr.CunkoHu,providedmewith varioushelpsinmystudyandlifeinGainesville,Florida.Iamalsogratefultothestaffat theAeMESdepartmentalofficefortheirhelps. SpecialthanksaregiventoMr.DarrellD.WilliamsatBristol,Englandforhishelp andencouragementduringthepasttenyears. Lastbutmostimportant,Iamdeeplyindebtedtomywife,Jie,forherunderstanding, encouragement,patience,andlove. TABLEOFCONTENTS Pages ACKNOWLEDGMENTS ii ABSTRACT vi CHAPTERS 1. INTRODUCTION 1 1.1Background 1 1.2LiteratureReview 2 1.3ObjectivesandScope 6 2. VISUALIZATIONOFFINEFLOCBREAKUPPROCESS 9 2.1ExperimentalDevices 9 2.1.1Cone-plateDeviceandFlowDescription 9 2.1.2HyperbolicFlowDeviceandFlowCharacteristics 13 2.1.3ContractileFlowChamber 19 2.2ExperimentalDevicesandMaterials 20 2.2.1Floes 20 2.2.2SuspendingFluids 22 2.3ResultsandDiscussions 23 2.3.1FloeBreakupinCone-plateShearFlow 23 2.3.2FloeDeformationandBreakupinContractileFlow 26 2.3.3FloeBreakupinHyperbolicFlow 33 2.4Summary 37 3. FLOCBREAKUPINSIMPLESHEARFLOWANDFLOCSTRENGTH 38 3.1Introduction 3g 3.2ExperimentalProcedureandDataProcessing 39 iii 1 3.3ResultsandDiscussions 42 3.3.1VariationofFloeMasswithTimeunderaConstantShearing 42 3.3.2VariationofFloeSizewithTimeatConstantShearRates 50 3.3.3VariationofFloeSizeandSizeDistributionwithShearStress 54 3.3.4ChangeofFloeShapewithTimeandStress 58 3.4Summary 62 FLOFCLBORWECAHKAURPAICNTOERRIIFZIACTEIFOLNOW-PART1 63 4.1Introduction 63 4.2Formulation 65 4.2.1GoverningEquationandBoundaryConditions 65 4.2.2GridArrangementandNumericalSchemes 68 4.2.3ValidationoftheNumericalMethod 72 4.3ResultsandDiscussions 75 4.3.1BasicFeaturesofOrificeFlowField 75 4.3.2StrainRateCharacteristicsofOrificeFlow 79 4.3.3MaximumCenterlineVelocityGradient 81 4.3.4ComparisonBetweenaxisymmetricFlowandTwo-dimensional Flow g7 4.4Summary gy FLOCBREAKUPINORIRICEFLOW-PART2 MEASUREMENTS 90 5.1Introduction 91 5.2ExperimentalApparatusandProcedure .92 5.2.1OrificeSetupandProcedure 92 5.2.2CouetteShearDevice 94 5.2.3ParticleSizeAnalyzer 9g 5.2.4EstimateofReflocculationinCouetteFlowandOrificeFlow 102 5.3ResultsAndDiscussions 104 5.3.1EffectofFlowConditiononFloeSizeDistribution 107 5.3.2DependenceofMeanFloeSizeandMaximumFloeSize onFlowRate 11 5.3.3ComparisonwiththeResultfromUniformCone-plate SimpleShearFlow jj5 iv 5.3.4ComparisonofFloeDispersionbetweenOrificeFlow andCylindricalCouetteFlow 119 5.3.5Re-ExaminationofSonntag'sExperimentalData 123 5.3.6FloeStrengthAssessment 125 5.4Summary 129 SUMMARY 6. 131 6.1SummaryandConclusions 131 6.2SuggestionsforFutureStudies 134 REFERENCE 136 BIOGRAPHICALSKETCH 140 V AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy DISPERSIONOFFLOCCULATEDPARTICLES INSIMPLESHEARANDELONGATIONALFLOWS By XueliangZhang May1998 Chairman:Dr.RenweiMei Co-Chairman:Dr.RogerTran-Son-Tay MajorDepartment:AerospaceEngineering,MechanicsandEngineeringScience Experimentalstudiesonthedispersionprocessoffineflocculatedparticlesindifferent flowsarecarriedoutthroughvisualimageanalysesandparticlesizemeasurements.The flowsinvestigatedincludeacone-plateshearflow,acylindricalCouetteflow,anorifice contractileflow,andahyperbolicflow. Visualstudiesonthemechanismsoffloebreakupindifferentflowsarefirstconducted throughavideoimageacquisitionandanalysissystem.Avarietyofdynamicprocessesof thedeformationandbreakupoffinefloesofsizefrom3mmto30mminthecontractile flow,hyperbolicflow,andsimpleshearflowarevisualized.Thebreakupanderosion processoffloessubjectedtoaconstantshearstressinthecone-plateflowisanalyzed basedonthechangesoffloemass,size,andshapewithshearstressandshearingtime throughtheimageanalysis.Asignificantportionofthebreakup,orsizereduction,ofthe vi finefloestakesplaceupontheapplicationoftheshearstress. Floesizecontinuesto decreasethrough erosionmechanism. Theerosionrate depends on the applied shear stress,thefloesize,andthefloeshape. Anorificeflowisappliedtobreakfloesanddeterminefloestrength.Theflowfield beforeanorificeofhigharearatioisfirstnumericallysimulatedandanalyzedinorderto characterize the flow and stress field. The dependence ofthe maximum centerline velocitygradientonorificearearatioandReynoldsnumberisobtainedanditsasymptotic behaviorinhighReynoldsnumberregimeisanalyzed. The dispersion offloes in the orifice flow is analyzed based on the floe size distributionmeasuredusingaparticlesizeanalyzer.Duetotherapidriseoftheaxial velocity gradient near the orifice entrance, the floe breakup in the orifice flow is instantaneousandthefloeerosionmechanismcanbeexcluded.Thecenterlinemaximum shearstressintheorificeflowthusgivesthefloestrengthoftheresultingfloeswhose averagesizeissubsequentlymeasured.Thefloestrengthdeterminedfromtheshort-time shearinginacylindricalCouetteflowatlowershearstressesfollowsessentiallythesame powerlawdependenceonthefloe sizeasdeterminedintheorificeflow. Thus, floe strengthmeasuredindifferentflowscanbeunifiedusingthemaximumshearstressofthe flow. vii CHAPTER 1 INTRODUCTION 1.1Background Many modern advanced materials, such as electronic, magnetic, optic, and fine ceramic materials, are produced from suspensions of colloidal particles. Floes or aggregates are loose, irregular, three-dimensional clusters of particles in such suspensions.Thewords,floeandaggregateusuallyarebothusedtorefertothewet powderstructureinliquids.Highperformanceofmaterialsrequiressufficientdispersion ofthe floes in suspensions, that is, sufficientbreakup offloes into smaller floes or constituentparticles.Althoughthisdispersionprocessisactuallytheresultofanumber ofdifferentstepsincludingmilling,mixing,stirring,andsoon,hydrodynamicshearing playsanimportantroleincontrollingthestabilityanduniformityofthesuspensionsince thedispersionprocessisusuallycarriedoutinahydrodynamic environmentwithor withouttheaidofdispersants.Theflocculation(particlesizeenlargement)ofparticles and redispersion (particle size reduction) of flocculated particles take place simultaneouslyandconstantlyintheflowenvironmentofthesolid-liquidsuspension. Animportantcharacteristicoffloesistheirbindingforce,thatis,theabilityofthe aggregate structureto resist deaggregation. As ameasureofthisbinding force, floe strengthcanbedefinedasresistancetobreakupbyshearforcesinducedbyfluidvelocity gradients. Thequantitativeevaluationoffloestrengthisimportanttobothdispersion l 2 processandflocculationprocess.However,itisunderstoodthatthestrengthoffloesina suspensioncannotbemeasureddirectlyduetoitsspatiallyirregularstructureandthe randomcharacteristicinitsformationbutmustbededucedfromtheevaluationofother measurableparameters.Becausetheconceptof"strength"forfloesisalwaysassociated withtheirbreakupwhichinvolvesdifferentmechanisms,thestudyonthefloestrength shouldincludethemechanismsoffloebreakupandtheforcewhichcausesthisbreakup. 1.2LiteratureReview Thomas(1964)gavethefirstanalysisonthemechanismsoffloebreakupandfloe strength.Heproposedthatlargefloesinaturbulentflowfieldbreakintheformsofbulgy deformationandrupture.Heassumedthatthepressuredifferenceontheoppositesidesof afloecausesitsbulgydeformationandeventualruptureandthatthepressuredifference isduetotherandomvelocityfluctuationsofturbulentflow.Hisworkformedthebasis foranumberofexperimentalinvestigationstodeterminefloestrengthsincethen. BasedonThomas'modelsforfloerapturemechanismandisotropicturbulencetheory, severalexperimentalstudiesoffloebreakupinturbulentflowshavebeenconductedto determinethefloestrengthbyrelatingthefloe sizetotheturbulentflowconditions. TamboandHozumi(1979)devisedaspecialflocculatorexperimenttostudyfloestrength bymeasuringthemaximumfloediameterunderaweakagitation. Matsuo andUnno (1981)usedaturbulentpipeflowtoevaluatefloestrength.BacheandAl-Ani(1989)used averticalpulsatingwatercolumndrivenbyanoscillatingplungertorelatethefloesizeto the turbulence energy dissipation. Moudgil, Springgate, and Vasudevan (1989) experimentallystudiedthestrengthofkaolinite,dolomite,andA1203floesinastirred tank. Theresultsforfloestrengthobtainedbytheapplicationofisotropicturbulence theoryprovide some qualitative understandings offloe characteristics. However, the shearfieldisspatiallynonuniforminastirringtankandonlytheoverallmeanenergy dissipationratecanbeestimatedforflowdescriptionbasedonthepowerinput.Floe breakup andreflocculation are usuallypresent simultaneously. Therefore, the results obtained from such experiments do not suffice forthepurposes ofdetermining floe strength. Parker,Kaufman,andJenkins(1972)derivedamodelforthebreakupofcomplex activatedsludgefloesandinorganicchemicalfloesbasedonthebreakupmodeofsurface erosionsuggestedbyArgamanandKaufman(1970).Theyproposedthattheprimary particlesarestrippedfromthesurfaceofafloebyfluidshearataratethatisproportional tothefloesurfaceareaandthesurfaceshearingstress. KaoandMason(1975)andPowellandMason(1982)usedafour-rollerdeviceintheir experimentsoffloedeformationandbreakupinanelongationalflow.Thismaybethe first systematic visual work to study aggregate dispersion in fluid flows. Couette apparatushadalsobeenusedintheirstudyforthecaseofsimpleshear. Quigleyand Spielman(1977,seeLuandSpielman, 1985)conductedsimilarexperimentsforferric hydroxide agglomerates in a four-rollerdevice. It is important to note that in these experimentsthesizeofprimaryparticlesfromwhichthefloesoraggregatesaregenerated rangesfrom20umto400umandthesizeoffloesoraggregatesisabout3mm~5mm. Sonntag and Russel (1986, 1987) investigated experimentally the structure and propertiesofflocculatedsuspensionsinasimpleshearflowofcylindricalCouetteflow

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.