ebook img

DISPERSION ENGINEERING OF BOSE-EINSTEIN CONDENSATES By MOHAMMAD AMIN PDF

209 Pages·2016·27.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DISPERSION ENGINEERING OF BOSE-EINSTEIN CONDENSATES By MOHAMMAD AMIN

DISPERSION ENGINEERING OF BOSE-EINSTEIN CONDENSATES By MOHAMMAD AMIN KHAMEHCHI A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Physics and Astronomy MAY 2017 ©Copyright by MOHAMMAD AMIN KHAMEHCHI, 2017 All Rights Reserved ©Copyright by MOHAMMAD AMIN KHAMEHCHI, 2017 All Rights Reserved ii To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of MOHAMMAD AMIN KHAMEHCHI find it satisfactory and recommend that it be accepted. ———————————————————— Peter Engels, Ph.D., Chair ———————————————————— Doerte Blume, Ph.D. ———————————————————— Mark Kuzyk, Ph.D. iii ACKNOWLEDGEMENTS I would like to thank my adviser, Prof. Peter Engels for helping me succeeding in my Ph.D. Peter has patiently helped me understand many scientific concepts as well as practicing many different lab skills varying from mechanics and electronics to optics. His step by step approach to solving complex problems has been my major takeaway from Peter’s lab. This has been a unique opportunity for me and what I have learned will continue enlightening my life. I would also like to thank Chris Hamner, who worked as a post-doc in our lab when I joined the group, for answering my questions tirelessly despite the long hours of work in the lab. This work would not have been possible without the help, support, and the hard work of our theorist collaborators: Michael Forbes, Khalid Hossain, Chunlei Qu, Chuanwei Zhang, Yongping Zhang, Thomas Busch, Panos Kevrekidis, and Kuei Sun. I would also like to thank Doerte Blume for accepting to be on my committee, her support, and fruitful discussions. She made our journal club meetings much more educational with her discussions and asking the right questions to help us understand difficult subjects. I would also like to thank Mark Kuzyk for his support throughout my Ph.D. and for being on my committee. I would like to thank our administrative staff at the physics department for their support and making lengthy administrative processes short especially Robin Stratton, Mary Guenther, and Laura Krueger. I would like to extend my gratitude to Sabreen Dadson and Kris Boreen for being there for us as international graduate students and making us feel like home. I would like to express my appreciation to my colleagues in the lab Vandna Gokhroo, Maren Mossman, Chunde Huang, and Thomas Bersano for their encouragement and friendship. I am thankful to my friends at WSU and home. I, hereby, convey my heartfelt thanks to my mom and dad for their unconditional support throughout many years of my education. This would not have been possible without their sacrifice and kindness. Vast physical boundaries between us do not make me forget about what they have iv done for me. I would like to thank my wife Yasmin for bringing happiness to my life, her constant support, patience, and kindness. v DISPERSION ENGINEERING OF BOSE-EINSTEIN CONDENSATES Abstract by Mohammad Amin Khamehchi, Ph.D. Washington State University May 2017 Chair: Peter Engels The subject of this dissertation is engineering the dispersion relation for dilute Bose-Einstein con- densates (BECs). When a BEC is immersed into suitably tailored laser fields its dispersion can be strongly modified. Prominent examples for such laser fields include optical lattice geometries and Raman dressing fields. The ability to engineer the dispersion of a BEC allows for the investigation of a range of phenomena related to quantum hydrodynamics and condensed matter. In the first context, this dissertation studies the excitation spectrum of a spin-orbit coupled (SOC) BEC. The spin-orbit coupling is generated by “dressing” the atoms with two Raman laser fields. The excitation spectrum has a Roton-like feature that can be altered by tuning the Raman laser parameters. It is demonstrated that the Roton mode can be softened, but it does not reach the ground state energy for the experimental conditions we had. Furthermore, the expansion of SOC BECs in 1D is studied by relaxing the trap allowing the BEC to expand in the SOC direction. Contrary to the findings for optical lattices, it is observed that the condensate partially occupies quasimomentum states with negative effective mass, and therefore an abrupt deceleration is observed although the mean field force is along the direction of expansion. In condensed-matter systems, a periodic lattice structure often plays an important role. In this context,analternativetotheRamandressingschemecanberealizedbycouplingthes-andp-bands ofastaticopticallatticeviaaweakmovinglattice. Thebandscanbetreatedaspseudo-spinstates. It is shown that similar to the dispersion relation of a Raman dressed SOC, the quasimomentum of the ground state is different from zero. Coherent coupling of the SOC dispersion minima can lead to the realization of the stripe phase even though it is not the thermodynamic ground state of vi the system. Along the lines of studying the hydrodynamics of BECs, three novel multicomponent solitonic states are realized. It is shown that the solitons are structurally stable and the oscillation of vector dark-anti-dark solitons is studied in a weak harmonic trap. vii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .x.xviii 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 OVERVIEW OF THE BEC MACHINE . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 An introduction to BEC generation . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 BEC MACHINE COMPONENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Vacuum chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.3 Magneto-Optical Trap (MOT) . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 Track system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.5 Magnetic trap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Magnetic field configuration in the magnetic trap . . . . . . . . . . . . . . . . 15 2.2.6 Chiller system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.7 Laser setups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1064 nm laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 viii Ti-Sapphire laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1540 nm laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.8 Crossed dipole trap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.9 Imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PI (Princeton Instruments) camera imaging system . . . . . . . . . . . . . . . 26 PixelFly camera imaging system . . . . . . . . . . . . . . . . . . . . . . . . . 27 Imaging procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.10 Atom number calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Imaging magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Trapping frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Thomas-Fermi approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Imaging calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 DUAL MANIFOLD SPIN-ORBIT COUPLING FOR 87Rb . . . . . . . . . . . . . . 33 2.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 BILAYER SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.1 Alternative design for phaseplate . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5 COMBINED LATTICES WITH THE SAME PERIODICITY . . . . . . . . . . . . . 40 2.6 TEMPERATURESTABILIZINGTHEDIPOLEBEAMINTENSITYCONTROLLER 42 2.7 DIRECT DIGITAL SYNTHESIZERS FOR LATTICES AND RAMAN DRESSING 44 2.8 DEVELOPMENT OF A SIMPLE MATLAB TOOL FOR SIMULATING ARBI- TRARY BEAM DIFFRACTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 RAMAN DRESSING AND SPIN-ORBIT COUPLING OF BOSE-EINSTEIN CONDENSTATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 EXCITATIONSPECTRUMOFSPIN-ORBIT-COUPLEDBOSEEINSTEINCON- DENSATES AND EMERGENCE OF ROTON-LIKE FEATURES . . . . . . . . . . 54 3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ix 3.2.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.3 Experimental implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Bragg Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3 1D EXPANSION OF SPIN-ORBIT COUPLED BOSE-EINSTEIN CONDENSATE. 64 3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.2 Methods and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.3 Experimental considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Magnetic field gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Adiabatically loading the BEC into the SOC states . . . . . . . . . . . . . . . 74 Centering the laser beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Magic wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Finding the Raman zero detuning . . . . . . . . . . . . . . . . . . . . . . . . 76 Expansion anomalies for lower detunings. . . . . . . . . . . . . . . . . . . . . 76 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3.4 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Single Band Model and Spin-Quasimomentum Map . . . . . . . . . . . . . . 83 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Self-Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Dynamical Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.4 MAGNETIZATIONOFLATTICEDRIVENSPIN-ORBITCOUPLEDBOSE-EINSTEIN CONDENSATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.4.2 Experimental implementation and results . . . . . . . . . . . . . . . . . . . . 94 3.4.3 Theoretical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3.5 OBSERVATION OF THE FESHBACH RESONANCE BETWEEN 1,+1 AND | (cid:105) 2, 1 STATES OF 87Rb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 | − (cid:105) 3.6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Description:
potentials due to the light field from the outermost to the innermost layers . composition of a spin-orbit coupled BEC after a repulsive light sheet has Since the image of the microscope is inverted, lower camera position is in which Ω is the Rabi frequency, hkR = ∆p/2, hkx is the momentum of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.