ebook img

Dispersal limitation and the assembly of soil Actinobacteria PDF

12 Pages·2012·0.64 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dispersal limitation and the assembly of soil Actinobacteria

Dispersal limitation and the assembly of soil Actinobacteria communities in a long-term chronosequence SarahD.Eisenlord1,DonaldR.Zak1,2 &RimaA.Upchurch1 1SchoolofNaturalResourcesandEnvironment,UniversityofMichigan,AnnArbor,MI48109 2EcologyandEvolutionaryBiology,UniversityofMichigan,AnnArbor,MI48109 Keywords Abstract Actinobacteria,chronosequence,microbial biogeography. It is uncertain whether the same ecological forces that structure plant and ani- mal communities also shape microbial communities, especially those residing in Correspondence soil. We sought to uncover the relative importance of present-day environmen- SarahD.Eisenlord,SchoolofNatural tal characteristics,climatic variation, and historical contingencies in shaping soil ResourcesandEnvironment,Universityof actinobacterialcommunitiesinalong-termchronosequence.Actinobacteriacom- Michigan,2560DanaBuilding,440Church munitieswerecharacterizedinsurfacesoilsamplesfromfourreplicateforeststands Street,AnnArbor,MI48109. withnearlyidenticaledaphicandecologicalproperties,whichrangefrom9500to Tel:(734)6475925; 14,000 years following glacial retreat in Michigan. Terminal restriction fragment Fax:(734)6475925; E-mail:[email protected] length polymorphism (TRFLP) profiles and clone libraries of the actinobacterial 16SrRNAgenewereconstructedineachsiteforpheneticandphylogeneticanal- FundedbygrantsfromtheNationalScience ysis to determine whether dispersal limitation occurred following glacial retreat, FoundationandtheU.S.Departmentof orifcommunitycompositionwasdeterminedbyenvironmentalheterogeneity.At EnergyOfficeofBiologicalandEnvironmental everylevelofexamination,actinobacterialcommunitycompositionmostclosely Research. correlated with distance, a surrogate for time, than with biogeochemical, plant community,orclimaticcharacteristics.DespitecorrelationwithleaflitterC:Nand Received:13December2011;Accepted:28 December2011 annualtemperature,thesignificantandconsistentrelationshipofbiologicalcom- munitieswithtimesinceglacialretreatprovidesevidencethatdispersallimitationis doi:10.1002/ece3.210 anecologicalforcestructuringactinobacterialcommunitiesinsoiloverlongperiods oftime. ever, evidence is accumulating that some microorganisms Introduction do exhibit biogeographical patterns across time and space Biogeographyisthestudyofgeographicaldistributionofor- (Fulthorpeetal.1998;ChoandTiedje2000;Whitakeretal. ganisms over the Earth in both time and space. Ecologists 2003).Itiscurrentlyunderdebatewhethervariationinmi- seektounderstandhowbiologicaldiversityisgeneratedand crobialcommunitiesoverspaceresultsfromenvironmental maintained, especially in the light of a changing environ- filtering,orifgeographicbarriersandotherhistoricalcontin- ment.Formicrobialbiogeography,thetraditionalviewhas gencies contribute to spatial structure in community com- held that “Everything is everywhere, but the environment position through limiting dispersal (Horner–Devine et al. selects”(BaasBecking1934).Thelargepopulationsizeand 2004;Martinyetal.2006;RametteandTiedje2007a;Geetal. shortgenerationtimestypicalofmicrobialcommunitieslead 2008). If not all microbes are equally and evenly dispersed torapidgeneticdivergence,potentiallyresultinginbiogeo- over time, it would suggest that forces structuring micro- graphic patterns (Green and Bohannan 2006). However, it bialcommunitiesaremorecomplexthanadaptiveevolution has been assumed that unlimited microbial dispersal leads throughnaturalselection.Historicalcontingenciescouldgive toconstantinputofnewmembers,increasinggeneflowand risetocompositionalpatternsthroughisolationandgenetic overwhelmingtheforcesofgeneticdrift(RobertsandCohan divergence. 1995;RametteandTiedje2007b).Globalstudiesofmicrobial We address this issue by examining the community pat- diversityinaquaticandsoilcommunitiessupportthistheory terns of a deeply diverse and divergent phylum, the Acti- (FiererandJackson2006;VanderGuchtetal.2007);how- nobacteria,inanorthernhardwoodforestchronosequence. 538 (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd.ThisisanopenaccessarticleunderthetermsoftheCreative CommonsAttributionNonCommercialLicense,whichpermitsuse,distributionandreproductioninanymedium,provided theoriginalworkisproperlycitedandisnotusedforcommercialpurposes. S.D.Eisenlordetal. ActinobacterialPhylogeography Actinobacteriaareimportantorganismsmediatingplantlit- beaphylogeneticsubsetofoldercommunitiesinthesouth. ter decay and the subsequent formation of soil organic Moreover,ifdispersallimitationisnotafactorshapingthese matter in terrestrial ecosystems (Paul and Clark 1996; communities as the Baas-Becking theory predicts, then we DeAngelis et al. 2011). This phylum is phylogenetically di- would expect similar communities in all sites. This alter- vergent and the closest prokaryotic relative has yet to be nativepredictsthatvariationinactinobacterialcommunity identified (Embley and Stackebrandt 1994; Ventura et al. compositionshouldbestructuredbyenvironmentalfactors 2007).Actinobacteriaexpressavarietyofmorphologiesand suchasoverstoryplantcommunitycompositionandbiogeo- life-historytraits,includingsporulation,whichcouldbead- chemicalcharacteristicsofthesoil. vantageousforlong-distancedispersal.Thereisnoconsen- To test these alternatives, we initially characterized acti- suswhetherActinobacteriaexhibitendemismorhaveacos- nobacterialcommunitiesusing16SrRNAgeneterminalre- mopolitandistribution(Gløckneretal.2000;Wawriketal. striction fragment length polymorphism (TRFLP) finger- 2007). Here, we evaluate whether dispersal limitation is a prints. Using this information, we further refined the test factorstructuringthecommunityofsoilActinobacteriafol- of our hypothesis via cloning and sequencing of the acti- lowing glacial retreat in a present-day forest ecosystem in nobacterial16SrRNAgeneandsubsequenttaxonomicand northeasternNorthAmerica. phylogeneticanalysis.Actinobacterialcommunitycomposi- Previousworkprovidesevidencethatsoilactinobacterial tioninourfourstudysiteswasassessedbyexaminingcom- communities exhibit regional biogeography, wherein com- munitysimilarity,identifyingadistance–decayrelationship, munitymembershipchangesacrossthenorth–southdistri- andtestingtherelatednessofcommunitypatternstoenviron- butionofanorthernhardwoodecosystemintheUpperGreat mentalvariation,climaticfactors,andgeographicdistance, Lakes region of the U.S. (Eisenlord and Zak 2010). Across asaproxyforsiteage,throughmultivariatestatistics.Here, thisgeographicregion,theperiodicretreatofglaciationca. weprovideevidencethatdispersallimitationisamechanism 14,000yearsagooccurredinasouthtonorthdirection.Over shapingActinobacteriacommunitiesinanorthernhardwood aperiodof5000years,newlandscapeswererevealedforming forest ecosystem over a relatively long-time frame (i.e., ca. achronosequence,inwhichsoilswereformedfromsimilar 5000years). parent material, yet differ in time since deglaciation set in motion the process of soil formation. According to pollen records,forestsdominatedbyAcersaccharumMarsh.(sugar Methods maple)establishedatthebeginningoftheHoloceneinthe Studysitesandsampling UpperLakeStatesregion.Thesepollenrecordsindicatesugar maple became dominant ca. 4000 years following the re- ThebiogeographyofActinobacteriawasexaminedinthesur- treatofglacialice(Davis1983),leavingbehindalong-term facesoiloffoursugarmapledominatedforestsontheLower chronosequence. andUpperPeninsulaofMichigan(Fig.1).Thesesiteswere Alongthischronosequence,wepreviouslylocatedecolog- selected from 31 candidate sites based on their ecological ically and edaphically matched sugar maple stands, which andedaphicsimilarity,whichwereassessedbymultivariate providesauniqueopportunitytostudythestructuringforce analyses of plant community composition, stand age, and oftimeontheassemblyofsoilmicrobialcommunities.Repli- soil properties (Burton et al. 1991). Soils are well-drained catesamplingofActinobacteriacommunitieswithinthesame sandy,typichaplorthodoftheKalkaskaseriesandoverstory habitattypeinfourdifferentgeographiclocationsallowsus biomass is dominated by sugar maple (∼70–85%). These to determine if there is a “distance effect” (Martiny et al. sites form a long-term chronosequence due to their simi- 2006). Because each geographic location corresponds with larity of environmental, ecological, and edaphic character- timeelapsedfollowingglacialretreat,weconsidereddistance istics,yetthousandsofyearselapsedfollowingdeglaciation tobeasurrogatefortime.Duetotheperiodicnatureofglacial andestablishmentofforestsateachsite.Thesouthernmost retreat,distanceandtimedonotfollowalinearrelationship. siteDwasice-freeapproximately13,500yearsbeforepresent Ifdispersallimitationwasaforcestructuringsoilmicrobial (BP)followedbymapleforestestablishment3500yearslater communitiesoverlongtimeframes,dispersalofactinobac- (Evenson et al. 1976; Davis 1983; Drexler et al. 1983). Site terial propagules would be limited in the more northern Cislocated83kmnorthofsiteDandwasdeglaciatedap- sites because they are the youngest. Therefore, differences proximately13,000yearsBP,followedbymapleforestestab- in community composition should correlate with distance, lishment4000years later(Evenson et al. 1976; Davis1983; after controlling for present day environmental variability. Drexleretal.1983).SiteB,located150kmnorthofSiteC, Furthermore, if the source of actinobacterial communities was uncovered approximately 11,000 years BP, and pollen originatedfromtheoldersites,thenthedistributionofthese recordsindicatemapleforestestablishment4000yearslater. communitiesshouldbeclusteredonaphylogenetictree.That Finally, the northernmost site A, 343 km northwest of site is,youngeractinobacterialcommunitiesinthenorthshould B,wasice-free9500yearsBP,withmapleforestestablishing (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. 539 ActinobacterialPhylogeography S.D.Eisenlordetal. in each plot were composited and passed through a 2-mm sieve in the field. From the sieved composite sample, a 5- g subsample was removed for DNA extraction. By pooling the 10 soil cores, our sampling scheme aggregated small- scalespatialheterogeneityatthescaleofindividualplots.We did so because our goal was to characterize the actinobac- terialcommunityatthescaleofentireforeststands,andto exploreregionaltrendsincommunitysimilaritythatmany bestructuredbyhistoricalcontingencesandenvironmental factors. Samples were placed on ice in DNA extraction vials and immediatelytransporttotheUniversityofMichigan,where theywereheldat–80◦CpriortoDNAextraction.InMayof 2007,SiteBwasdefoliatedbythecanopyconsuminginsect, Operophterabruceata,whichdepositedlargeamountsofin- sectfrassandgreen-leaffragmentsontheforestfloor(D.R. Zak, pers. obs.). Because these insects dramatically altered thebiochemicalconstituents,theamount,andtimingofleaf litterfall,weeliminatedtheMay2007SiteBsamplesfrom ouranalyses. Figure1. Forestsitescomposingalong-termchronosequencesfollow- ingglacialretreat.SouthernmostSiteDistheoldest,whereasnorthern- mostSiteAistheyoungest.Detailsregardingsiteageandenvironmental characteristicscanbefoundinthetext,alongwithourmethodsforiden- DNAextractionandpolymerasechain tifyingecologicallysimilarsitesacrossthisregion. reaction(PCR)protocol Soilssampledin2006wereusedtocharacterizetheactinobac- terial community using TRFLP, whereas we used cloning 3500yearslater(Evensonetal.1976;Davis1983;Drexleretal. andsequencingtofurthercharacterizethecommunityfrom 1983). samples collected in the subsequent year. Microbial DNA Thesesitesarewellcharacterizedintermsoftheirclimate, extraction and actinobacterial 16S rRNA gene amplifica- plant community, and biogeochemical characteristics. tionfollowedsimilarprotocolstothosepreviouslydescribed For example, daily air temperature, soil moisture, and inEisenlordandZak(2010).Briefly,microbialcommunity soil temperature along with annual measurements of tree DNAwasextractedfromour2006samplesintriplicatefrom species, diameter and height, leaf litter biomass, water 0.25to1gofsoilusingtheUltracleanSoilDNAextractionkit balance, and leaf litter production have been recorded (MoBioLaboratories,Calsbad,CA,USA)forTRFLPanalysis. since1994andareavailableattheMichiganGradientweb- MicrobialcommunityDNAwasextractedfromour2007soil site (http://www.webpages.uidaho.edu/nitrogen-gradient/ samplesusing5-gsurfacesoilsubsampleswithMoBioPow- Default.htm). Forests on our study sites were harvested ca. erMaxSoilDNAisolationkits(MoBioLaboratories)within 1900–1910 and have not experienced human disturbance one week of field collection for clone analysis. Actinobac- sincethattime;tothebestofourknowledge,theyallhave terial 16S rRNA genes were amplified from total commu- beenexposedtothesamedisturbanceregimeandsharethe nityDNAwithprimersEub338F-ACGGGCGGTGTGTACA sameland-usehistory. andAct1159R-TCCGAGTTRACCCCGGC(Blackwoodetal. We collected surface soil horizons (Oe, Oa, and A hori- 2005). The PCR protocol followed 95◦C for 5 min for ini- zons) on three separate dates (June 2006, October 2006, tial denaturing, then 25 rounds of amplification (94◦C for andMay2007)tocharacterizeactinobacterialcommunities. 30 sec, 57◦C for 30 sec, 72◦C for 90 sec) followed by 10 In each of the four sites, there are three randomly located min at 72◦C for elongation, and finally held at 6◦C before 30-m×30-mreplicateplotsranging15–150mapart.Wehave removal (adapted from Blackwood et al. 2005). All PCRs previouslyandcontinuouslyquantifiedecological,edaphic, wereconductedinduplicateandproductswerepooledbe- andbiogeochemicalcharacteristicsforeachplotinallfour forepurificationwithMoBioUltraCleanPCRCleanupKit studysites(Burtonetal.1993;Reedetal.1994;Burtonetal. (MoBioLaboratories,Calsbad,CA,USA)accordingtoman- 2004;Pregitzeretal.2004).Ineach30-m×30-mplot,we ufacturer’sinstruction.ForTRFLPthePCRreactiondiffered collected10soilsamplesusinga2.5-cmdiametersoilcore, from above by having a 6-Carboxyflurescein (6-FAM) at- whichextendedtoadepthof5cm.The10surfacesoilsamples tachedtheEub338Fprimer. 540 (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. S.D.Eisenlordetal. ActinobacterialPhylogeography Communitycharacterizationusingterminal sion3.69(Felsenstein2005),usingtheJukesCantoralgorithm restrictionfragmentlengthpolymorphism of substitution. Mothur (Schloss et al. 2009) was then em- (TRFLP) ployed to assign OTUs at 90%, 93%, 95%, 97%, and 99% similarity using the average neighbor algorithm. The rela- Following PCR clean up of the actinobacterial 16S rRNA tive abundance of OTUs at each similarity level was exam- geneamplicon,approximately200–500ngofpurifiedPCR product,asdeterminedbyPicogreen(cid:2)R analysis(Invitrogen; ined to address the argument that the resolution at which microbial communities are analyzed influences results and asinstructedbythemanufacturer),wasdigestedwith5Uof subsequentlytheirinterpretation(ChoandTiedje2000).At TaqI(Promega)at65◦Cfor1h.PassingdigeststhroughaMi- 97% similarity, Mothur was used for taxa-based alpha and croconYM-30filter(Millipore)desaltedthemandremoved b(cid:2)eta diversity estimates within and across sites and to run enzymesfromthereaction.Eachsamplewassubmittedindu- -LIBSHUFF (Schloss et al. 2004), a program which uses plicateforgenotypingconductedattheUniversityofMichi- coveragecurvestostatisticallydetectiftwoormoremicro- gan’sCoreSequencingFacilityusinganABI3730XLDNASe- bial communities are similar using the Cramer-von Mises quencerwitha96capillaryarray.Rox1000(Bioventures)was test statistic (Schloss et al. 2009). OTU sequences at 97% usedasastandardtodeterminerestrictionfragmentlengths. similarityweregeneratedbyconsensusofclonesequencesin Electropherograms were inspected using Genemarker 1.60 Geneious. (SoftGenetics). We required a peak height 50 fluorescence Referencesequencesand56actinobacterialOTUsdefined units and the appearance of each restriction fragment in at 97% similarity were then realigned in Geneious with bothduplicatesforoursubsequentanalyses.Eachterminal ClustalW for phylogenetic analysis. Because phylogenetic restrictionTRFwithapeakheightthatof1%orgreaterofthe analysesaresensitivetotreetopology,RaxMLwasusedtose- totalintensitywerescoredintothepresence–absencematrix lectthebest-fittreewiththeMaximumLikelihoodalgorithm; (Hassettetal.2009). Staphylococcusaureus wasusedtorootthetree.Differences inthephylogeneticpatternsineachstudysitewerequanti- 16S rRNAgenecloningandphylogenetic fiedwiththeonlinestatisticaltoolUniFrac(Lozuponeetal. analysis 2006).PhylogeneticdistancesmatricesreportedbyUniFrac, Actinobacterial16SrRNAgeneswereclonedwiththeInvit- alongwiththerelativeabundancesofOTUsatallfivesim- rogenTOPOTAcloningkitusingTOP10chemicallycompe- ilarity levels, were used for multivariate statistics described tentcells(Invitrogen).InsertsweresequencedattheGeorgia below. GenomicsFacilityattheUniversityofGeorgia(Athens,Geor- gia).Thisstudyexpandedourprevioussequencingeffortsof Environmentalvariables 33 clones in each plot (Eisenlord and Zak 2010; Genbank accession FJ661107-FJ662388) to include an additional 63 Environmentalcharacteristicswereassembledintofourdata clonesfromeachofthe12samples(i.e.,threeplotsineachof sets: (1) a biogeochemical data set composed of factors fourstudysites),totaling1152sequences(Genbankaccession which we selected a priori that are relevant to soil mi- HQ845548-HQ845603). crobial communities, (2) plant community composition, Sequences were manually edited in Geneious v.5.0.2 (3) climatic characteristics, and (4) distance which repre- (BiomattersLtd.)and727highqualitycontiguoussequences sented time since glacial retreat. The biogeochemical data were generated from forward and reverse sequences. The matrix included soil pH and moisture content (measured top-typespeciesmatcheswereretrievedfromtheRibosomal from our 2007 samples), and previously collected values Database Project (RDP; Cole et al. 2009) for all sequences, for leaf litter C content, leaf litter C:N ratio, total leaf lit- and50representativesequencesfromeverymajorgroupof ter mass, C:N ratio of soil organic matter, and extractable − theActinobacteriaphylawereretrievedfromtheNCBITax- soil NO (Table 1; Burton et al. 1993; Reed et al. 1994; 3 onomyBrowserforuseasreferences.Cloneandreferencese- Burton et al. 2004; Pregitzer et al. 2004). All metadata quenceswerealignedusingClustalW(Thompsonetal.1994) are available at http://www.webpages.uidaho.edu/nitrogen- intheprogramGeneious.Referencesequenceswereincluded gradient/Default.htm. All environmental data used in this inthealignmenttobuildphylogeneticbackbonesupportby studywereaveragesovergrowingseasonfromtheyears2005 preservingspatialheterogeneityinthe16Ssequences.Align- to 2008. The second matrix represented the plant commu- ments were manually edited to remove gaps and ambigu- nity based on the relative importance (i.e., basal area of a ouslyalignedsequences.Referencesequenceswereremoved species/basal area of all species) of overstory and under- fromtheclonealignmentbeforeoperationaltaxonomicunits storyspecies(TableS1).Ourthirddatamatrixcharacterized (OTUs)weredetermined. climatic variation by including temperature, precipitation, Theclonesequencealignmentwasusedtogenerateadis- andambientNdepositiontoidentifytheroleofclimatein tancematrixinPhylogenyInferencePackage(PHYLIP)ver- shaping these actinobacterial communities (Table 1). The (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. 541 ActinobacterialPhylogeography S.D.Eisenlordetal. Table 1. Site averages for age, climate, and environmental the distance–time matrix was generated with the great cir- characteristics. cledistance(Vincety1975).Theplantcommunitysimilarity matrixwasgeneratedwiththeBray–Curtismetric(Brayand A B C D Curtis 1957). Biogeochemical, plant community, climatic, Glacialretreat(yearsBP) 9500 11,000 13,000 13,500 anddistance–timedatawerevisualizedwithnonmetricmul- Climate tidimensionalscaling(nMDS;Fig.2). Meantemperature1(◦C) 4.82 6.06 6.49 7.65 With site as the main factor, an analysis of similarity MeanPrecipitation(cm) 91.87 93.28 92.81 86.63 (ANOSIM) test was used to compare communities across AmbientNdeposition1(kg/ha) 5.89 6.07 7.37 7.37 sites(n=4),withindividualplotsasreplicateswithineach Environment site(n=3).TheMantel-typetest,RELATE,wasusedincon- Leaflitter[C]1(g/kg) 458 456 453 455 junction with the Spearman rank correlation coefficient to LeaflitterC:N1 63.68 57.06 52.91 43.41 Leaflittermass1(g) 412.7 396.3 591 550.2 determineifthereweresignificantcorrelationsbetweenthe ExtractableDOC(mg/L) 5.5 2.79 5.85 9.95 biological data (TRFLP, OTU, and Phylogenetic distances) ExtractableNO−(mg/L) 0.08 0.55 0.86 0.92 and the biogeochemical, plant community, climatic, and 3 SOMC:N 13.12 22.55 15.9 11.42 distance–time data sets. The RELATE test is similar to the SOM[N](mg/g) 1.84 1.36 1.83 1.73 Manteltest,inthatituseselement-by-elementcorrelations pH1 4.55 4.7 4.41 4.61 of similarity matrices. Though instead of Pearson correla- Moisturecontent1(%) 23 24 18 14 tionsusedbytheManteltest,RELATEusesSpearman’srank 1ParamatersincludedindatasetsforRDAanalysis. correlationcoefficients,asismoreappropriatefortheinter- pretationofourdata(ClarkandGorley2006).Ranksimilar- itiesbetweensiteaverageswereusedinthisanalysistocorrect primary historical event taken into consideration for this forthedifferentscalingofeachcorrelationcoefficient.The studyistheperiodicretreatoftheWisconsinicesheetacross distance–decayrelationshipwasexploredwiththe2006TR- lower and upper Michigan. Because distance between sites FLPdatabyplottingthelogtransformedaverageSørensen overlaystimesincedeglaciationinourchronosequence,we communitysimilaritymetric(gainedfromPRIMER),against useddistance–timeasourfourthdataset;itwascomposed thelogtransformedgeographicdistancebetweentheplots. ofglobalpositioningsystem(GPS)coordinatestakenatthe Additional statistics were conducted in the R (R Devel- centerofeachsampleplot(TableS2).Thechosenvariables opment Core Team 2008) package vegan (Oksanen et al. foreachsetofdatawereassignedtobiogeochemical,plant 2011). Environmental vectors, of biogeochemical, climatic, community,climatic,anddistance–timedatasetsformulti- and distance–time data sets, were fit to nMDS ordinations variatestatisticalanalysis. of biologicaldata,whichidentifiedthe individualvariables correlated with community patterns. Redundancy analysis Multivariate statisticalanalysis (RDA)wasusedtoexaminethecorrelationsbetweenspecies ItisplausiblethatsoilActinobacteriabiogeographyisshaped patternsandenvironmentalvariablestoevaluatewhichvari- by local environmental conditions, historical factors, or by ablesexplainedsignificantproportionsofvariationinActi- both. Following the framework of Martiny et al. (2006), nobacteriacommunitycomposition.Distance-basedredun- weusedmultivariateanalyses(PRIMERv6;Plymouth,UK) dancyanalysis(db-RDA;LegandreandAnderson,1999)was inordertoidentifysignificantcorrelationsbetweenfactors appliedusingtheBray–Curtisdistancemetrictodetermine composingbiogeochemical,plantcomposition,climatic,and ifdistance–timesignificantlyaccountedadditionalbiological distance–timedatamatrices. variation,afterthevariationduetoenvironmentalvariables TRFLP fingerprint data matrices, OTU relative abun- washeldconstant. dance matrices, and phylogenetic distances were treated similarly as “biological” data. Similarity, matrices for TR- Results FLPfingerprintsweregeneratedusingtheBray–Curtissim- At all levels of examination, actinobacterial communities ilarity metric (Bray and Curtis 1957) on non-transformed werecompositionallydifferentineachofourfourforestsites, presence–absence data. Relative abundances of OTUs were andvariationinthecommunitieswassignificantlycorrelated squareroottransformedtolessentheemphasisofthemost withtimesinceglacialretreat(i.e.,distance;Table2). abundantspeciespriortothegenerationofsimilaritymatri- ceswiththeBray–Curtiscoefficient.Phylogeneticdistances TRFLPcommunitycomparison weregeneratedwiththeonlinepackageUniFrac(Lozupone etal.2006). Basedongreaterthan1%contributiontototalTRFs,there Biochemicalandclimaticsimilaritymatricesweregener- were27uniqueTRFsinJuly,and26inOctober.Rarefaction atedwithEuclidiandistancesofstandardizeddata,whereas curvesgeneratedinEstimateS(Colwell2009)approachedan 542 (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. S.D.Eisenlordetal. ActinobacterialPhylogeography Figure2. nMDSaveragedbysite(stress<0.05),errorbarsrepresentstandarderrorofthreebiologicalreplicateswithineachsite.(a,b)Biogeochemical andclimaticdatasetsseparatesitesA,B,C,andDbasedonEuclidiandistances.(c)distancedata,asaproxyforsiteage,arerepresentedbythegreat circledistancebetweensites.(d,e)biologicaldatamatrices,JulyTRFLPandOctoberTRFLP,weregeneratedusingtheBray–Curtissimilaritymetric.(f) PhylogeneticdistancesbetweensitesA,C,andDbasedonUniFracgeneticdistances.AllimagesweregeneratedinPRIMERv.6andeditedinExcel 2007. Table2. ANOSIM(withsiteasamainfactor)andMantel-typetestRELATEresultsforTRFLP,phylogeneticdistance,andOTUrelativeabundancesof fivelevelsofsimilarity.TRFLPdataarepresence–absencefrom2006.Phylogeneticdistancesarebasedon97%similarity.AllfivelevelsofOTUrelative abundancesweresquareroottransformedbeforeanalysis.SpearmanmetricstatisticisrelatedasRho. RELATE ANOSIM Biogeochemical Plantcommunity Climate Distance-time Data RStatistic P-value Rho P-value Rho P-value Rho P-value Rho P-value TRFLPJune 0.45 0.002 0.18 0.115 0.04 0.54 0.02 0.436 0.35 0.022 TRFLPOctober 0.29 0.015 0.31 0.015 0.03 0.52 0.14 0.144 0.32 0.027 Phylogeneticdistance 0.58 0.004 0.17 0.223 0.15 0.29 0.17 0.159 0.24 0.064 OTU90% 0.06 0.320 −0.10 0.680 0.5 0.51 0.08 0.672 0.00 0.479 OTU93% 0.33 0.020 0.19 0.155 0.5 0.52 0.15 0.165 0.15 0.186 OTU95% 0.35 0.050 0.02 0.474 0.5 0.48 0.16 0.133 0.36 0.043 OTU97% 0.69 0.004 0.21 0.138 1.0 0.18 0.33 0.032 0.35 0.036 OTU99% 0.56 0.001 0.12 0.222 0.5 0.51 0.38 0.041 0.32 0.031 BolddesignatessignificantPvaluesaslessthan0.050.ItalicizedPvaluesareconsideredsuggestiveaslessthan0.075. asymptoteandprovidedinSupportingInformation(Fig.S1). incompositiontheclosertheyaregeographicallyandinage TRFLP actinobacterial community similarity, based on the (Table2).TherewasnoevidenceintheJulysamplesthatcom- Sørensenmetric,hadasignificantnegativerelationshipwith munitieswithsimilarbiogeochemicalorclimaticcharacter- timesinceglacialretreat(z-score=–0.094,P=0.02,Fig.3). isticshavesimilaractinobacterialTRFLPprofiles(P=0.115, Thisdistance–decay,ortime–decay,relationshipheldtruefor P=0.436).ThefittingofallenvironmentalvectorstotheJuly bothJulyandOctobersamplingdates;asdistanceincreased, nMDS,displayedinFigure4,revealeddistance–timetobesig- communitysimilaritydecreased(Julyslope=–0.11,Octo- nificantlycorrelatedwithcommunitypatterns(P =0.014), berslope=–0.03).Therewasnosuchrelationshippresent noneoftheothervariablesweresignificant(P valuesrange whenbiogeochemicalcharacteristicswereregressedagainst 0.174–0.671). The db-RDA analysis revealed distance–time geographicdistance(P=0.29).RELATEresults,basedonthe accounted for an additional 17% of community variation, Bray–CurtissimilaritymatricesofJulyandOctoberTRFLP after variation correlated with environmental and climatic data,indicateactinobacterialcommunitiesaremoresimilar factorswasheldconstant(P=0.048). (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. 543 ActinobacterialPhylogeography S.D.Eisenlordetal. (P=0.015).However,db-RDArevealed,whenvariationdue tolitterC:Nwasheldconstant,distance–timedidnotsignif- icantlyexplainanymoreofthevariationinthecommunities (P=0.665),andthesamewastrueforlitterC:Naftervari- ationduetodistancewasheldconstant(P =0.263).There wasnorelationofactinobacterialcommunitiestotheplant communityineitherJuly(Spearman=0.04,P =0.544)or October(Spearman=0.03,P=0.524). Taxonomicalphaandbetadiversity Analysisof727clonedactinobacterialsequencesfromMay 2007,samplesitesA,C,andDresultedin56OTUsgrouped at97%similarity.WeidentifiedOTUsin16of39actinobac- terial families, classified with the RDP (Table 3). For the most abundant OTUs, the closest similarity to known or- Figure 3. Distance–decay relationship displaying the log transformed community similarity based on the Sørensen metric of averaged July ganisms(cid:2)was90%tomembersoftheThermomonosporaceae andOctoberTRFLPprofilesplottedagainstthelogtransformeddistance family. -LIBSHUFFresultsrevealedsignificantdifferences betweensites.Slopeis0.0946,Yinterceptis2.07,andP=0.02. in community membership between sites A and D (P < 0.001),sitesCandD(P=0.007),andbetweensitesAandC (P =0.015).Diversityestimates,AceandChao1,indicated Incontrast,basedonRELATEanalysis,Octobersamples thattheoldestsiteDwasmorediversethanthetwonorth- with similar biogeochemical characteristics did have simi- ern and younger sites, but this difference was not resolved laractinobacterialprofiles(Spearman=0.309,P =0.015). when the 95% confidence intervals were considered. Rar- Environmental vector fitting revealed both distance–time efactioncurves(seeFig.S1)alsoindicatetheoldestsite(Site (P = 0.030) and litter C:N (P = 0.043) were correlated D) contained a greater richness than the younger sites. Al- withcommunitypatterns;noothervariablesweresignificant thoughtherarefactioncurvesapproachedanasymptote,we (P = 0.174–0.797). The RDA found distance–time signif- didnotcapturethefulldiversityoftheactinobacterialcom- icantly accounted for 18% of community variation (P = munity. When examining the families found at each site, 0.026) and litter C:N accounts for 18% of the variation the oldest site (D) contained 13 unique OTUs from four Figure4. Environmentalvectorfittingonan nMDSplotofJuly2006TRFLPActinobacteria communitiescalculatedwiththeBray–Curtis dissimilaritymetric.Environmentalvariables includedwereaprioridecidedbiogeochemical factors,climaticvariabletemperature,and distance–time.Distance–timewastheonly variablesignificantlycorrelatedwith communitycomposition,designatedby*(P= 0.014). 544 (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. S.D.Eisenlordetal. ActinobacterialPhylogeography Table3. Atotalof727clonesfromthreesites(A,C,andD)grouped The UniFrac distance matrices were analyzed with into56OTUsat97%similarity.WeidentifiedActinobacteriain16of39 PRIMERtodetermineifsampleswithsimilarbiogeochem- actinobacterialfamiliesbasedonRDPvaluesandphylogeneticanalysis. ical, plant community, climatic, or distance–time charac- AllgroupingsexcepttheAcidimicrobialesarewithintheorderActino- teristics also contained closely related communities. The mycetales.Wereporttotalnumberofclonesandtheirabundanceat ANOSIM, with site as a main factor, indicated that plots eachsiteaswellasthetotalnumberofOTUsandtheirabundanceat withinaparticularsiteweremoresimilarthanplotsbetween eachsite. different sites (P = 0.004); the nMDS ordination of acti- Clones OTUs nobacterial phylogenetic distances is displayed in Figure 2. Family Total A C D Total A C D As with the TRFLP fingerprint data, the 97% similarity phylogenetic distances were significantly correlated with Micromonospora 42 20 6 16 5 4 2 3 distance–time(Spearman=0.24,P =0.064),butnotwith Actinospicaceae 8 5 1 2 4 3 1 0 biogeochemical(Spearman=0.17,P =0.223),plantcom- Catenulisporaceae 5 0 0 5 1 0 0 1 munity(Spearman=0.15,P=0.293),orclimatic(Spearman Pseudonocardiaceae 56 26 16 14 4 4 3 3 Corynibacterineae* 87 29 27 31 4 2 2 4 =0.17,P=0.159)variables.Fittingofallenvironmentalvari- Thermomonosporaceae 334 109 119 106 6 4 4 5 ablestothenMDSdemonstratedleaflitterC:N(P=0.028), Streptosprangeaceae 1 0 0 1 1 0 0 1 temperature(P=0.062),anddistance–time(P=0.081)all Nocardioidaceae 5 1 1 3 3 1 1 3 correlatedwithpatternsofphylogeneticdistancewhencon- Microbacteriaceae 17 8 6 3 3 1 2 3 sideredindependently.Whenvariationduetoenvironmen- Micrococaceae 3 0 0 3 1 0 0 1 talvariableswasheldconstantinthedb-RDA,distance–time Streptomycetaceae 11 4 2 5 3 2 1 3 didnotexplainadditionalvariationinthecommunities(P= Nakamureliaceae 8 0 3 5 1 0 1 1 Frankia1 1 0 0 1 1 0 0 1 0.33).Interestingly,whenvariationduetodistance–timewas Kinosproaceae 1 0 1 0 1 0 1 0 heldconstant,noneoftheenvironmentalvariablescouldac- Geodermaceae 5 1 2 2 2 1 1 1 countforvariationinthecommunitieseither(Pvaluesrange Acidimicrobium2 143 42 59 42 17 9 11 11 0.16–0.25). Becausethereismuchdebateaboutthescaleatwhichto 1Designatesgroupingtosuborder. examinerelationshipsbetweenmicrobialcommunitiesand 2DesignatesorderAcidimicrobiales. environmentalcharacteristics(ChoandTiedje2000;Bissett et al. 2010), we examined the relative abundance of OTUs familiesnotfoundinanyoftheyoungersites.Thenextoldest at 90%, 95%, 97%, and 99% similarity and their relation- site(C)containedoneuniquefamily,whereastheyoungest ship to biogeochemical, plant community, climactic, and site (A) contained no unique families (Table 3). We indi- distance–timedatasets(Table2).Relativeabundanceswere viduallyregressedthemostabundantanddiversegroupsof square root transformed to minimize the impact of abun- Actinobacteria, the Micromonospora, Pseudonocardia, Ther- dantspeciesandallowforhighercontributionofthemore momonopsora,andAcidimicrobiumagainstpH,DOC,SOM rarespecies.Whentheactinobacterialsequenceswereexam- Ncontent,leaflittermass,andC:Nratioandfoundnosig- inedat90%similarity,therewerenosignificantdifferences nificantrelationshipinanycase(datanotshown). intherelativeabundancesofthesephylotypesbetweensites, asdetectedbyANOSIM;however,ateachofthehighersimi- Phylogeneticcommunityanalysis larities,plotsgroupedmorecloselywithinsitesthanbetween The UniFrac metric was used to identify unique phyloge- sites. Furthermore, there were no instances in which bio- neticbranchlengthbelongingtoactinobacterialcommuni- geochemicalorplantcommunitycharacteristicssignificantly ties within each site when compared with each other site, correlatedwithOTUrelativeabundances(P =0.068–0.13; as well as when compared to the entire community. The Table2).Climatecharacteristics,specificallyannualtempera- youngest site (A) and the oldest site (D) each had signif- ture,werecorrelatedwithactinobacterialrelativeabundance icantly unique lineages when compared against the entire at 97% and 99% similarity and distance–time significantly phylogenetictree(P=0.03,P=0.02,respectively);however, correlatedwithrelativeabundancesofActinobacteriaat95%, thesiteofintermediateage(C)didnot(P=0.42).UniFrac 97%,and99%similarity(Table2). also revealed that the oldest site (D) had unique lineages whencomparedwiththetwoyoungersites(D–CP =0.06; Discussion D–AP=0.03).ThePtestfurtherrevealedthatphylogenetic clusteringofsiteswithinthephylogenetictreedidnotoccur Microorganisms are believed to be globally distributed by (P=0.15),anduponvisualinspectionofourtree,therewas prevailing winds (Griffin et al. 2002) and community pat- noevidencethatactinobacterialcommunitiesintheyounger ternsinspaceandtimearethoughttoresultfrombarriers siteswereasubsetofthoseintheoldestsite. todispersal,physiologicalrequirements,resourceavailability, (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. 545 ActinobacterialPhylogeography S.D.Eisenlordetal. competition,orsomecombinationthereof(Whitakeretal. sideredtogetherorindependently,despitethefactthatthese 2003;PapkeandWard2004).Severalfactorsleadustorea- edaphiccharacteristicscanshapesoilmicrobialcommunities sonthattheregionalspeciespoolofActinobacterialiestothe (Ba˚a˚thandAnderson2003;VanderGuchetal.2007;Lauber westofourstudysitesandprovidedpropagulesinaconsis- et al. 2008). When variation related to these variables was tentmanneraseachsitewasfreedfromglacialiceoverthe heldconstant,distance–timestillaccountedforcloseto20% pastca.14,000years.First,theprevailingwindsateachstudy oftotalvariationinourcommunities. sitecomefromthewest,acrosslargebodiesofwater(i.e.,Lake Wealsocandispelthenotionthatsubtlevariationinplant MichiganandLakeSuperior).Windcanbeanagentoflong- communitycompositioninfluencessoilactinobacterialcom- distancedispersalforActinobacteria,aswellasotherbacteria munities,becausewefoundnorelationshipbetweentheplant (Pearceetal.2009),andeachstudysiteshouldhavereceived communityandactinobacterialcommunitiesateverylevelof wind-blownpropagulesfromthesameregionalspeciespool investigation.Whenweexaminedtherelationofactinobac- duetotheirperpendicularorientationtoprevailingwinds.If terialcommunitiesat90%,93%,95%,and99%DNAsimi- indeed“everythingiseverywhere”andtherearenodisper- larity,therewerenodetectabledifferencesbetweenthesitesat sallimitationswithintheActinobacteria,theoryfollowsthat thecoarsestlevel(90%)ofsimilarity.Patternsemergedonly eachecologicallyequivalentstudysitewillhavesimilaracti- whenthecommunitieswereconsideredatfinerphylogenetic nobacterialcommunitiesduetonearidenticalenvironmental resolutions.Thisimpliesallofourstandshavecommunity variables,whicheliminateenvironmentalfilteringaswellas members from the same pool of actinobacterial suborders, constantadditionsbytheregionalspeciespool.Conversely, andthedifferencesinthecommunitiesoccuratthefamily Bissettetal.(2010)describedahypothesis“whereveryougo, andgenuslevels,representedbyouranalysisofhigherDNA that’swhereyouare”implyingthatbeyondstrongenviron- similaritypercentages.Thevariationincommunitiesatthese mentalselection,otherfactors(i.e.,dispersalorcolonization finer levels of genetic resolution was consistently related to limitationandevolutionaryevents)playasignificantrolein distance–time,litterC:N,andtemperature.Despiteourbest shaping microbial communities. If this is true, and not all effortstoholdedaphicpropertiesconstanttominimizethe sitesreceivedconstantadditionsofActinobacteriaasglaciers effectofenvironmentalfilteringandallowforthedetection receded from the region due to dispersal limitation, then ofpossibledispersallimitation,changesinthecommunities distance–time would be detectable as a significant force in over the growing season lead to correlations with the mi- structuring the assembly of these communities. Consistent norchangesleaflitterC:NratioandtemperatureinourMay withthisexpectation,ouranalysesrevealedthatdistance,a communities,andlitterC:NinOctoberbiologicaldataset.In surrogatefortime,wasasignificantfactorshapingactinobac- bothcases,whenvariationduetodistance–time(17%–18%) terial communities in soil, thereby providing evidence that washeldconstant,litterC:Nandtemperaturenolongerex- dispersallimitationwasanecologicalforcestructuringthese plainedasignificantproportionofthevariation.Regardless, communities. by examining these communities at many levels of resolu- Tobetterunderstandtheimportanceofdispersallimita- tion,wehaverevealeddistance(i.e.,time)wasconsistently tionasanecologicalforce,wesoughttoidentifythedegreeto correlatedwithvariationinactinobacterialcommunitycom- whichenvironmentalheterogeneity,climaticvariation,and position, indicating both environmental heterogeneity and distanceinfluencedactinobacterialcommunitiesinsoil.We historicalcontingenciesplayaroleinshapingthesemicrobial purposely held ecological and edaphic factors as constant communities. aspossibleacrossourstudysitestominimizedifferencesin AlthoughtheActinobacteriacommunitiesintheyounger habitat characteristics. Distance was used as a proxy of the sites did not phylogenetically cluster as a subset within the time since glacial retreat exposed new landscapes for colo- oldersites,theoldestsiteDhadthehighestspeciesrichness nization.Asdistanceincreased,thecommunitysimilarityof estimatesandrarefactioncurvesbasedonTRFLPandtaxo- Actinobacteriasignificantlydecreasedwithaz-scoresimilar nomicdatasets.Furthermore,phylogeneticanalysisrevealed tothosefoundinastudybyMartinyetal.(2011)ofsaltmarsh thisoldestsitecontainedmembersoffourfamiliesandone microbialcommunities.Ifenvironmentalconditionsbecame suborder,whichdidnotoccurintheothersites.Ouroldest increasinglydifferentoverdistanceaswell,themostlogical site also has the highest proportion of unique community explanation for this distance–decay relationship would be members,andthistrendwasfurthersupportedbyasignifi- that species are adapted to, and structured by, their niche cantamountofuniquephylogeneticlineagewhencompared requirements.However,ourforestsiteswerechosentocon- to the younger sites. It is plausible that the higher diver- strain differences in edaphic and ecological characteristics, sityinouroldestsitecouldresultfromlongertimeelapsing andasdistanceincreasedbetweensites,thesepropertiesdid since deglaciation, allowing more time to accumulate ad- not become increasingly different. Furthermore, July acti- ditional species from the regional species pool, as well as nobacterialcommunitycompositionwasnotcorrelatedwith moretimeforlocaladaptationordrifttooccur.Althoughwe anyofourmeasuredenvironmentalcharacteristicswhencon- concedeamorein-depthandthoroughevaluationofthese 546 (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. S.D.Eisenlordetal. ActinobacterialPhylogeography communitiesisneededbeforewecandrawfirmconclusions bacterialcommunitiesovermultiplespatialscales.Mol.Ecol. fromthesetaxonomicandphylogeneticcommunitypatterns, 69:134–157. theconsistentnatureofourresultsindicatehistoricalcontin- Blackwood,C.B.,A.Oaks,andJ.S.Buyer.2005.Phylum-and genciesdoinfluenceActinobacteriacommunitycomposition class-specificPCRprimersforgeneralmicrobialcommunity overlongperiodsoftimeregardlessofthehighamountof analysis.Appl.Environ.Microbiol.71:6193–6198. unexplainedvariation. Bray,J.R.,andJ.T.Curtis.1957.Anordinationoftheupland This study highlights the importance of examining the forestcommunitiesofsouthernWisconsin.Ecol.Monogr. identity of organisms as well as how related they are to 27:325–349. one another when studying microbial biogeography. Based Burton,A.J.,C.W.Ramm,K.S.Pregitzer,andD.D.Reed.1991. on presence–absence and relative abundance of 16S rRNA Useofmultivariatemethodsinforestresearchsiteselection. actinobacterialgenes,multivariatestatisticsindicatetheob- Can.J.ForestRes.21:1573–1580. served distance–decay relationship was best explained by Burton,A.J.,K.S.Pregitzer,andN.W.MacDonald.1993.Foliar distance–time, providing evidence that dispersal limita- nutrientsinsugarmapleforestsalongaregionalpollution- tionstructuresactinobacterialcommunities(Whitakeretal. climategradient.SoilSci.Soc.Am.57:1619–1628. Burton,A.J.,K.S.Pregitzer,J.N.Crawford,G.P.Zogg,andD.R. 2003).Furthermore,aftervariationduetodistance–timewas Zak.2004.SimulatedchronicNO −additionreducessoil heldconstant,biogeochemicalandclimaticvariationcould 3 respirationinnorthernhardwoodforests.GlobalChangeBiol. notaccountforfurthervariationinthesecommunities.How- 10:1080–1091. ever,furthermultivariateandphylogeneticanalysesrevealed Ba˚a˚th,E.,andT.H.Anderson.2003.Comparisonofsoil asignificantamountofuniquelineageattheyoungestsite, fungal/bacterialratiosinapHgradientusingphysiologicaland lackofclusteringalongthephylogenetictree,andthecorre- PLFA-basedtechniques.SoilBiol.Biochem.35:955– lationofgeneticdistancetoleaflitterC:Nandtemperature 963. as well as distance–time, all indicate that a simple mecha- Cho,J.C.,andJ.M.Tiedje.2000.Biogeographyanddegreeof nism of time and dispersal limitation may not be the only endemicityoffluorescentPseudomonasstrainsinsoil.Appl. ecologicalfactorshapingthesecommunities.Therefore,we Environ.Microbiol.66:5448–56. suspectothermechanismscontributetothespatialpatterns Clark,K.R.,andR.N.Gorley.2006.PRIMERv6:user of soil Actinobacteria in our study: such as the lasting im- manual/tutorial.PRIMER-ELtd.,Plymouth,U.K. printof“priorityeffects”onmicrobialcommunityassembly Cole,J.R.,Q.Wang,E.Cardenas,J.Fish,B.Chai,R.J.Farris,A. (Fukamietal.2010),thepossibilitythatsubtledifferencein S.Kulam-Syed-Hohideen,D.M.McGarrell,T.Marsh,andG. leaflitterbiochemistrycouldaltercommunitycomposition, M.Garrity.2009.Theribosomaldatabaseproject:improved or changes in unmeasured variables such as the commu- alignmentsandnewtoolsforrRNAanalysis.NucleicAcids nity composition of other bacteria and fungi which share Res.37(Databaseissue):D141–D145;doi:10.1093/nar/gkn879. asimilarniche,allcouldimpactactinobacterialcommuni- Colwell,R.K.2009.EstimateS:statisticalestimationofspecies ties.Regardless,wehavestrongevidenceonmanylevelsof richnessandsharedspeciesfromsamples.Version8.2.User’s resolution establishing that time since glacial retreat leads Guideandapplication.Availableathttp://purl.oclc.org/ todecreasedcommunitysimilaritywithoutdecreasingenvi- estimate. ronmentalhomogeneityacrossthischronosequenceofsugar Davis,M.B.1983.Quaternaryhistoryofdeciduousforestsof maple forest ecosystems, and that distance, a surrogate for easternNorthAmericaandEurope.GardenJ.70:550–563. time, has consistent and significant impacts on these Acti- DeAngelis,K.M.,M.Allgaier,Y.Charvarria,J.L.Fortney,P. nobacteriacommunities. Hugenholtz,B.Simmons,etal.2011.Characterizationof trappedlignin-degradingmicrobesintropicalforestsoil.PLoS One.6(4):e19306,doi:10.1371/journal.pone.0019306. Acknowledgments Drexler,C.W.,W.R.Farrand,andJ.D.Hughes.1983. OurresearchwassupportedbygrantsfromtheNationalSci- CorrelationofglaciallakesintheSuperiorBasinwitheastward enceFoundationandtheU.S.DepartmentofEnergyOffice dischargeeventsfromLakeAgassiz.GeolAssocofCan ofBiologicalandEnvironmentalResearch. 26:309–329. Eisenlord,S.D.,andD.R.Zak.2010.Simulatedatmospheric nitrogendepositionaltersActinobacterialcommunity References compositioninforestsoils.SoilSci.Soc.Am.74:1157–1166. BaasBecking,L.G.M.1934.Geobiologieofinleidingtotde Embley,T.M.,andE.Stackebrandt.1994.Themolecular milieukunde.W.P.VanStockum&Zoon,TheHague,the phylogenyandsystematicoftheactinomycetes.Annu.Rev. Netherlands(inDutch). Microbiol.48:257–289. Bissett,A.,E.Richardson,G.Baker,S.Wakelin,andP.H.Thrall. Evenson,E.,W.Farrand,D.Eschman,D.Mickelson,andL. 2010.Lifehistorydeterminesbiogeographicalpatternsofsoil Maher.1976.Greatlakeansubstage:areplacementforvalderan (cid:2)c 2012TheAuthors.PublishedbyBlackwellPublishingLtd. 547

Description:
Dispersal limitation and the assembly of soil Actinobacteria communities in a long-term chronosequence Sarah D. Eisenlord 1, Donald R. Zak,2 & Rima A. Upchurch
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.