ebook img

Disk-Magnetosphere Interaction and Outflows: Conical Winds and Axial Jets PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Disk-Magnetosphere Interaction and Outflows: Conical Winds and Axial Jets

Disk-Magnetosphere Interaction and Outflows: Conical Winds and Axial Jets M.M.Romanova,G.V.Ustyugova,A.V.Koldoba,&R.V.E.Lovelace 9 0 0 2 n a J 4 2 AbstractWeinvestigateoutflowsfromthedisk-magnetosphereboundaryofrotat- ingmagnetizedstarsincaseswherethemagneticfieldofastarisbunchedintoan ] R X-typeconfigurationusingaxisymmetricandfull3DMHDsimulations.Suchcon- S figurationappearsifviscosityinthediskislargerthandiffusivity,oriftheaccretion . rateinthediskisenhanced.Conicaloutflowsflowfromtheinneredgeofthedisk h to a narrow shell with an opening angle 30-45 degrees. Outflows carry 0.1-0.3 of p - thediskmassandpartofthedisk’sangularmomentumoutward.Conicaloutflows o appeararoundstarsofdifferentperiods,howeverincaseofstarsinthe“propeller” r t regime,anadditional-muchfastercomponentappears:anaxialjet,wherematteris s accelerateduptoveryhighvelocitiesatsmalldistancesfromthestarbymagnetic a [ pressureforceabovethesurfaceofthestar. Exploratory3Dsimulationsshowthat conical outflows are symmetric about rotational axis of the disk even if magnetic 1 v dipole is significantly misaligned. Conical outflows and axial jets may appear in 8 differenttypesofyoungstarsincludingClassIyoungstars,classicalTTauristars, 5 andEXors. 8 3 . 1 0 9 0 : M.M.Romanova v Dept. of Astronomy, Cornell University, Ithaca, NY 14853 e-mail: i X [email protected] r G.V.Ustyugova a Keldysh Inst. of the Applied Math. RAS, Moscow, 125047, Russia e-mail: [email protected] A.V.Koldoba Institute for Mathematical Modeling RAS, Moscow, 125047, Russia e-mail: [email protected] R.V.E.Lovelace Dept.ofAstronomy,CornellUniversity,Ithaca,NY14853e-mail:[email protected] 1 2 M.M.Romanova,G.V.Ustyugova,A.V.Koldoba,&R.V.E.Lovelace 1 Introduction Jets and winds are observed in young stars at different stages of their evolution from very young stars up to classical T Tauri stars (CTTSs) where smaller-scale jetsandwindsareobserved(seereviewbyRayetal.2007).A significantnumber ofCTTSshowsignsofoutflowsinspectrallines,inparticularinHeI(Edwardset al.2006;Kwan,Edwards,&Fischer2007).High-resolutionobservationsshowthat outflows often have an “onion-skin” structure, with high-velocity outflows in the axialregion,andlower-velocityoutflowatlargerdistancefromtheaxis(Bacciotti etal.2000).Highangularresolutionspectraof[FeII]l 1.644m memissionlinetaken alongthe jets fromDG Tau, HL Tau and RW Aurigarevealedtwo components:a high-velocitywell-collimatedextendedcomponentwithv∼200−400km/sanda low-velocity∼100km/suncollimatedcomponentwhichisclosetoastar(Pyoetal. 2003,2006).High-resolutionobservationsofmolecularhydrogenin HL Tau have shownthatatsmalldistancesfromthestartheflowshowsaconicalstructurewith outflowvelocity50−80km/s(Takamietal.2007). Differentmodels have been proposedto explain outflowsfrom CTTSs (see re- view by Ferreira, Dougados,& Cabrit2006),includingmodelswhere the outflow originatesfromtheinnerregionsoftheaccretiondisk(e.g.,Lovelace,Berk&Con- topoulos1991;Ko¨nigl& Pudritz2000;Ferreiraetal. 2006),andthe X-windtype models(Shuetal.1994;2007;Najita&Shu1994;Caietal.2008)wheremostof thematterflowsfromthedisk-magnetosphereboundary.Inthisworkwe consider onlythesecondtypeofmodels.WedevelopedconditionsfavorableforX-typeout- flowsandperformedaxisymmetricandexploratory3DMHD simulationsforboth slowlyandrapidlyrotatingstarsincludingstarsinthepropellerregime. Fig. 1 Snapshots from axisymmetric simulations of conical winds. The background shows the matterfluxwithlightcolorcorrespondingtohigherflux.Thelinesaremagneticfieldlines. Disk-MagnetosphereInteractionandOutflows 3 Fig.2 Typicalflowinconicalwinds(att=380days).Thebackgroundshowsmatterflux,lines areselectedfieldlines,arrowsareproportionaltovelocity.Thenumbersshowpoloidalv andtotal p v velocitiesandnumberdensityatsampleplacesofthesimulationregion. tot Fig.3 Twocomponentsofwindsfromslowlyrotatingstararelabeled. Fig.4 Leftpanel:matterfluxtothestarM˙ andtoconicalwindM˙ (calculatedattheradius star wind R=0.1AU)asfunctionoftime.Rightpanel:samebutforashortertime-interval. 4 M.M.Romanova,G.V.Ustyugova,A.V.Koldoba,&R.V.E.Lovelace Fig.5 Conicalwindsobtainedin3DMHDsimulationsforQ =30◦.Leftpanel:densitydistribu- tionandsamplefieldlinesinthemW -plane.Rightpanel:samebutintheperpendicularplane. 2 Conical Winds Axisymmetric(2.5D)simulations.Toinvestigateoutflowsfromthedisk-magnetosphere boundaryitwasimportantthatthe magneticfieldlinesbebunchedintoanX-type configuration.Such bunching will occur if magnetic field lines threading the disk moveinwardtothestarfasterthantheydiffuseoutward.Thishappensforexample whentheviscosityin thediskis largerthanthe diffusivity.Inaxisymmetricsimu- lationswehavebothviscosityanddiffusivityincorporatedinthecode,bothina - prescription (Shakura& Sunyaev1973). The coefficientsa and a controlthese v d processes (Romanova, et al. 2005; Ustyugova et al. 2006). We investigate a wide rangeofparameters:0.01<a <1and0.01<a <1andchoosea =0.03and v d v a =0.1asamaincase.Weassumethatafterperiodoflowaccretionratethedisk d mattercomestotheregionfromtheboundary.Matterefficientlybunchesfieldlines and in ourcase a >a this configurationexists for a long time. The disk matter v d comesclosetothestar,isstoppedbythemagnetosphere,andpartofitmovesinto persistentconicaloutflows(seeFig.1). Our simulationsare dimensionless.As an examplewe chose parametersof the typicalCTTSwithmassM∗=0.8M⊙,R∗=2R⊙,magneticfieldB∗=1kG,period P∗=5.4days.IntheFigs.1-3theinnerboundarycorrespondstotworadiiofthestar. Weacceptedthischoiceofunitssoastocompareresultswiththepropellercase(see §4)wheretheinnerboundaryisafactoroftwosmaller.Analysisofconicalwinds done by Romanova et al. (2009) have shown that they are driven mainly by the magneticpressureforce(e.g.,Lovelaceetal.1991)whichislargestrightabovethe diskandactsuptodistancesofabout12stellarradii.Fig.2showstypicalparameters inaconicalwind.Fig.2showsthatmatterstarttoflowtoaconicalwindwithvery highazimuthalvelocity,equaltoKeplerianvelocityatthebaseoftheoutflow(vf ≈ 130km/sinourmaincase).Thepoloidalvelocityincreasesalongtheflowfromfew km/s right above the disk up to v =40−60 km/s at larger distances. Azimuthal p velocity remains larger than poloidal velocity inside the simulation region. In the conicalwindmatterflowsintoarelativelynarrowshellandtheconehasanopening angle,q =30◦−40◦.Thismaybeexplainedbythefactthatthemagneticpressure forceactsalmostvertically.Thismayalsoexplainfrequenteventsofreconnection of the inflating magneticfield lines in the outflow. We note that in additionto the mainconicalwindthereis matteraccelerationalongmagneticfield linescloserto Disk-MagnetosphereInteractionandOutflows 5 theaxis.Thelow-densitymatterisaccelerateduptohundredsofkm/srightnearthe starandmaybeimportantinexplanationofsomehighlyblue-shiftedspectrallines whichformnearCTTSs.Matterwhichisacceleratedinthisregionmaycomefrom thestar,ormaybepartiallycapturedfromthemainaccretionflow.Fig.3showstwo componentsoftheflowaroundaslowlyrotatingstar. Thefluxesofmatterandangularmomentumflowingtooroutfromthestarand fluxesflowingwithconicalwindsthroughthesurfacewithradiusR=0.1AUwere calculated. Fig. 4 shows that matter flux to the wind is only severaltimes smaller thanthattothestar,M˙ ≈0.2−0.3M˙ .Thematterfluxgoingtothewindvaries, wind star whichisconnectedwithfrequenteventsofreconnectionofthemagneticflux.Itis oftenthecasethatmatterisoutburstedtotheconicalwindsinanoscillatoryregime, in particular if a and a are not very small, a ∼0.1−0.3. If the diffusivity v d v,d is small, a =0.01−0.03,then outburststo winds are sporadic and occur with a d longer time-scale. Analysis of the angular momentumshows that in the case of a slowlyrotatingstarthestarspins-upbyaccretingmatter(throughmagnetictorque atthesurfaceofthestar,e.g.Romanovaetal.2002).Conicalwindscarryawaypart oftheangularmomentumofthedisk(0.5inthisexample),howeverastarmayspin- up or spin-downdependingon P∗. It spins-upin our exampleof a slowly rotating star. We also checked the case of very slow rotation, P∗ =11 days, and observed thatpersistentconicalwindsforminthiscaseaswell. 3Dsimulations.Weperformedexploratory3DMHDsimulationsofconicalwinds inthecasewherethedipolemagneticfieldismisalignedrelativetorotationalaxis byan angleQ =30◦. Comparedwith the axisymmetricsimulations,the accretion disk is situated at r>10R∗ and the simulation regionis much larger. Viscosity is incorporated in the code and we chose a =0.3 while the diffusivity is not in- vis corporatedandis onlynumerical(small,atthe levela =0.01−0.02atthedisk- d magnetosphereboundary).Weobservedthatthediskmovedinward,bunchedfield linesandformedconicalwinds.Fig.5showsthatconicalwindsareapproximately symmetric about rotation axis. There is however enhancement in the density dis- tributioninsideconicalwindswhichisassociatedwitha spiralwavegeneratedby themisaligneddipole.Recent3Dmodelinghaveshownthatatawiderangeofpa- rametersmatterpenetratesthroughthemagnetosphereduetointerchangeinstability (Romanova,Kulkarni&Lovelace2008;Kulkarni&Romanova2008).3Dsimula- tionsofconicalwindshowthatformationofconicalwindsoccursatlargerdistances fromthestarandarenotinfluencedbyinstabilities. 3 Enhanced Accretion andOutflows CTTSs are strongly variable on different time-scales including a multi-year scale (Herbstetal.2004;Grankinetal.2007).Thisisconnectedwithvariationoftheac- cretionratethroughthediskwhichmayleadtotheenhancementofoutflows(e.g., Cabritetal.1990).Simulationshaveshownthatthebunchingoffieldlinesbythe newmatterafterperiodofthelow-densityaccretionmayleadtoquitelongoutburst 6 M.M.Romanova,G.V.Ustyugova,A.V.Koldoba,&R.V.E.Lovelace Fig.6 SchematicmodelofanExorV1647Ori.Duringtheoutbursttheaccretionrateisenhanced sothatthemagnetospheric radius R decreases andthemagneticfieldlineswerebunched (A). m Thisresults inafast, hot outflow. As theaccretion rate decreases, thedisk moves outward and thisresultsinaslower, coolerCOoutflow(B). Furtherdecrease intheaccretion rateleadstoa quiescencestatewheretheproductionofwarmoutflowsstops(C).FromBrittainetal.(2007). Fig.7 Outflowsinthepropellerregime.Thebackgroundshowsmatterflux,linesareselectedfield lines,arrowsareproportionaltovelocity.Labelsshowtotalvelocityanddensityatsamplepoints. ofmattertotheconicalwindsandmaybethereasonforformationofmicro-jetsin theCTTSs.IfCTTSisinabinarysystem,thenanaccretionratemaybeepisodically enhancedduetointeractionwiththesecondarystar.Eventsoffast,implosiveaccre- tionarepossibleduetothermalinstabilityorglobalmagneticinstability,wherethe accretionrateisenhancedduetotheformationofdiskwinds(Lovelace,Romanova, & Newman1994).Enhancedaccretionmay lead to outburstsin EXors,wherethe accretionrateincreasesupto10−5M⊙/yrandstrongoutflowsareobserved.Brittain etal.(2007)reportedontheoutflowofwarmgasfromtheinnerdiskaroundEXor V1647observedintheblueabsorptionoftheCOlineduringthedeclineoftheEXor activity.Heconcludedthatthisoutflowisacontinuationofactivityassociatedwith early enhancedaccretion and bunching of the field lines (see Fig. 6). In our main exampleofaCTTSthediskstopsatRm=2.4R∗.InEXors,wetaketheradiusofa starattheFigs.1-3equaltotheinnerboundary,sothatthediskstopsmuchcloser Disk-MagnetosphereInteractionandOutflows 7 to the star, Rm =1.2R∗. Then all velocities are a factor 1.4 higher and densities a factorof32higher(comparedtoFigs.2,7),andmatterfluxesinFigs.4and9area factorof11higherthaninthemainexamplerelevanttoCTTSs. 4 Outflows inthe “Propeller” Regime In the propeller regime the magnetosphere rotates faster than inner region of the disk.Thisoccursiftheco-rotationradiusR =(GM/W 2)1/3 issmallerthanmag- cr ∗ netosphericradiusR (e.g.,Lovelaceetal.1999).Youngstarsareexpectedtobein m the propellerregimein two situations:(1)At the early stages of evolution(say, at T <106years),whenthestarformedbutdidnothavetimetospin-down,and(2)at laterstagesofevolution,suchasatCTTSstage,whenthestarisexpectedtobeon averageintherotationalequilibriumstate(e.g.,Longetal.2005)butvariationofthe accretionrateleadstovariationofR aroundR ,whereR <R ispossible.We m cr cr m performedaxisymmetricsimulationsofaccretiontoa star inthepropellerregime, takingastarwiththesameparametersasincaseofconicalwinds,butwithperiod P∗=1day(Romanovaetal.2005;Ustyugovaetal.2006).Wechosea v=0.3and a =0.1andthusbunchedthefieldlinestotheX-typeconfigurationWeobserved d thatinadditiontoconicalwindthereisafastaxialjet(seeFig.7)sothattheoutflow Fig.8 Twocomponentsofoutflowsinthepropellerregime. Fig. 9 Left panel: matter fluxes to the star M˙ and to the conical wind M˙ (calculated at star wind R=0.1AU)asfunctionoftime.Rightpanel:samebutforashortertime-interval. 8 M.M.Romanova,G.V.Ustyugova,A.V.Koldoba,&R.V.E.Lovelace hastwocomponents(Fig.8).Theconicalwindinthiscaseismuchmorepowerful - it carries most of the disk matter away. The axial jet carries less mass, but it is acceleratedtohighvelocities.Accelerationoccursduetothemagneticpressureof the“magnetictower”whichformsabovethestarasaresultofwindingofmagnetic field lines of the star. Outbursts to conical winds occur sporadically with a long time-scaleinterval(seeFig.9)whichisconnectedwiththelongtime-scaleinterval ofaccumulationanddiffusionofthediskmatterthroughthemagnetosphereofthe star(seealsoGoodsonetal.1997;Fendt2008).Thesepropelleroutflowswereob- tainedinconditionsfavorableforsuchaprocess:whenthestarrotatedfastandan X-typeconfigurationdeveloped.Futuresimulationsshouldbedoneforthecaseof propeller-drivenoutflowsfromslowerrotatingCTTS.Collimationofconicalwinds mayoccuratlargerdistancesfromthestarforexample,bydiskwinds(e.g.,Ko¨nigl &Pudritz2000;Ferreiraetal.2006;Matsakosetal.2008). 5 Conclusions We discovered a new type of outflows - conical winds - in numericalsimulations where magnetic field lines are bunched into an X-type configuration.In many re- spectsthesewindsaresimilartoX-windsproposedbyShuandcollaborators(e.g., Shu et al. 1994):(1) They both require bunchingof the field lines; (2) They both have high rotation of the order of Keplerian rotation at the base of outflow, and gradual poloidal acceleration; (3) They both are driven by magnetic force. How- ever,thereareanumberofimportantdifferences:(1)Conicalwindsflowinathin shell, while X-winds flow at different angles below the “dead zone”; (2) Conical windsformaroundstarsofanyrotationrateincludingslowrotation,anddonotre- quirethefinetuningofangularvelocityoftheinnerdisktothatofmagnetosphere; (3)Conicalwindsarenon-stationary:themagneticfieldconstantlyinflatesandre- connects;(4)Conicalwindscarryawaypartoftheangularmomentumoftheinner diskandarenotresponsibleforspinning-downthestar,whileX-windsarepredicted totakeawayangularmomentumfromthestarandthustosolvetheangularmomen- tumproblem;(5)Inconicalwindsthereisafastcomponentoftheflowalongfield linesthreadingthestar.Someofthesedifferences,suchasnon-stationarityofconi- calwindsisconnectedwithnaturalrestrictionsofthestationarymodelofX-winds. Conicalwinds can explainconicalshape of outflowsnearyoungstars of different type(CTTSs,EXors,TypeIobjects)whichhavebeenrecentlyresolved.Inanother example,Alencaret al. (2005)analyzedblue-shiftedabsorptionof Hb line in RW Aurigae and concluded that conical shape wind with opening angle 30−40◦ and narrowannulusgivesbestmatchtotheobservationsofthisline(seeFig.10). Inthepropellerregimetheflowhastwocomponents:(1)arapidlyrotating,rela- tivelyslow,denseconicalwind,and(2)afast,lowerdensityaxialjetwherematter is accelerated by magnetic pressure up to hundredsof km/s very close to the star. Young stars of classes 0 and I may be in the propeller regime and can lose most of their angular momentum by this mechanism (Romanova et al. 2005). Or any Disk-MagnetosphereInteractionandOutflows 9 Fig.10 ModelingoftheHb lineinRWAurigaeledto theconclusionthataconical shaped windwithopening angle30−40◦ andanarrow annulusgivesthebestmatch totheobservationsofthisline (fromAlencaretal.2005). slowerrotatingmagnetizedstarsmayenterthepropellerregimeiftheaccretionrate becomes sufficiently low and the magnetospheric radius becomes larger than the corotationradius.Thelastpossibilityrequiresadditionalnumericalsimulationsand analysis. Acknowledgements TheauthorsweresupportedinpartbyNASAgrantNNX08AH25Gandby NSF grants AST-0607135 and AST-0807129. MMR thanks NASA for use of the NASA High PerformanceFacilities.AVKandGVUweresupportedinpartbygrantRFBR06-02016608,Pro- gram4ofRAS.MMRandRVELthanktheorganizersforaveryinterestingmeetingandMMRis gratefultotheorganizersforthegeneroussupport. References 1. Alencar,S.H.P.,Basri,G.,Hartmann,L.,Calvet,N.2005A&A,440,595 2. Bacciotti,F.,Mundt,R.,Ray,T.P.,Eislffel,J.,Solf,J.,Camezind,M,ApJ,537,L49 3. Brittain, S., Simon, T., Rettig, T.W.,et al. 2007, Star-Disk Interaction in Young Stars, IAU SymposiumNo.243,ed.J.Bouvier&I.Appenzeller,p.223 4. Cai,M.J.,Shang,H.,Lin,H.-H.,&Shu,F.H.2008,ApJ,672,489 5. Cabrit,S.,Edwards,S.,Strom,S.E.,&Strom,K.M.1990,ApJ,354,687 6. Edwards,S.,Fischer,W.,Hillenbrand,L.,Kwan,J.2006,ApJ,646,319 7. Fendt,C.2008,astro-ph:arXiv:0810.4154v1 8. Ferreira,J.,Dougados,C.,&Cabrit,S.2006,A&A,453,785 9. Goodson,A.P.,Winglee,R.M.,&Bo¨hm,K.-H.1997,ApJ,489,199 10. Grankin,K.N.,Melnikov,S.Yu.,Bouvier,J.,Herbst,W.,Shevchenko,V.S.2007,A&A,461, 183 11. Herbst,W.,Herbst,D.K.,Grossman,E.J.,Weinstein,D.2004,AJ,108,1906 12. Konigl,A.,&Pudritz,R.E.2000,ProtostarsandPlanetsIV,Mannings,V.,Boss,A.P.,Russell, S.S.(eds.),UniversityofArizonaPress,Tucson,p.759 13. Kulkarni,A.,&Romanova,M.M.2008,MNRAS,386,673 14. Kwan,J.,Edwards,S.,&Fischer,W.2007,ApJ,657,897 15. Long,M.,Romanova,M.M.,&Lovelace,R.V.E.2005,ApJ,634,1214 16. Lovelace,R.V.E.,Berk,H.L.,&Contopoulos,J.1991,ApJ,379,696 17. Lovelace,R.V.E.,Romanova,M.M.,&Newman,W.I.1994,ApJ,437,136 18. Lovelace,R.V.E.,Romanova,M.M.,&Bisnovatyi-Kogan,G.S.1999,ApJ,514,368 19. Matsakos, T.,Tsinganos, K., Vlahakis, N., Massaglia, S., Mignone, A., Trussoni, E. 2008, A&A,477,521 20. Najita,J.R.,&Shu,F.H.1994,ApJ,429,808 21. Pyo,T.-S.,Hayashi,M.,Kobayashi,N.etal.2003,ApJ,649,836 22. Pyo,T.-S.,Kobayashi,N.,Hayashi,M.,etal.2003,ApJ,590,340 10 M.M.Romanova,G.V.Ustyugova,A.V.Koldoba,&R.V.E.Lovelace 23. Ray, T., Dougados, C.,Bacciotti, F., Eislffel, J., & Chrysostomou, A. 2007, Protostars and PlanetsV,B.Reipurth,D.Jewitt,andK.Keil(eds.),UniversityofArizonaPress,Tucson,p.231 24. Romanova,M.M.,Kulkarni,A.K.,&Lovelace,R.V.E.2008,ApJ,673,L171 25. Romanova,M.M.,Ustyugova,G.V.,Koldoba,A.V.,&Lovelace,R.V.E.2002,ApJ,578,420 26. Romanova,M.M.,Ustyugova,G.V.,Koldoba,A.V.,&Lovelace,R.V.E.2005,ApJ,635,165L 27. Romanova,M.M.,Ustyugova,G.V.,Koldoba,A.V.,&Lovelace,R.V.E.2009,MNRAS,sub- mitted 28. Shu,F.,Najita,J.,Ostriker,E.,Wilkin,F.,Ruden,S.,Lizano,S.1994,ApJ,429,781 29. Shu,F.H,Galli,D.,Lizano,S.,Glassgold,A.E.,&Diamond,P.H.2007,ApJ,665,535 30. Shakura,N.I.,&Sunyaev,R.A.1973,A&A,24,337 31. Takami,M.,Beck,T.L.,Pyo,T.-S.,McGregor,P.,Davis,C.2007,ApJ,670,L33 32. Ustyugova,G.V.,Koldoba,A.V.,Romanova,M.M.,&Lovelace,R.V.E.2006,ApJ,646,304

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.