Mon.Not.R.Astron.Soc.000,000–000(0000) Printed30January2013 (MNLATEXstylefilev2.2) Disentangling satellite galaxy populations using orbit tracking in simulations Kyle A. Oman1,⋆, Michael J. Hudson1,2, Peter S. Behroozi3 3 1 1DepartmentofPhysicsandAstronomy,UniversityofWaterloo,Waterloo,Ontario,N2L3G1,Canada 0 2PerimeterInstituteforTheoreticalPhysics,Waterloo,Ontario,N2L2Y5,Canada 2 3KavliInstituteforParticleAstrophysicsandCosmology;PhysicsDepartment,StanfordUniversity;DepartmentofParticlePhysicsand Astrophysics,SLACNationalAcceleratorLaboratory,Stanford,CA94305 n a J 8 30January2013 2 ] O ABSTRACT C Physicalprocessesregulatingstarformationinsatellitegalaxiesrepresentanareaofongoing research,buttheprojectednatureofobservedcoordinatesmakesseparatingdifferentpopula- . h tionsofsatellites(withdifferentprocessesatwork)difficult.Theorbitalhistoryofasatellite p galaxyleadstoitspresent-dayphasespacecoordinates;wecanalsoworkbackwardsanduse - these coordinates to statistically infer information about the orbital history. We use merger o r trees from the MultiDark Run 1 N-body simulation to compile a catalogue of the orbits of t satellitehaloesinclusterenvironments.We parametrizetheorbitalhistorybythetimesince s a crossingwithin2.5rvir oftheclustercentreanduseourcataloguetoestimatetheprobability [ density overa range of this parametergivena set of present-dayprojected(i.e. observable) phasespacecoordinates.Weshowthatdifferentpopulationsofsatellitehaloes,e.g.infalling, 1 backsplashandvirialized,occupydistinctregionsofphasespace,andsemi-distinctregionsof v 7 projectedphasespace.Thiswillallowustoprobabilisticallydeterminethetimesinceinfallof 5 alargesampleofobservedsatellitegalaxies,andultimatelytostudytheeffectoforbitalhis- 7 toryonstarformationhistory(thetopicofafuturepaper).Wetesttheaccuracyofourmethod 6 andfind thatwe can reliablyrecoverthis time within ±2.58Gyrin 68 percentofcases by . using all available phase space coordinate information,compared to ±2.64 Gyr using only 1 0 positioncoordinatesand±3.10Gyrguessing‘blindly’,i.e.usingnocoordinateinformation, 3 butwithknowledgeoftheoveralldistributionofinfalltimes.Insomeregionsofphasespace, 1 theaccuracyoftheinfalltimeestimate improvesto ±1.85Gyr.Althoughwe focusontime : since infall, our method is easily generalizable to other orbital parameters (e.g. pericentric v distanceandtime). i X Keywords: galaxies:kinematicsanddynamics,galaxies:clusters:general,galaxies:haloes r a 1 INTRODUCTION Smithetal.2010a),strangulation(Larsonetal.1980;Baloghetal. 2000) and mergers (Toomre&Toomre 1972; Coxetal. 2006). Weknowthatgalaxiesinclustersaretypicallymore‘redanddead’ Internal quenching mechanisms have also been proposed – e.g. thantheircounterpartsinthefield(Hoggetal.2004;Baloghetal. shockheating(Birnboim&Dekel2003;Dekel&Birnboim2006), 2004), as well as dominantly elliptical (rather than spiral, see AGNheating(Crotonetal.2006;McNamaraetal.2006),seealso Dressler1980).Thisisthoughttobeduetoamechanismorcom- Gaboretal. (2010) – which, while unable to account for the dif- binationofmechanismsthathaltthecollapseofcoldgasintostars ferencebetweenfieldandclustergalaxies,mayeachcontributeto inasatellitegalaxyasitorbitswithinadeeppotentialwell–either increasingtheredfractioninbothenvironments. byheatingorremovingthegasorbypreventingthecoolingofad- It has so far been found difficult to produce a semi-analytic ditional gas and consuming the existing supply. Some renowned modelforquenchingthatbothreproducestheobservedstarforma- mechanisms include ram pressure stripping (e.g. Gunn&Gott tionrate(SFR)distributioninclusters(Wetzeletal.(2012),butsee 1972; Abadietal. 1999; Ja´chymetal. 2007; Smithetal. 2010b), Weinmannetal.(2010)forsomerecentimprovements).However, tidalstripping(Mayeretal.2006),harassment(Mooreetal.1996; alltheenvironmental quenching mechanismslistedabovehaveat leastonecommoncharacteristic:eachissensitivetothepathtaken ⋆ [email protected] throughthecluster.Tidalstrippingisstrongestneartheclustercen- (cid:13)c 0000RAS 2 K. A. Oman,M. J. Hudson&P.S. Behroozi tre.Rampressurestrippingvarieswiththelocaldensityofhotclus- 2 SIMULATIONS tergasandtherelativevelocityofthesatellite,bothofwhichvary To obtain a large sample of satellite orbits, we use the output of radiallyinthecluster.Mergersaremoreprobablyintheoutskirts the MultiDark Run 1 (MDR1) dark matter only simulation with ofclusters.Harassmentismosteffectiveduringhighspeedencoun- 1 Gpch−1 box side length, 20483 particles, current cosmology ters, which occur near the cluster core. Strangulation is triggered bytheremovalofthehalogasofthesatellite,obsensiblyviaone (WMAP5/WMAP7), 8.7 × 109h−1 M⊙ mass resolution and 7 kpcforceresolution.Thesimulationwasrunfrom z = 65tothe of the aforementioned mechanisms. Anenvironmental quenching present; the majority of snapshots are output at even intervals in modelcanthereforereasonablybeexpectedtodependonthepre- scalefactorawithsomeirregularintervalsatsmalla.Theresolu- viouspositionsandvelocities,ormoreconciselytheorbitalhistory, tion inscale factor isof 0.0304 before a ∼ 0.7 (z ∼ 0.43) and ofsatellitegalaxies. doubles to 0.0152 afterwards (corresponding to a timeresolution Theorbitalhistoryofagalaxyisnotdirectlyobservable;ifwe of about 0.210 Gyr at z = 0). This is taken into account in our hopetocompareenvironmentalquenchingmodelstoobservational discussionbelow.Fulldetailsofthesimulationparametersarede- data, we need some way to characterize the orbit of an observed scribedinPradaetal.(2012).Thesimulationsnapshotswerepro- galaxy.Wemightparametrizetheorbitalhistoryofagalaxyinany cessed by the ROCKSTARhalo finder (Behroozietal. 2011a) and ofanumberofways–forinstancebythetimesinceinfallintothe themergertreecodepresentedinBehroozietal.(2011b).To pro- clusterpotential,thedistanceofclosestapproachtotheclustercen- ducethedatausedinthispaper,themergertreecodewasslightly treorthenumberoforbitscompletedsinceinfall–thenattemptto modifiedsothatahalomaycontainsatellitehaloesatdistancesof findcorrelationsbetween theseparametersand observables using upto2.5timesitsvirialradius(rvir = r360b)fromitscentre;the N-bodysimulationdata.Theobservablesweconsideravailableare defaultcodefindssatelliteswithinonly1.0virialradii.Thisallows thedistance between thesatelliteandthe clustercentreprojected ustotracksatellitesout tothelargestapocentric distances which ontotheplaneoftheskyandthecomponentofthevelocityofthe Mamonetal.(2004)(seealsoGilletal.2005;Baloghetal.2000; satelliterelativetotheclustercentrealongthelineofsight(LoS).In Ludlowetal.2009)showtobeabout∼ 2.5r200c(∼ 2.2r360b)by somenearbyclustersitmayalsobepossibletoobtaindistancesto usinghost-satellitelinkingasaproxyforclustermembership. theclustercentreandthesatelliteviadirectdistancemeasurements In the following discussion, we will denote full 6D cluster- (e.g.Tully-Fisherrelation,surfacebrightnessfluctuations,SNIalu- centriccoordinates(r,v).Thepositionandvelocitycentreofahalo minosities,etc.),butingeneralthesewillbemuchlessprecisethan isdeterminedbyaveragingthepositionsandvelocitiesofthesub- theothertwocoordinates–wewillconsiderthisinformationinac- setofhaloparticleswhichminimizestheexpectedPoissonerrorin cessible. thecoordinates,i.e.theparticlesoccupyingtheregionofhighestlo- caldensity(formoredetailonhowthecoordinatesaredetermined Several authors (Gaoetal. 2004; Wangetal. 2011; bythehalofinder,werefertheinterestedreadertoBehroozi etal. DeLuciaetal. 2012; Taranuetal. 2012) have shown that the 2011a,§3.5.1). present radial distance from the cluster centre is negatively Projected coordinates will be denoted (R,V). Projection is correlatedtothetimesinceinfallintotheclusterandotherorbital done along the arbitrarily chosen third (z-)axis of the simulation parameters. Gilletal. (2005) were amongst the first to compare box and includes a correction to the velocities to account for the the velocity distributions of different satellite populations (see Hubble flow. With this correction, the simulated velocity differ- also Wangetal. 2005), and more recently Mahajanetal. (2011) ences can be directly compared to observation data, where ve- presented a method for separating satellite populations based on, locity differences would presumably be measured using a red- amongstotherparameters,theirLoSvelocities. shift difference. The projected distance between two points is This paper presents our method for reconstructing the R12 = p(r2,x−r1,x)2+(r2,y−r1,y)2 and therelative veloc- parametrized orbital history of a satellite galaxy based on its ity of point 2 with respect to point 1 is V12 = |(v2,z −v1,z)+ present-dayobservablephasespacecoordinates;wedeferitsappli- H(r2,z −r1,z)|. Note that V ≥ 0; this encodes our assumption thatthedistancestothetwopointsarenotknownprecisely,soonly cationstofuturepapers.Here,wefocusononeparameter–thetime themagnitudeoftheirrelativevelocitycanbedetermined. sinceinfallontoacluster-sizedhost–butstressthatourmethodis Forease of comparison between satellitesof different hosts, easilyadaptedtootherparameterchoices.Thetimesincethesatel- allspatialcoordinatesarenormalizedtothevirialradiusr ofthe litefirstpassedpericentreonitsorbitintheclusterandthedistance vir hosthalo,whichisdefinedusingtheformulaofBryan&Norman ofclosestapproachtotheclustercentrearetwoexamplesofother (1998): the radius enclosing a region with an overdensity of 360 parameterchoicesthatwillbeofinterestinfutureapplicationsof timesthe background density at z = 0. Forreaders more accus- ourmethod. tomed to normalization by r200c, an approximate conversion at In section 2 we describe the N-body simulation data and its z = 0 is r200c ∼ 1.13. All velocity coordinates are normalized rvir conversionintohalocataloguesandmergertrees.Insection3we tothermsvelocitydispersionσofthehosthalo,measuredin3D. present the method used convert the merger trees into our cata- loguesofsatelliteorbits,andtoaprobabilitydistributionfunction of times since infall given a pair of coordinates in phase space. Insection4wediscusstheimportanceofLoSvelocitydataindis- 3 METHOD criminatingbetweendifferentpopulationsofsatellites.Wesumma- First,theorbitalhistoryofasatelliteanditshostatz = 0arede- rizeinsection5. termined.Thentheinfalltimeofthesatelliteintothathosthalois We assume the same cosmology used in the Bolshoi and definedastheearliesttimeatwhichthesatellite’sprogenitoriden- Multidark Run 1 simulations with Ωm = 0.27, ΩΛ = 0.73, tifiesthez = 0host’sprogenitorasitshost.Ahost-satellitepair Ωb = 0.0469, ns = 0.95, h0 = 0.70, σ8 = 0.82 (Pradaetal. may be identified as soon as the satellite is within 2.5 times the 2012). virial radius of the host; though other criteria must still be met, (cid:13)c 0000RAS,MNRAS000,000–000 Disentanglingsatellitegalaxypopulations 3 106 106 1045 NNNN000N...0257.505N0p−−−−aa0010sl...t.l5702==0505====25941105645699584890086277861615 masp00ale..l25at rsss5-i=0a s-p0.t 07cas..u55s0tt- 0Mp.e2cru5it rvir 1y [Mpc]−110045 all satellites 10 0.75-1.0 t N nsi103 103 ber de102 µ1100=−−221..500−−−311.000−−−211..050−2.5 102 num101 1100−−11..50−−1100−−10..05 0 10−0.5−100.0 10 -2 -1 0 1 10 11 12 13 14 15 10 10 10 10 log10Minfall/M rsat [Mpc] ⊙ Figure1.Thesetwofiguresprovide ameasureoftheimportance ofresolution effects inouranalysis; seesection 3and§4.4fordiscussion. Leftpanel: Themassfunctionofallsatellitehaloesinourinitialsample(dottedblackline)andthemassfunctionofsatellitehaloesthathaveexperiencedatleastone pericentricpassage(solidblackline),whereinbothcasesthemassesaremeasuredatthetimeofinfallontotheirhost.Thecolouredlinesseparatethesatellites thathaveexperiencedapericentricpassageintobinsofpericentricdistance,aslabelled.Thetotalnumberofsatellitescontributingtoeachmassfunctionare labelledN.Weimposeamasscutasindicatedbythethickverticalline(Mcut=1011.9 M⊙),yieldingasamplewhichisascompleteasreasonablypossible aboveMcut.Rightpanel:Numberdensityasafunctionofsatelliteradialpositionforvariousmassratiosµ,wherethemassofthesatelliteismeasuredatthe timeofinfall.Thehosthaloshavemasses≥1014 M⊙.Satelliteswithlowmassratiosareunderabundanttowardthecentreoftheclusterenvironment. asoutlinedinBehroozietal.(2011b),inpracticetheseareusually son for this steeper slope is not precisely known, but the higher metimmediatelywhenthesatellitecrosseswithin2.5r .Onlythe resolutionBolshoi simulationexhibitsthesameslope of−1.9 so vir orbitalhistorywithrespecttothefinal(z = 0)hostisconsidered, wesurmisethatitisnotduetoaresolutioneffect.Thekeyfeature andincaseswhereasatellitehasahierarchyofhosts,intermediate thatwewishtohighlightisthattheslope(andshape)ofthisrela- hostsareignoredandthesatelliteidentifiesthelargestas itshost; tionshipismassratiodependent inourdataset,withsatellitesthat inother words, thepresent work ignores “group pre-processing”. aresmallerrelativetotheirhost beinglessabundant closertothe Hostsareselectedtobe“cluster-sized”,whichwedefineasahalo centre of the host. The underabundances of satellites highlighted mass>1014 M⊙.WiththeMDR1dataset,thisyieldsacatalogue byeachpanelofFig.1areduetothesamepopulationofsatellites; of ∼ 570,000 satellite orbits belonging to ∼ 24,500 different thosewhichhaveorbitedtowithin.0.25r oftheirhostandhave vir hosts. amass. 1013.1 M⊙.See§4.4foradiscussion oftheimpactof To ensure a sample complete in satellite mass, and that we thesemissingsatellitesonourresults. are minimally sensitive to artificial disruption of satellite haloes, Weimposeone finalcut, removing satellitesthat existedfor weimpose a masscut at Mcut = 1011.9 M⊙, where themass is lessthan3simulationsnapshotsbeforefallingintoacluster.This measuredatthetimeofinfall.Usingthestellar-to-halomassratios prevents haloes near the mass resolution limit of the simulation outlinedinBehroozietal.(2012),thiscorrespondstoacutinstel- fromappearingsuddenlyinsideaclusterandbeingassignedmean- larmassat∼1010.3 M⊙.TheleftpanelofFig.1showsthemass inglessinfalltimes.Theremaining242,790satelliteswerebinned functionforallsatellites,andforsatellitesthathaveexperiencedat in100projectedpositionbinsin0.0≤R/r ≤2.5and100pro- vir leastonepericentricpassageinbinsofproximityofpericentricpas- jectedvelocitybinsin0.0 ≤ V/σ ≤ 2.0. Thesetof infalltimes sage.Ourmasscutissafelyabovethemassresolutionlimitofthe in each bin was used to create a probability distribution function simulation.Asinessentiallyallcosmologicalsimulations,MDR1 (PDF)ofinfalltimesforeachbin. halosexperience artificaldisruption inhighdensity environments (Kitzbichler&White2008;Klypinetal.1999).Thisisthereason fortheunderabundance of lowermasssatellitesthat haveexperi- enced a close approach to a cluster centre (blue curve in Fig. 1, leftpanel).Fromthesemassfunctions, weestimatethatlessthan 20%ofhaloswithmassesaboveourmasscutandpericentricdis- 4 RESULTS tancesintherange0.0−0.25r havebeenartificiallydisrupted. vir Most of the artificially disrupted satellites are in the mass range BeforeapplyingourPDFstomodellingenvironmental quenching 1011.9−1013.1 M⊙.Weestimatethatthesemissingsatellitesac- (whichwillbethefocusofafuturepaper),weshouldhaveanun- countforlessthan4%ofthetotalhalopopulationaboveourmass derstandingofafewsystematiceffectsinherentinthemethodpre- cut.TherightpanelofFig.1showsthenumberdensityofsatellite sented in section 3. We will discuss the impact of projecting the halosasafunctionofradialpositionforbinsofsatellitemassrela- datainboththeradialandvelocitycoordinatesin§4.1.In§4.2we tivetothehosthalo.Observationsconstraintheslopeofthispower willpresentthePDFsanddiscusssomeoftheirfeatures.In§4.3we lawrelationtobebetween−1.7and−1.5,regardlessofmassra- discusstheeffectsofbothhostandsatellitemassonthedistribution tio(Tinkeretal. 2012). The slopes shown inFig1 aresomewhat ofsatellitesinphasespace.Finally,in§4.4wediscusstheimpact steeperatabout−1.9formassratioµ = 10−0.5 −100.Therea- ofresolutioneffectsonourresults. (cid:13)c 0000RAS,MNRAS000,000–000 4 K. A. Oman,M. J. Hudson&P.S. Behroozi 4.1 Projectioneffects Thereisaspreadinthetimetakentoreachpericentreandthe radiiofthepericentrescausedbythevarietyofpossibleorbitsand Whileasimulationprovidesaccuratevaluesforallsixphasespace detailsof the host potentials. The firstapocentre afterinfall typi- coordinates of an object, a typical astronomical observation can callyoccursafterabout 6Gyr;thepopulation ofobjectsbetween onlymeasurethree.Therightascension anddeclinationgivetwo firstpericentreandapocentreistermed‘backsplash’.Satelliteswith spatialcoordinates(thedistanceisunknown),whilecomparingthe infalltimesearlierthan∼7Gyrhavelessdistinctfeaturesintheir spectraoftwoobjectscangivethedifferenceinvelocitybetween distributionduetotheincreasingimpactofvariationsinorbitalhis- them,butonlyformotioninadirectionalongtheLoS.Sincewe tory,butthemajorityareconfinedwithin∼1r ;wecallthispop- ultimatelywishtoinfer propertiesof observed objects from their vir ulation‘virialized’.Wenoteanoveralldecreasingnumberofsatel- coordinates, wemust restrict ourknowledge of simulated objects lites with increasing time since infall. Some satellites with early to these same coordinates. Thiscan be achieved by ignoring one infalltimesaredisruptedbytidalinteractionsanddonotappearin ofthespatialcoordinatesofthesimulationbox–inourcase,the ourmergertrees.Inothercasestwoinfallingsatellitesmaymerge third–andconsideringonlythevelocitycoordinatecorresponding andappearinthetreesasasinglesatellite.Finally,somehalosmay totheignoredspatialcoordinate.Additionally,weincludeacorrec- not host a galaxy. These three effects mean that observations of tiontotheprojectedvelocitytoaccountfortheHubbleflow.This satellite galaxies around a cluster do not correlate perfectly with transformationappliedtothespatialcoordinates ofapoint xand thedistributionofdarkmatterhalosaroundthatcluster;thisneeds itsvelocityurelativetoareferencepointyanditsvelocitywcan tobetakenintoaccountwhenapplyingourmethodtoasampleof beexpressed: observedgalaxies,butdoesnotimpactthemethoditself.Thereis r=(x−y)=(x1−y1,x2−y2,x3−y3) oneothercontributiontothedecreaseinnumberofsatelliteswith ⇒R=(x1−y1,x2−y2) increasingtimesinceinfall.Becauseourmasslimitof1011.9 M⊙is relativelylarge,atearlytimeshaloesabovethislimitweresome- v=(u−w)=(u1−w1,u2−w2,u3−w3) whatrarer. ⇒V=(|(u3−w3)+H(x3−y3)|) TherightpanelofFig.2showstheeffectofprojectioninthe radialcoordinatesonthesamedistributionasintheleftpanel.Fea- We predict the effect of projection on the radial coordinate by tures are shifted somewhat to lower radii (consistently with our considering a random uniform distribution of points on a spher- expectation of hRi = π) and broadened by the scatter about ical shell. For this distribution the relationship between the ac- r 4 thismeandeformation.Allthepopulationsandfeaturesdiscussed tual (r) and projected (R) radial coordinates is characterized by abovearestillidentifiable.Onenotableomissionfromthisdiagram hRri = π4 ±q23 − π162 ∼ 0.79±0.22 (1σ scatter).Inoursam- isanyforeground/backgroundobjects,whicharecommoninobser- ple of satellite galaxies, we find that hRi agrees with this pre- vationalsamples,thatcouldbeconfusedwiththesatellitepopula- r diction to within 1%, both in the mean and in the scatter. The tions. projected radial coordinate tracks the 3D radial coordinate more There is one other important effect to consider when inter- closelyandmoreconsistentlyatlargerprojectedradii;atR∼r , preting Fig. 2 (and others involving infall times). As a host halo vir hRi ∼ 0.83±0.17 whileat R ∼ 0.1r , hRi ∼ 0.51±0.31. accretesmass,itsvirialradiusgrows(slowly,exceptinthecaseof r vir r Theobservedvelocitycoordinatedoesnothaveasstraightforward majormergers).Becauseofthis,anorbitingsatellitemayappearto arelationshipwiththeactualquantityofinterest–theradialcom- movefurtherincoordinatesscaledtorvirthanitotherwisewouldas ponentofthevelocitydifferencebetweentwopoints–butthein- thecoordinatesgrowaroundit.Thisdoesnothavealargeimpact formationabouttwocomponentsislostinsteadofone,soweex- onthepositions,butcontributessomeofthescatterintheradialco- pect a much larger typical difference between projected velocity ordinate.Onemightconsiderchoosingsomeradiusthatisconstant andtruevelocity.Wealsolosethesignoftheoneremainingcom- withtimetoscaleeachhalo, but otherchoices, such asthe virial ponentofvelocitysince,withoutknowledgeofthedistancestothe radiusatthelastsnapshot,alsointroducesimilareffects. twopoints,wecannotknowwhetherthedistancebetweenthemis Next,weconsidertheeffectofprojectiononthevelocityco- increasingordecreasing. ordinates.TheupperleftpanelofFig.3showsthedistributionof TheleftpanelofFig.2showsthedistributionofsatelliteinfall satellitehaloesinphasespaceatz =0.Atypicalhalowould,given times1 as a function of radial distance from the host centre mea- enoughtime,progressfromlargeradiiandlowvelocitiesdownto suredatz = 0beforeprojection.Satellitesthathaverecentinfall lowradiiandhighnegativevelocities,thenswitchtohighpositive times (near the top of the diagram) are necessarily concentrated velocityasitpassespericentre.Fromthereitfollowsaseriesofpro- neartheedgeofourdefinitionoftheclusterat2.5 r ;theyhave gressively shrinking concentric semicircles or chevrons, jumping vir not had enough time to move anywhere else. A typical crossing fromnegativetopositivevelocityateachpericentricpassage(for timeforoursampleofclustersisabout6-8Gyr,somostsatellites amoreindepththeoreticalbackground,seeBertschinger1985,es- that fell in3-4 Gyrago arenear thecentre of the host. Notethat peciallyfig.6therein).Thisnormalprogressioniswellrepresented this seemingly long crossing time is due to our definition of the bythedistributionofourhalosample,howevertheindividual or- edgeoftheclusterat2.5r ;thetypicaltimetocrossfromr to bital‘shells’arenotvisiblesincetheyoverlap,andweonlyexpect vir vir pericentreandbacktor isabout2Gyr.Thesatellitealsospendsa 1-2shells given theorbital timescalesand ages of these systems. vir significantamountoftimeoutsidethevirialradiusafterthisinitial Also, close encounters redistributesome haloes off this idealized crossing; it takes afurther ∼1Gyrfor atypical satelliteto reach track. apocentreaftermakingitsfirstoutboundcrossingofr . Based on this expected movement through phase space in vir time,satellitehaloeswithdifferentinfalltimesshouldoccupydif- ferent regions of phase space. Thisisshown inFig.3,where the 1 Theinfalltimesproducedbythemethodofsection3occuratdiscrete phase space distribution of haloes is plotted for a variety of bins times–thoseofthesimulationsnapshots.Forthepurposesofvisualization in infall time. Fig. 4 shows the same binned distributions, but in only,somescatterwasaddedtothetimes. projectedcoordinates, simultaneouslyshowingtheeffectsofboth (cid:13)c 0000RAS,MNRAS000,000–000 Disentanglingsatellitegalaxypopulations 5 0 0 0 0 yr] 2 First Pericenter In f allin g 00..12 23..82 yr] 2 00..12 23..82 G G since infall [ 468 VBiraiaclkizsepdlash Apocenter 000011.....34682znfall redshift 1122....2604log(N)10 since infall [ 468 000011.....34682znfall redshift 1122....2604log(N)10 e e m 1.5i 0.8 m 1.5i 0.8 ti10 2 ti10 2 0.4 0.4 3 3 12 0.0 12 0.0 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 radial distance r/r at z=0 projected radial distance R/r at z=0 vir vir Figure2.Leftpanel:Abundanceofsatellitesinbinsofclusterinfalltime,definedasfirstinwardcrossingof2.5rvir,andradialdistancefromclustercentre att=0.Intheintervalt=0tot∼3.5the‘infalling’populationisvisible,composedofsatellitesthathavenotyetexperiencedapericentrepassage.From t∼3.5tot∼6the‘backsplash’populationisvisible,composedofsatellitesthathavepassedpericentreonceandareapproachingapocentre(t∼6).The ‘virialized’population(t>6)areonasecondorsubsequentorbit.Grayhorizontallinesillustratethetimesofsimulationsnapshots.Rightpanel:sameasleft panel,butusingradialdistancefromclustercentreprojectedalongoneaxisofthesimulationbox(simulatingcoordinatesaccessibleinobservations).This widensthedistributionofradiiofsatellitesatagiveninfalltime,butthesamepopulationsasintheleftpanelarevisible. radialandvelocityprojections,butemphasizingthelatter.Muchof TotesttheabilityofourPDFstocorrectlyassignaninfalltime thestructurevisibleinFig.3islostinprojection,buthaloeswith toasatellitehalo, weuse ourPDFstoestimatetheinfall timeof differentinfalltimesstilloccupydifferentregionsofphasespace. eachsatelliteinoursample.Thisestimateisthencomparedtothe actualinfalltimeofthesatellite,whichweknowfromtrackingits orbit.Thedistributionof∆t = t (actual)−t (estimated)is infall infall 4.2 InfalltimePDFs plottedinFig.6.A∆tof0representsacorrectguess,soastronger peakabout∆t=0representsahigherrateofsuccess.Asaquanti- Sinceourultimategoalistomodelquenching,perhapsthemostdi- tativemeasureofthestrengthofthepeak,wecalculatethestandard rectlyusefulquestionwecanaskofourdatasetis,givenaposition deviationofthedistribution.ByusingourPDFsbasedonknowl- inprojectedphasespace,whatisthedistributionofpossibleinfall edgeofthe(R,V)coordinatesofeachsatellite,weassignthein- times(oranotherparameterofinterest),andwhatisthelikelihood falltimecorrectlytowithin±2.58Gyrin68percentofcases.For ofeach?Thisquestioniseasilyansweredinastatisticalmannerby comparison,wealsoplotthedistributionof∆tobtainedifonlythe samplingallsatellitesinasmallregionofphasespaceandbinning position coordinate R of the haloes is known, accurate to within thembyinfalltime.TheresultisshowninFig.5foraselectionof ±2.64Gyrin68percentofcases,andifnoneofthecoordinates pointsinphasespace,varyingboththeradialcoordinate(left-right areknown;inthiscase,wesimplydrawvaluesfromthedistribu- acrossthepanels)andthevelocitycoordinate(up-down).Wefocus tionofinfalltimesofourentiresampleatrandom,andfindweare hereonthetrendswiththevelocitycoordinate.Thefirsttrendwe accuratewithin±3.10Gyrin68percentofcases.Finally,weplot note isthat at a given radius, satelliteswithhigher v typically LoS acurveshowingthedistributionof∆tforaparticularsubsample haveslightlymorerecentinfalltimesthantheirlow vLoS counter- ofsatelliteschosenbyeyewhichhave V >−4 R +2.Thissub- parts. This is because a satellite with high vLoS is more likely to sampleisdesignedtoretainprimarilyiσnfalling3sravitrellites(seeFig. haveahightotalspeedandcanpenetratedeeperintothehostpo- 4),andinthiscasetheassignmentofinfalltimesisevenmorere- tentialinagivenamountoftimethanasatellitewithlowspeed. liable.Thisdemonstratesthatifaparticularpopulationofsatellites Insomecases,thevelocitycoordinateallowsustodiscrimi- isofinterest,itisoftenpossibletochoosearegionofphasespace natebetweendifferentsatellitepopulations.Considertherightmost thatmaximisesthelikelihoodofcorrectlyassigningt .Forthis infall panels (R = 1.5) of Fig. 5. One peak in the distribution of in- example,wecorrectlyassignt within±2.48Gyrin68percent infall falltimesisclearlyvisibleatallvaluesofv ,ata ≈ 0.85;itis LoS ofcases.Inpractice,thismakesitpossibletoincreasethepurityof madeupofinfallingsatellites.Asecondpeakata ≈ 0.6ismade anobservationalsampleofgalaxiesattheexpenseofcompleteness up of backsplash satellites, and is only present for low values of ofthesamplebylimitingtheregionofphasespacefromwhichthe v .Thebackspashgalaxieshavelowerkineticenergyrelativeto LoS sampleisdrawn. thehostpotentialthanrecentinfallsduetoacombinationofmass Fig.7showstheaccuracyoftheassignmentoft atthe68 accretionbythehost(increasingσ,thereforecausinganapparent infall percentconfidencelevelforbinsin(R,V)space.ThePDFsgive slowingofhaloes)anddynamicalfriction. themostreliableresultsinthoseregionswithbothgoodaccuracy Given a sufficiently large sample of observed galaxies, the andalargepopulationofsatellites.Intheoutskirtsofclusters,an PDFswehavecreatedwillallowustostatisticallyassignaninfall accuracy ∆t of about 3 Gyr is sufficient to robustly separate in- timetoeachoneusingalltheavailabledynamicalinformationand fallingandbacksplashsatellites. ameaningfuluncertaintyinourassignment.Wehavedevelopeda codeandacompactdatatabletothisendwhichwearepreparedto Weconcludethatusingallobservablecoordinatesofasatel- shareonrequest. lite(R,V)offersanimprovementinassigningt correctlyover infall (cid:13)c 0000RAS,MNRAS000,000–000 6 K. A. Oman,M. J. Hudson&P.S. Behroozi 2.0 time since infall=0-12 Gyr 0-1 Gyr 1-2 Gyr N=31666 N=31874 1.0 3.2 0.0 2.8 -1.0 0 = 2.4 -2.0 z at 2-3 Gyr 3-4 Gyr 4-5 Gyr σ 1.0 N=36739 N=35016 N=38163 / 2.0 r ) v N y ( cit 0.0 g10 o 1.6 lo el -1.0 v al di -2.0 1.2 a r 5-6 Gyr 6-7 Gyr 7-12 Gyr N=30205 N=27064 N=21383 1.0 0.8 0.0 0.4 -1.0 -2.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 radial position r/r at z=0 vir Figure3.Theupperleftpanelshowsthephasespacedistributionofsatellitehaloes(noprojection).Theinfallingpopulationofhaloesisparticularlydistinct, formingthelongdarkbarwithv < 0.Thebacksplashpopulationformstheupperandloweredgesoftherestofthemaindistribution,whilethevirialized populationfillsinthecentre.Theotherpanelscorrespondtobinsbysatellite infalltime,aslabelled (mostbinsare1Gyr).Eachpanelshowsthez = 0 distribution ofsatellites inphasespace.Different satellite populations occupydistinct regions ofphasespace; compareforinstance theupperrightpanel showingmostlyinfallingsatellites,thecentrerightpanelshowingmostlybacksplashsatellitesandthelowerrightpanelshowingmostlyvirializedsatellites. EachbinisalsolabelledwiththenumberofsatellitesNcontainedinthebin. usingonlythepositioncoordinateRcomparableto,butsomewhat ineachinfalltime-radialdistancebinandcomparedtothefiducial lessthan,theimprovementseenwhenusingthepositioncoordinate abundanceofsatellitesinthatbin.Cellswithareddishcolouration Rratherthannoknowledgeofsatellitecoordinatesatall.Careful are preferentially occupied by satellites around high mass hosts, selectionoftheregionofphasespacetobesampledcan,inmany whilecellswithabluishcolourationarepreferentiallyoccupiedby cases,furtherincreasethereliabilityinestimatingt . satellitesaroundlowmasshosts. infall Intheinfallingpopulationofsatellites(t < 4GyrinFig.8, leftpanel)thesatellitesofhighmasshostsappeartofallintotheir 4.3 Masstrends hostsomewhatfasterthanthesatellitesoflowmasshosts;atagiven Whilehaloesofdifferentmassesareexpectedtobeself-similarin timesinceinfall,asatelliteofalowmasshosthasalargertypical mostways,westillfindsometrendswithbothhosthalomassand radialdistancethanasatelliteofalowmasshost.Weproposetwo satellitehalomass.Westudythesetrendsbyseparatingthehaloes possible explanations forthiseffect. First,satellitesof high mass ofinterest–eitherhostsorsatellites–crudelyintoa‘highmass’ hosts tend to have more radial orbits than satellites of low mass anda‘lowmass’bin,thencomparethedistributionofsatellitesin hosts (Wetzel2011), causing them tomove radially inward more phasespaceandinfalltimeforthetwobins. rapidlyon average. Alternately, because thehosts arecontinually Fig.8showsacomparisonofsatellitesaroundhigh-andlow- accretingmass, theirvirialradiusgradually increases. Hostswith masshostsininfalltimevs.radialpositionspace(leftpanel),and highermasseshavehigherpresent-dayaccretionrates;thisisvis- in phase space (right panel). Low mass hosts are defined to have ible in Fig. 8 (right panel) where the region of phase space oc- 1014 M⊙ < M < 1014.5 M⊙while high mass hosts are in the cupied byinfalling satellitesshows anexcess of satellitesaround range1014.5 M⊙ < M < 1015 M⊙.Thepopulationofsatellites highermasshaloes(seealsoWechsleretal.2002,fig.3thereines- aroundeachtypeofhostisnormalized,thenthetwoaresubtracted pecially).Theirsatellitesthereforeappeartomoveinwardslightly (cid:13)c 0000RAS,MNRAS000,000–000 Disentanglingsatellitegalaxypopulations 7 2.0 time since infall=0-12 Gyr 0-1 Gyr 1-2 Gyr N=31580 N=31901 1.5 3.2 1.0 0 2.8 = z 0.5 t a σ 2.4 / 0.0 S o L 2-3 Gyr 3-4 Gyr 4-5 Gyr V y 1.5 N=36722 N=35151 N=38193 2.0 cit N) o ( l 1.0 0 e 1 v 1.6 og ) l S 0.5 o L ( d 1.2 0.0 e t c 5-6 Gyr 6-7 Gyr 7-12 Gyr e N=30097 N=27117 N=21349 oj 1.5 r 0.8 p 1.0 0.4 0.5 0.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 projected radial position R/r at z=0 vir Figure4.AsinFig.3,butusingradialdistancefromclustercentreprojectedalongoneaxisofthesimulationboxandvelocityprojectedalongthesameaxis (againsimulatingcoordinatesofanobservedsystem).MuchofthestructurevisibleinFig.3islostinprojection,buttheuseofLoSvelocitydataallowsbetter spearationofdifferentsatellitepopulationsthanusingtheradialcoordinatealone.Thedashedgraylinemarks V =−4 R +2;see§4.2. σ 3rvir fasterthanthoseoflowmasshostsinthiscoordinatesystem.These distributionofgalaxiesinacluster.Baryons(especiallythestellar twoexplanations couldbeconsidered anargument foradifferent component)aretypicallymoretightlyboundthantheirassociated normalizationoftheradialcoordinate,howeverotherchoices(e.g. darkmatterhalo,andshouldthereforeoutlivethehalointhecluster thevirialradiusofthehostattheinfalltimeofeachsatellite)still environment.Thisrestrictsthesatellites,astracedbygalaxies,that introduce similareffects, and the present virial radius of the host canbestudiedusingourmethodtothosewhichweexpecttohave hastheadvantageofbeingmorerelatedtoobservablequantities.A a surviving DM halo. With the MDR1 dataset, this corresponds morepracticalapproachistocomputePDFsfornarrowhostmass to galaxies with associated DM halo masses of ∼ 1011.9 M⊙or bins (∼ 0.5 dex) and use whichever isapplicable toan observed greater.Smallersatellitesmaystillbestudiedbyusinghigherres- systemof interest;oursample containsenough satellitestomake olution simulations (e.g. the Bolshoi simulation of Klypinetal. thisfeasible. (2011),which hasidentical parameterstoMDR1 but withhigher resolution and a smaller box size). Low mass satellitesare much Wealsoconsidertrendswithsatellitemass.Becausesatellite moreabundant,sothesmallervolumeofahigherresolutionsimu- masstypicallydecreaseswithincreasedtimespentinaclusterenvi- lationshouldnotimpactourabilitytoobtainalargesample,except ronment,weusethesatellitemassattimeofinfall(firstcrossingof perhapsforlow masssatellitesaround verylargehosts(of which 2.5r )asacharacteristicmassforthisanalysis.Fig.9showsthat vir theremayonlybeafewinasimulationsuchasBolshoi). lower mass satellitesexperience backsplashes to largerradii than highmasssatellites.Thisisbecausetheslowingduetodynamical frictionis proportional tothe mass of thesatellite, so that higher masssatelliteslosealargerfractionoftheirkineticenergyduring 4.4 ResolutionEffects apassagethroughacluster.Toaccountforthistrendwithsatellite As shown in section 3, some halos which experience a close ap- mass,separatePDFscanbeproducedforrelativelynarrowbinsin proachtothecentreofalargerhaloexperienceartificialdisruption. satellitemass. Weestimate that any given bin in our PDFsisless than 20% in- Care must be taken when using our method to interpret the complete,andthatoursampleofsatellitesasawholeislessthan (cid:13)c 0000RAS,MNRAS000,000–000 8 K. A. Oman,M. J. Hudson&P.S. Behroozi 01..40 vLoS=0.9,R=0.5 vLoS=0.9,R=1 vLoS=0.9,R=1.5 0.3 N=1321 N=514 N=193 0.2 0.1 0.8 0.0 vLoS=0.6,R=0.5 vLoS=0.6,R=1 vLoS=0.6,R=1.5 0.3 N=2171 N=1358 N=661 y t0.2 si0.6 n e0.1 d y t0.0 bili vLoS=0.3,R=0.5 vLoS=0.3,R=1 vLoS=0.3,R=1.5 a0.3 b N=2856 N=2272 N=1359 o0.4 r0.2 p 0.1 0.0 vLoS=0,R=0.5 vLoS=0,R=1 vLoS=0,R=1.5 0.2 0.3 N=3276 N=2595 N=1626 0.2 0.1 00..00 102.0.0 9.0 6.00.23.0 12.0 0.94.0 6.0 3.00.6 12.0 9.00.86.0 3.0 01..00 time since infall [Gyr] Figure5.Probabilitydensityfunctions(PDFs)ofinfalltimesforaselectionofpoints(R/rvir,V/σ)inprojectedphasespace.Eachpointissampledina regionouttoadistanceabout3percentofthefullrangeofeachcoordinatefromthelabelledpoint.ThenumberofsatellitesineachregionislabelledN, givingameasureofthestatisticsofeachPDF. 0 0 1.0 mass) 1.0 mass) 0.1 0.8 w 0 2 0.8 w time since infall [Gyr]146820 000001112.......2346825zinfall redshift −−−0000....0000246...642mass)N(lowmass))/N(lo− v/σz=dial velocity at r−011 −−−0000....0000246...642mass)N(lowmass))/N(lo− 3 −0.8high ra−2 −0.8high 12 −1.0( −1.0( 0.0 0.5 1.0 1.5 2.0 2.5 N 0.0 0.5 1.0 1.5 2.0 2.5 N radial distance r/rvir at z=0 ( radial position r/rvir at z=0 ( Figure8.Relativeabundanceofsatellitesinthespaceofinfalltimesvs.radialpositions(leftpanel)andphasespace(rightpanel),comparingsatellitesaround lowmass(1014−1014.5 M⊙)hostsandhighmass(1014.5−1015 M⊙)hosts.Thetwopopulationsarenormalized,subtractedineachbin,thencompared tothefiducialabundanceofsatellitesinthatbin(arbitrarilychosentobethepopulationwithlowmasshosts).Onlybinscontainingatleast100satellitesare shown. (cid:13)c 0000RAS,MNRAS000,000–000 Disentanglingsatellitegalaxypopulations 9 0.5 s) s N=248415 (R,V) known 0 0 1.0 ma sity0.4 o(Rn,lVy) R u nknknowownn yr] 2 00..12 00..68 N(high y den0.3 (R,V) cut nfall [G 4 00..34zshift 00..24 mass))/ robabilit0.2 me since i 68 00111....6825infall red −−0.000..42s)N(low− p0.1 ti10 2 −0.6mas −0.8h 3 g 0.0 12 −1.0(hi −5 0 5 0.0 0.5 1.0 1.5 2.0 2.5 N ∆t=tinfall(actual)−tinfall(estimated) [Gyr] radial distance r/rvir at z=0 ( Figure9.Relativeabundanceofsatellitesinthespaceofinfalltimesvs.ra- Figure6.Thedistributionof∆t,ameasureoftherateofsuccessofusing iosuprlPoDtteFdswtoithesatimthaictektrhedesinoflaidllltiinme.e∆titnfa=llo0frseaptreelslietnetshaalosuesccienssofuurlseasmtimplae-, d(1ia0l1p2o.2si−tio1n0s1c2o.8mhp−a1rinMg⊙low)samtealslsite(1s.0T11h.e9tw−o1p0o1p2u.2latMion⊙s)aarendnohrimghalmizeadss, subtracted ineachbin,thencomparedtothefiducialabundance ofsatel- tion,whileincreasing|∆t|representsincreasinganincreasingdiscrepancy litesinthatbin(arbitrarily chosentobethehighmasspopulation). Only withthecorrectvalue.Asharppeakat∆t=0thereforerepresentsahigh binscontaining atleast100satellites areshown.Highmasssatellites are rateofsuccess.Theblackdottedlineshowsthedistributionifweassume slowedmorethanlowmasssatellites bydynamicalfrictionandtherefore noknowledgeoftheLoSvelocity ofthesatellites, whilethegraydotted havelowertypicalbacksplashdistancesthantheirlowmasscounterparts. lineshowsthedistributionifweassumenoknowledgewhatsoeverofthe coordinatesofthesatellites.Eachadditionalcoordinateusedincreasesthe reliabilityofthepredictions.Thethinsolidredcurveshowsthedistribution of∆tforasubsampleofsatellitesselectedtostudyaparticularpopulation 4%incomplete down to1011.9 M⊙.Theeffect onthepredictive ofsatellites(seetextforfulldetails).Thisshowsanexampleofrestricting powerofourmethodwasinvestigatedbygeneratinganorbitcat- theregionofphasespaceconsideredtoincreasethereliabilityinestimating alogue with extra orbits added to compensate for artificially dis- tinfall.Wequantifythedegreeofsuccessinestimatingtinfallbythesharp- ruptedhalos.Theeffectofartificialdisruptiononthedistributions nessofthepeakinthedistributionof∆t,measuredbyitsstandarddevi- of∆t(suchasthoseshowninFig.6)isverysmall,causingchanges ation.Thestandarddeviations forthefourcurvesare2.58Gyr,2.64Gyr, ontheorderofafewtenthsofapercent. 3.10Gyr,2.48Gyr(inthesameorderaslabelsinthelegend).Thenumber Ourinitialinterestforapplicationsof ourmethod istolarge satellitesusedtotestthePDFsislabelledN. satellites (halo masses & 1012.5 M⊙) around hosts with halo masses & 1014 M⊙, which motivated our choice of the MDR1 0 simulation as a starting point. Applying our method to smaller = satellitesofsmallerhostsissimplyamatterofchoosinganappro- z2.0 3.50 at 3.25el priate simulation; our method is easily applied to any simulation σ v thatcanbeprocessedbythe ROCKSTARcode.TheBolshoisimu- V/LoS1.5 23..7050ce le lraetsipoenctisssoafveparretsiocululatironinatenrdesctosuilndcteheitreisfoirdeebneticuasledtoinMcDonRju1nicntioalnl velocity 1.0 1000 100 22..2550confiden wwihtihleMmDaRin1tationienxgtegnodotdhestraatnisgteicosfaotutrhemheitghhodmtaoslsowenedr.massranges ) 2.00% S o 1.758 5 CONCLUSIONS d (L0.5 1.50at 6 Thephasespacedistributionofinfalling,backsplashandvirialized cte 1.25∆t satellitehalos aredifferent but not everywhere distinct. TheLOS e oj0.0 1.00 velocitydistributionswerecoverareinagreementwiththeresults r 0.0 0.5 1.0 1.5 2.0 2.5 ofGilletal.(2005).Likethem,wefindthatdifferentpopulationsof p projected radial position R/rvir at z=0 satellitehalosarebetterseparatedinphasespacethanintheradial coordinatealone,butthatthereisnoimmediatelyobviouscutthat Figure7.Thedistributionof∆tatthe68percentconfidencelevelinthe wecanimposeontheprojectedphasespacecoordinatesofasatel- (R,V)plane; ourPDFswillbemostaccurate whenapplied tosatellites litegalaxytoseparatedifferentpopulations.Mahajanetal.(2011) thatoccupythereddest(darkest)regionsofthespace.UseofthePDFsalso identifiedsomeregionsofprojectedphasespacewherepartsofthe requires areasonable samplesize inthe region ofinterest; contours (0.5 dexintervals) illustrate thenumberofsatellites percell. Wefindthatthe infalling or backsplash populations could be picked out with lit- PDFsbecometoosparseforreliableuseincellscontaininglessthanafew tlecontamination byotherpopulations. Buildingonthisidea,we hundredsatellites.ThedashedgraylinemarksthesameregionasinFig.4 haveexaminedtheentireprojectedphasespaceanddeterminedthe confidence with which the time since infall can be assigned to a satelliteoccupyingthatregion.Thisletsuseasilyidentifyregions (cid:13)c 0000RAS,MNRAS000,000–000 10 K. A. Oman,M. J. Hudson& P.S. Behroozi wherethetimesinceinfallcanbedeterminedaccuratelyenoughto Dressler,A.1980,ApJ,236,351 reliablyseparatesatellitepopulations.Suchregionsthatweidentify Gabor,J.M.,Dave´,R.,Finlator,K.,&Oppenheimer,B.D.2010, areasupersetofthoseidentifiedbyMahajanetal.(2011).Thisal- MNRAS,407,749 lowsanincreaseoftheareaofprojectedphasespaceandtherefore Gao,L.,White,S.D.M.,Jenkins,A.,Stoehr,F.,&Springel,V. the number of satellitegalaxies available for use instudying star 2004,MNRAS,355,819 formationandothereffectsthatmaydependontheorbitalhistory Gill,S.P.D.,Knebe, A.,&Gibson, B.K.2005, MNRAS,356, ofasatellite. 1327 We have developed a tool that estimates the infall time and Gunn,J.E.,&Gott,III,J.R.1972,ApJ,176,1 aconfidenceintheestimateforasatellitehalogivenitsprojected Hogg, D. W., Blanton, M. R., Brinchmann, J., et al. 2004, ApJ, phasespacecoordinates. Thepossibleinfalltimesgivenapairof 601,L29 projected phase space coordinates are weighted according to the Ja´chym,P.,Palousˇ,J.,Ko¨ppen,J.,&Combes,F.2007,A&A,472, frequency of their occurence in simulation, then an infall time is 5 randomlyselectedfromthisweighteddistribution.Wepredictthat, Kitzbichler,M.G.,&White,S.D.M.2008,MNRAS,391,1489 whenappliedtoalargesampleofobservedgalaxies,thismethod Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999, willallowcorrelationsbetweeninfalltimesandsatellitestarforma- ApJ,522,82 tionhistoriestobestudied.Ourmethodiseasilyadaptedtoother Klypin,A.A.,Trujillo-Gomez,S.,&Primack,J.2011,ApJ,740, similarparameters(closestapproachtohostcentre,timesincefirst 102 pericentre,etc.)thatwillbeconsideredinourforthcomingstudyof Larson,R.B.,Tinsley,B.M.,&Caldwell,C.N.1980,ApJ,237, SFquenchinginclusterenvironments,andto‘preprocessing’sce- 692 narios–accretionontoagroupsizedhalobeforeaccretionontoa Ludlow,A.D.,Navarro,J.F.,Springel,V.,etal.2009,ApJ,692, clustersizedone.Itwouldbestraightforwardtoadaptourmethod 931 to systems at higher redshift where we think the different satel- Mahajan,S.,Mamon,G.A.,&Raychaudhury,S.2011,MNRAS, litepopulationsmaybebetterseparatedthanatlowredshift.Our 416,2882 frameworkwouldalsobeverywellsuitedtostudyingdarkmatter Mamon, G.A.,Sanchis, T.,Salvador-Sole´,E.,&Solanes, J.M. strippingofsatellites. 2004,A&A,414,445 Mayer,L.,Mastropietro,C.,Wadsley,J.,Stadel,J.,&Moore,B. 2006,MNRAS,369,1021 McNamara, B. R., Rafferty, D. A., Bˆırzan, L.,et al. 2006, ApJ, ACKNOWLEDGEMENTS 648,164 WewishtothanktheauthorsoftheBolshoiandMDR1simulations Moore,B.,Katz,N.,Lake,G.,Dressler,A.,&Oemler,A.1996, formakingtheirsimulationoutputspubliclyavailable. Nature,379,613 PSBwassupportedbyaHubbleTheorygrant;programnum- Prada, F., Klypin, A. A., Cuesta, A. J., Betancort-Rijo, J. E., & berHST-AR-12159.01-AwasprovidedbyNASAthroughagrant Primack,J.2012,MNRAS,423,3018 fromtheSpaceTelescopeScienceInstitute,whichisoperated by Smith, R., Davies, J. I., & Nelson, A. H. 2010a, MNRAS, 405, theAssociationofUniversitiesforResearchinAstronomy, Incor- 1723 porated,underNASAcontractNAS5-26555. Smith, R. J., Lucey, J. R., Hammer, D., et al. 2010b, MNRAS, MJHacknowledgessupportfromanNSERCDiscoverygrant. 408,1417 Taranu, D. S., Hudson, M. J., Balogh, M. L., et al. 2012, arXiv:1211.3411 Tinker, J. L., Sheldon, E. S., Wechsler, R. H., et al. 2012, ApJ, REFERENCES 745,16 Abadi, M. G.,Moore, B.,&Bower, R.G. 1999, MNRAS,308, Toomre,A.,&Toomre,J.1972,ApJ,178,623 947 Wang, H., Mo, H. J., Jing, Y. P., Yang, X., & Wang, Y. 2011, Balogh, M. L., Baldry, I. K., Nichol, R., et al. 2004, ApJ, 615, MNRAS,413,1973 L101 Wang,H.Y.,Jing,Y.P.,Mao,S.,&Kang,X.2005,MNRAS,364, Balogh,M.L.,Navarro,J.F.,&Morris,S.L.2000,ApJ,540,113 424 Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2012, Wechsler,R.H.,Bullock,J.S.,Primack,J.R.,Kravtsov,A.V.,& arXiv:1207.6105 Dekel,A.2002,ApJ,568,52 Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2011a, Weinmann,S.M.,Kauffmann,G.,vonderLinden,A.,&DeLu- arXiv:1110.4372 cia,G.2010,MNRAS,406,2249 Behroozi, P. S., Wechsler, R. H., Wu, H.-Y., et al. 2011b, Wetzel,A.R.2011,MNRAS,412,49 arXiv:1110.4370 Wetzel,A.R.,Tinker,J.L.,Conroy,C.,&vandenBosch,F.C. Bertschinger,E.1985,ApJS,58,39 2012,arXiv:1206.3571 Birnboim,Y.,&Dekel,A.2003,MNRAS,345,349 Bryan,G.L.,&Norman,M.L.1998,ApJ,495,80 Cox,T.J.,Jonsson,P.,Primack,J.R.,&Somerville,R.S.2006, MNRAS,373,1013 Croton,D.J.,Springel,V.,White,S.D.M.,etal.2006,MNRAS, 365,11 De Lucia, G., Weinmann, S., Poggianti, B. M., Arago´n- Salamanca,A.,&Zaritsky,D.2012,MNRAS,423,1277 Dekel,A.,&Birnboim,Y.2006,MNRAS,368,2 (cid:13)c 0000RAS,MNRAS000,000–000