ebook img

Disentangling satellite galaxy populations using orbit tracking in simulations PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Disentangling satellite galaxy populations using orbit tracking in simulations

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed30January2013 (MNLATEXstylefilev2.2) Disentangling satellite galaxy populations using orbit tracking in simulations Kyle A. Oman1,⋆, Michael J. Hudson1,2, Peter S. Behroozi3 3 1 1DepartmentofPhysicsandAstronomy,UniversityofWaterloo,Waterloo,Ontario,N2L3G1,Canada 0 2PerimeterInstituteforTheoreticalPhysics,Waterloo,Ontario,N2L2Y5,Canada 2 3KavliInstituteforParticleAstrophysicsandCosmology;PhysicsDepartment,StanfordUniversity;DepartmentofParticlePhysicsand Astrophysics,SLACNationalAcceleratorLaboratory,Stanford,CA94305 n a J 8 30January2013 2 ] O ABSTRACT C Physicalprocessesregulatingstarformationinsatellitegalaxiesrepresentanareaofongoing research,buttheprojectednatureofobservedcoordinatesmakesseparatingdifferentpopula- . h tionsofsatellites(withdifferentprocessesatwork)difficult.Theorbitalhistoryofasatellite p galaxyleadstoitspresent-dayphasespacecoordinates;wecanalsoworkbackwardsanduse - these coordinates to statistically infer information about the orbital history. We use merger o r trees from the MultiDark Run 1 N-body simulation to compile a catalogue of the orbits of t satellitehaloesinclusterenvironments.We parametrizetheorbitalhistorybythetimesince s a crossingwithin2.5rvir oftheclustercentreanduseourcataloguetoestimatetheprobability [ density overa range of this parametergivena set of present-dayprojected(i.e. observable) phasespacecoordinates.Weshowthatdifferentpopulationsofsatellitehaloes,e.g.infalling, 1 backsplashandvirialized,occupydistinctregionsofphasespace,andsemi-distinctregionsof v 7 projectedphasespace.Thiswillallowustoprobabilisticallydeterminethetimesinceinfallof 5 alargesampleofobservedsatellitegalaxies,andultimatelytostudytheeffectoforbitalhis- 7 toryonstarformationhistory(thetopicofafuturepaper).Wetesttheaccuracyofourmethod 6 andfind thatwe can reliablyrecoverthis time within ±2.58Gyrin 68 percentofcases by . using all available phase space coordinate information,compared to ±2.64 Gyr using only 1 0 positioncoordinatesand±3.10Gyrguessing‘blindly’,i.e.usingnocoordinateinformation, 3 butwithknowledgeoftheoveralldistributionofinfalltimes.Insomeregionsofphasespace, 1 theaccuracyoftheinfalltimeestimate improvesto ±1.85Gyr.Althoughwe focusontime : since infall, our method is easily generalizable to other orbital parameters (e.g. pericentric v distanceandtime). i X Keywords: galaxies:kinematicsanddynamics,galaxies:clusters:general,galaxies:haloes r a 1 INTRODUCTION Smithetal.2010a),strangulation(Larsonetal.1980;Baloghetal. 2000) and mergers (Toomre&Toomre 1972; Coxetal. 2006). Weknowthatgalaxiesinclustersaretypicallymore‘redanddead’ Internal quenching mechanisms have also been proposed – e.g. thantheircounterpartsinthefield(Hoggetal.2004;Baloghetal. shockheating(Birnboim&Dekel2003;Dekel&Birnboim2006), 2004), as well as dominantly elliptical (rather than spiral, see AGNheating(Crotonetal.2006;McNamaraetal.2006),seealso Dressler1980).Thisisthoughttobeduetoamechanismorcom- Gaboretal. (2010) – which, while unable to account for the dif- binationofmechanismsthathaltthecollapseofcoldgasintostars ferencebetweenfieldandclustergalaxies,mayeachcontributeto inasatellitegalaxyasitorbitswithinadeeppotentialwell–either increasingtheredfractioninbothenvironments. byheatingorremovingthegasorbypreventingthecoolingofad- It has so far been found difficult to produce a semi-analytic ditional gas and consuming the existing supply. Some renowned modelforquenchingthatbothreproducestheobservedstarforma- mechanisms include ram pressure stripping (e.g. Gunn&Gott tionrate(SFR)distributioninclusters(Wetzeletal.(2012),butsee 1972; Abadietal. 1999; Ja´chymetal. 2007; Smithetal. 2010b), Weinmannetal.(2010)forsomerecentimprovements).However, tidalstripping(Mayeretal.2006),harassment(Mooreetal.1996; alltheenvironmental quenching mechanismslistedabovehaveat leastonecommoncharacteristic:eachissensitivetothepathtaken ⋆ [email protected] throughthecluster.Tidalstrippingisstrongestneartheclustercen- (cid:13)c 0000RAS 2 K. A. Oman,M. J. Hudson&P.S. Behroozi tre.Rampressurestrippingvarieswiththelocaldensityofhotclus- 2 SIMULATIONS tergasandtherelativevelocityofthesatellite,bothofwhichvary To obtain a large sample of satellite orbits, we use the output of radiallyinthecluster.Mergersaremoreprobablyintheoutskirts the MultiDark Run 1 (MDR1) dark matter only simulation with ofclusters.Harassmentismosteffectiveduringhighspeedencoun- 1 Gpch−1 box side length, 20483 particles, current cosmology ters, which occur near the cluster core. Strangulation is triggered bytheremovalofthehalogasofthesatellite,obsensiblyviaone (WMAP5/WMAP7), 8.7 × 109h−1 M⊙ mass resolution and 7 kpcforceresolution.Thesimulationwasrunfrom z = 65tothe of the aforementioned mechanisms. Anenvironmental quenching present; the majority of snapshots are output at even intervals in modelcanthereforereasonablybeexpectedtodependonthepre- scalefactorawithsomeirregularintervalsatsmalla.Theresolu- viouspositionsandvelocities,ormoreconciselytheorbitalhistory, tion inscale factor isof 0.0304 before a ∼ 0.7 (z ∼ 0.43) and ofsatellitegalaxies. doubles to 0.0152 afterwards (corresponding to a timeresolution Theorbitalhistoryofagalaxyisnotdirectlyobservable;ifwe of about 0.210 Gyr at z = 0). This is taken into account in our hopetocompareenvironmentalquenchingmodelstoobservational discussionbelow.Fulldetailsofthesimulationparametersarede- data, we need some way to characterize the orbit of an observed scribedinPradaetal.(2012).Thesimulationsnapshotswerepro- galaxy.Wemightparametrizetheorbitalhistoryofagalaxyinany cessed by the ROCKSTARhalo finder (Behroozietal. 2011a) and ofanumberofways–forinstancebythetimesinceinfallintothe themergertreecodepresentedinBehroozietal.(2011b).To pro- clusterpotential,thedistanceofclosestapproachtotheclustercen- ducethedatausedinthispaper,themergertreecodewasslightly treorthenumberoforbitscompletedsinceinfall–thenattemptto modifiedsothatahalomaycontainsatellitehaloesatdistancesof findcorrelationsbetween theseparametersand observables using upto2.5timesitsvirialradius(rvir = r360b)fromitscentre;the N-bodysimulationdata.Theobservablesweconsideravailableare defaultcodefindssatelliteswithinonly1.0virialradii.Thisallows thedistance between thesatelliteandthe clustercentreprojected ustotracksatellitesout tothelargestapocentric distances which ontotheplaneoftheskyandthecomponentofthevelocityofthe Mamonetal.(2004)(seealsoGilletal.2005;Baloghetal.2000; satelliterelativetotheclustercentrealongthelineofsight(LoS).In Ludlowetal.2009)showtobeabout∼ 2.5r200c(∼ 2.2r360b)by somenearbyclustersitmayalsobepossibletoobtaindistancesto usinghost-satellitelinkingasaproxyforclustermembership. theclustercentreandthesatelliteviadirectdistancemeasurements In the following discussion, we will denote full 6D cluster- (e.g.Tully-Fisherrelation,surfacebrightnessfluctuations,SNIalu- centriccoordinates(r,v).Thepositionandvelocitycentreofahalo minosities,etc.),butingeneralthesewillbemuchlessprecisethan isdeterminedbyaveragingthepositionsandvelocitiesofthesub- theothertwocoordinates–wewillconsiderthisinformationinac- setofhaloparticleswhichminimizestheexpectedPoissonerrorin cessible. thecoordinates,i.e.theparticlesoccupyingtheregionofhighestlo- caldensity(formoredetailonhowthecoordinatesaredetermined Several authors (Gaoetal. 2004; Wangetal. 2011; bythehalofinder,werefertheinterestedreadertoBehroozi etal. DeLuciaetal. 2012; Taranuetal. 2012) have shown that the 2011a,§3.5.1). present radial distance from the cluster centre is negatively Projected coordinates will be denoted (R,V). Projection is correlatedtothetimesinceinfallintotheclusterandotherorbital done along the arbitrarily chosen third (z-)axis of the simulation parameters. Gilletal. (2005) were amongst the first to compare box and includes a correction to the velocities to account for the the velocity distributions of different satellite populations (see Hubble flow. With this correction, the simulated velocity differ- also Wangetal. 2005), and more recently Mahajanetal. (2011) ences can be directly compared to observation data, where ve- presented a method for separating satellite populations based on, locity differences would presumably be measured using a red- amongstotherparameters,theirLoSvelocities. shift difference. The projected distance between two points is This paper presents our method for reconstructing the R12 = p(r2,x−r1,x)2+(r2,y−r1,y)2 and therelative veloc- parametrized orbital history of a satellite galaxy based on its ity of point 2 with respect to point 1 is V12 = |(v2,z −v1,z)+ present-dayobservablephasespacecoordinates;wedeferitsappli- H(r2,z −r1,z)|. Note that V ≥ 0; this encodes our assumption thatthedistancestothetwopointsarenotknownprecisely,soonly cationstofuturepapers.Here,wefocusononeparameter–thetime themagnitudeoftheirrelativevelocitycanbedetermined. sinceinfallontoacluster-sizedhost–butstressthatourmethodis Forease of comparison between satellitesof different hosts, easilyadaptedtootherparameterchoices.Thetimesincethesatel- allspatialcoordinatesarenormalizedtothevirialradiusr ofthe litefirstpassedpericentreonitsorbitintheclusterandthedistance vir hosthalo,whichisdefinedusingtheformulaofBryan&Norman ofclosestapproachtotheclustercentrearetwoexamplesofother (1998): the radius enclosing a region with an overdensity of 360 parameterchoicesthatwillbeofinterestinfutureapplicationsof timesthe background density at z = 0. Forreaders more accus- ourmethod. tomed to normalization by r200c, an approximate conversion at In section 2 we describe the N-body simulation data and its z = 0 is r200c ∼ 1.13. All velocity coordinates are normalized rvir conversionintohalocataloguesandmergertrees.Insection3we tothermsvelocitydispersionσofthehosthalo,measuredin3D. present the method used convert the merger trees into our cata- loguesofsatelliteorbits,andtoaprobabilitydistributionfunction of times since infall given a pair of coordinates in phase space. Insection4wediscusstheimportanceofLoSvelocitydataindis- 3 METHOD criminatingbetweendifferentpopulationsofsatellites.Wesumma- First,theorbitalhistoryofasatelliteanditshostatz = 0arede- rizeinsection5. termined.Thentheinfalltimeofthesatelliteintothathosthalois We assume the same cosmology used in the Bolshoi and definedastheearliesttimeatwhichthesatellite’sprogenitoriden- Multidark Run 1 simulations with Ωm = 0.27, ΩΛ = 0.73, tifiesthez = 0host’sprogenitorasitshost.Ahost-satellitepair Ωb = 0.0469, ns = 0.95, h0 = 0.70, σ8 = 0.82 (Pradaetal. may be identified as soon as the satellite is within 2.5 times the 2012). virial radius of the host; though other criteria must still be met, (cid:13)c 0000RAS,MNRAS000,000–000 Disentanglingsatellitegalaxypopulations 3 106 106 1045 NNNN000N...0257.505N0p−−−−aa0010sl...t.l5702==0505====25941105645699584890086277861615 masp00ale..l25at rsss5-i=0a s-p0.t 07cas..u55s0tt- 0Mp.e2cru5it rvir 1y [Mpc]−110045 all satellites 10 0.75-1.0 t N nsi103 103 ber de102 µ1100=−−221..500−−−311.000−−−211..050−2.5 102 num101 1100−−11..50−−1100−−10..05 0 10−0.5−100.0 10 -2 -1 0 1 10 11 12 13 14 15 10 10 10 10 log10Minfall/M rsat [Mpc] ⊙ Figure1.Thesetwofiguresprovide ameasureoftheimportance ofresolution effects inouranalysis; seesection 3and§4.4fordiscussion. Leftpanel: Themassfunctionofallsatellitehaloesinourinitialsample(dottedblackline)andthemassfunctionofsatellitehaloesthathaveexperiencedatleastone pericentricpassage(solidblackline),whereinbothcasesthemassesaremeasuredatthetimeofinfallontotheirhost.Thecolouredlinesseparatethesatellites thathaveexperiencedapericentricpassageintobinsofpericentricdistance,aslabelled.Thetotalnumberofsatellitescontributingtoeachmassfunctionare labelledN.Weimposeamasscutasindicatedbythethickverticalline(Mcut=1011.9 M⊙),yieldingasamplewhichisascompleteasreasonablypossible aboveMcut.Rightpanel:Numberdensityasafunctionofsatelliteradialpositionforvariousmassratiosµ,wherethemassofthesatelliteismeasuredatthe timeofinfall.Thehosthaloshavemasses≥1014 M⊙.Satelliteswithlowmassratiosareunderabundanttowardthecentreoftheclusterenvironment. asoutlinedinBehroozietal.(2011b),inpracticetheseareusually son for this steeper slope is not precisely known, but the higher metimmediatelywhenthesatellitecrosseswithin2.5r .Onlythe resolutionBolshoi simulationexhibitsthesameslope of−1.9 so vir orbitalhistorywithrespecttothefinal(z = 0)hostisconsidered, wesurmisethatitisnotduetoaresolutioneffect.Thekeyfeature andincaseswhereasatellitehasahierarchyofhosts,intermediate thatwewishtohighlightisthattheslope(andshape)ofthisrela- hostsareignoredandthesatelliteidentifiesthelargestas itshost; tionshipismassratiodependent inourdataset,withsatellitesthat inother words, thepresent work ignores “group pre-processing”. aresmallerrelativetotheirhost beinglessabundant closertothe Hostsareselectedtobe“cluster-sized”,whichwedefineasahalo centre of the host. The underabundances of satellites highlighted mass>1014 M⊙.WiththeMDR1dataset,thisyieldsacatalogue byeachpanelofFig.1areduetothesamepopulationofsatellites; of ∼ 570,000 satellite orbits belonging to ∼ 24,500 different thosewhichhaveorbitedtowithin.0.25r oftheirhostandhave vir hosts. amass. 1013.1 M⊙.See§4.4foradiscussion oftheimpactof To ensure a sample complete in satellite mass, and that we thesemissingsatellitesonourresults. are minimally sensitive to artificial disruption of satellite haloes, Weimposeone finalcut, removing satellitesthat existedfor weimpose a masscut at Mcut = 1011.9 M⊙, where themass is lessthan3simulationsnapshotsbeforefallingintoacluster.This measuredatthetimeofinfall.Usingthestellar-to-halomassratios prevents haloes near the mass resolution limit of the simulation outlinedinBehroozietal.(2012),thiscorrespondstoacutinstel- fromappearingsuddenlyinsideaclusterandbeingassignedmean- larmassat∼1010.3 M⊙.TheleftpanelofFig.1showsthemass inglessinfalltimes.Theremaining242,790satelliteswerebinned functionforallsatellites,andforsatellitesthathaveexperiencedat in100projectedpositionbinsin0.0≤R/r ≤2.5and100pro- vir leastonepericentricpassageinbinsofproximityofpericentricpas- jectedvelocitybinsin0.0 ≤ V/σ ≤ 2.0. Thesetof infalltimes sage.Ourmasscutissafelyabovethemassresolutionlimitofthe in each bin was used to create a probability distribution function simulation.Asinessentiallyallcosmologicalsimulations,MDR1 (PDF)ofinfalltimesforeachbin. halosexperience artificaldisruption inhighdensity environments (Kitzbichler&White2008;Klypinetal.1999).Thisisthereason fortheunderabundance of lowermasssatellitesthat haveexperi- enced a close approach to a cluster centre (blue curve in Fig. 1, leftpanel).Fromthesemassfunctions, weestimatethatlessthan 20%ofhaloswithmassesaboveourmasscutandpericentricdis- 4 RESULTS tancesintherange0.0−0.25r havebeenartificiallydisrupted. vir Most of the artificially disrupted satellites are in the mass range BeforeapplyingourPDFstomodellingenvironmental quenching 1011.9−1013.1 M⊙.Weestimatethatthesemissingsatellitesac- (whichwillbethefocusofafuturepaper),weshouldhaveanun- countforlessthan4%ofthetotalhalopopulationaboveourmass derstandingofafewsystematiceffectsinherentinthemethodpre- cut.TherightpanelofFig.1showsthenumberdensityofsatellite sented in section 3. We will discuss the impact of projecting the halosasafunctionofradialpositionforbinsofsatellitemassrela- datainboththeradialandvelocitycoordinatesin§4.1.In§4.2we tivetothehosthalo.Observationsconstraintheslopeofthispower willpresentthePDFsanddiscusssomeoftheirfeatures.In§4.3we lawrelationtobebetween−1.7and−1.5,regardlessofmassra- discusstheeffectsofbothhostandsatellitemassonthedistribution tio(Tinkeretal. 2012). The slopes shown inFig1 aresomewhat ofsatellitesinphasespace.Finally,in§4.4wediscusstheimpact steeperatabout−1.9formassratioµ = 10−0.5 −100.Therea- ofresolutioneffectsonourresults. (cid:13)c 0000RAS,MNRAS000,000–000 4 K. A. Oman,M. J. Hudson&P.S. Behroozi 4.1 Projectioneffects Thereisaspreadinthetimetakentoreachpericentreandthe radiiofthepericentrescausedbythevarietyofpossibleorbitsand Whileasimulationprovidesaccuratevaluesforallsixphasespace detailsof the host potentials. The firstapocentre afterinfall typi- coordinates of an object, a typical astronomical observation can callyoccursafterabout 6Gyr;thepopulation ofobjectsbetween onlymeasurethree.Therightascension anddeclinationgivetwo firstpericentreandapocentreistermed‘backsplash’.Satelliteswith spatialcoordinates(thedistanceisunknown),whilecomparingthe infalltimesearlierthan∼7Gyrhavelessdistinctfeaturesintheir spectraoftwoobjectscangivethedifferenceinvelocitybetween distributionduetotheincreasingimpactofvariationsinorbitalhis- them,butonlyformotioninadirectionalongtheLoS.Sincewe tory,butthemajorityareconfinedwithin∼1r ;wecallthispop- ultimatelywishtoinfer propertiesof observed objects from their vir ulation‘virialized’.Wenoteanoveralldecreasingnumberofsatel- coordinates, wemust restrict ourknowledge of simulated objects lites with increasing time since infall. Some satellites with early to these same coordinates. Thiscan be achieved by ignoring one infalltimesaredisruptedbytidalinteractionsanddonotappearin ofthespatialcoordinatesofthesimulationbox–inourcase,the ourmergertrees.Inothercasestwoinfallingsatellitesmaymerge third–andconsideringonlythevelocitycoordinatecorresponding andappearinthetreesasasinglesatellite.Finally,somehalosmay totheignoredspatialcoordinate.Additionally,weincludeacorrec- not host a galaxy. These three effects mean that observations of tiontotheprojectedvelocitytoaccountfortheHubbleflow.This satellite galaxies around a cluster do not correlate perfectly with transformationappliedtothespatialcoordinates ofapoint xand thedistributionofdarkmatterhalosaroundthatcluster;thisneeds itsvelocityurelativetoareferencepointyanditsvelocitywcan tobetakenintoaccountwhenapplyingourmethodtoasampleof beexpressed: observedgalaxies,butdoesnotimpactthemethoditself.Thereis r=(x−y)=(x1−y1,x2−y2,x3−y3) oneothercontributiontothedecreaseinnumberofsatelliteswith ⇒R=(x1−y1,x2−y2) increasingtimesinceinfall.Becauseourmasslimitof1011.9 M⊙is relativelylarge,atearlytimeshaloesabovethislimitweresome- v=(u−w)=(u1−w1,u2−w2,u3−w3) whatrarer. ⇒V=(|(u3−w3)+H(x3−y3)|) TherightpanelofFig.2showstheeffectofprojectioninthe radialcoordinatesonthesamedistributionasintheleftpanel.Fea- We predict the effect of projection on the radial coordinate by tures are shifted somewhat to lower radii (consistently with our considering a random uniform distribution of points on a spher- expectation of hRi = π) and broadened by the scatter about ical shell. For this distribution the relationship between the ac- r 4 thismeandeformation.Allthepopulationsandfeaturesdiscussed tual (r) and projected (R) radial coordinates is characterized by abovearestillidentifiable.Onenotableomissionfromthisdiagram hRri = π4 ±q23 − π162 ∼ 0.79±0.22 (1σ scatter).Inoursam- isanyforeground/backgroundobjects,whicharecommoninobser- ple of satellite galaxies, we find that hRi agrees with this pre- vationalsamples,thatcouldbeconfusedwiththesatellitepopula- r diction to within 1%, both in the mean and in the scatter. The tions. projected radial coordinate tracks the 3D radial coordinate more There is one other important effect to consider when inter- closelyandmoreconsistentlyatlargerprojectedradii;atR∼r , preting Fig. 2 (and others involving infall times). As a host halo vir hRi ∼ 0.83±0.17 whileat R ∼ 0.1r , hRi ∼ 0.51±0.31. accretesmass,itsvirialradiusgrows(slowly,exceptinthecaseof r vir r Theobservedvelocitycoordinatedoesnothaveasstraightforward majormergers).Becauseofthis,anorbitingsatellitemayappearto arelationshipwiththeactualquantityofinterest–theradialcom- movefurtherincoordinatesscaledtorvirthanitotherwisewouldas ponentofthevelocitydifferencebetweentwopoints–butthein- thecoordinatesgrowaroundit.Thisdoesnothavealargeimpact formationabouttwocomponentsislostinsteadofone,soweex- onthepositions,butcontributessomeofthescatterintheradialco- pect a much larger typical difference between projected velocity ordinate.Onemightconsiderchoosingsomeradiusthatisconstant andtruevelocity.Wealsolosethesignoftheoneremainingcom- withtimetoscaleeachhalo, but otherchoices, such asthe virial ponentofvelocitysince,withoutknowledgeofthedistancestothe radiusatthelastsnapshot,alsointroducesimilareffects. twopoints,wecannotknowwhetherthedistancebetweenthemis Next,weconsidertheeffectofprojectiononthevelocityco- increasingordecreasing. ordinates.TheupperleftpanelofFig.3showsthedistributionof TheleftpanelofFig.2showsthedistributionofsatelliteinfall satellitehaloesinphasespaceatz =0.Atypicalhalowould,given times1 as a function of radial distance from the host centre mea- enoughtime,progressfromlargeradiiandlowvelocitiesdownto suredatz = 0beforeprojection.Satellitesthathaverecentinfall lowradiiandhighnegativevelocities,thenswitchtohighpositive times (near the top of the diagram) are necessarily concentrated velocityasitpassespericentre.Fromthereitfollowsaseriesofpro- neartheedgeofourdefinitionoftheclusterat2.5 r ;theyhave gressively shrinking concentric semicircles or chevrons, jumping vir not had enough time to move anywhere else. A typical crossing fromnegativetopositivevelocityateachpericentricpassage(for timeforoursampleofclustersisabout6-8Gyr,somostsatellites amoreindepththeoreticalbackground,seeBertschinger1985,es- that fell in3-4 Gyrago arenear thecentre of the host. Notethat peciallyfig.6therein).Thisnormalprogressioniswellrepresented this seemingly long crossing time is due to our definition of the bythedistributionofourhalosample,howevertheindividual or- edgeoftheclusterat2.5r ;thetypicaltimetocrossfromr to bital‘shells’arenotvisiblesincetheyoverlap,andweonlyexpect vir vir pericentreandbacktor isabout2Gyr.Thesatellitealsospendsa 1-2shells given theorbital timescalesand ages of these systems. vir significantamountoftimeoutsidethevirialradiusafterthisinitial Also, close encounters redistributesome haloes off this idealized crossing; it takes afurther ∼1Gyrfor atypical satelliteto reach track. apocentreaftermakingitsfirstoutboundcrossingofr . Based on this expected movement through phase space in vir time,satellitehaloeswithdifferentinfalltimesshouldoccupydif- ferent regions of phase space. Thisisshown inFig.3,where the 1 Theinfalltimesproducedbythemethodofsection3occuratdiscrete phase space distribution of haloes is plotted for a variety of bins times–thoseofthesimulationsnapshots.Forthepurposesofvisualization in infall time. Fig. 4 shows the same binned distributions, but in only,somescatterwasaddedtothetimes. projectedcoordinates, simultaneouslyshowingtheeffectsofboth (cid:13)c 0000RAS,MNRAS000,000–000 Disentanglingsatellitegalaxypopulations 5 0 0 0 0 yr] 2 First Pericenter In f allin g 00..12 23..82 yr] 2 00..12 23..82 G G since infall [ 468 VBiraiaclkizsepdlash Apocenter 000011.....34682znfall redshift 1122....2604log(N)10 since infall [ 468 000011.....34682znfall redshift 1122....2604log(N)10 e e m 1.5i 0.8 m 1.5i 0.8 ti10 2 ti10 2 0.4 0.4 3 3 12 0.0 12 0.0 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 radial distance r/r at z=0 projected radial distance R/r at z=0 vir vir Figure2.Leftpanel:Abundanceofsatellitesinbinsofclusterinfalltime,definedasfirstinwardcrossingof2.5rvir,andradialdistancefromclustercentre att=0.Intheintervalt=0tot∼3.5the‘infalling’populationisvisible,composedofsatellitesthathavenotyetexperiencedapericentrepassage.From t∼3.5tot∼6the‘backsplash’populationisvisible,composedofsatellitesthathavepassedpericentreonceandareapproachingapocentre(t∼6).The ‘virialized’population(t>6)areonasecondorsubsequentorbit.Grayhorizontallinesillustratethetimesofsimulationsnapshots.Rightpanel:sameasleft panel,butusingradialdistancefromclustercentreprojectedalongoneaxisofthesimulationbox(simulatingcoordinatesaccessibleinobservations).This widensthedistributionofradiiofsatellitesatagiveninfalltime,butthesamepopulationsasintheleftpanelarevisible. radialandvelocityprojections,butemphasizingthelatter.Muchof TotesttheabilityofourPDFstocorrectlyassignaninfalltime thestructurevisibleinFig.3islostinprojection,buthaloeswith toasatellitehalo, weuse ourPDFstoestimatetheinfall timeof differentinfalltimesstilloccupydifferentregionsofphasespace. eachsatelliteinoursample.Thisestimateisthencomparedtothe actualinfalltimeofthesatellite,whichweknowfromtrackingits orbit.Thedistributionof∆t = t (actual)−t (estimated)is infall infall 4.2 InfalltimePDFs plottedinFig.6.A∆tof0representsacorrectguess,soastronger peakabout∆t=0representsahigherrateofsuccess.Asaquanti- Sinceourultimategoalistomodelquenching,perhapsthemostdi- tativemeasureofthestrengthofthepeak,wecalculatethestandard rectlyusefulquestionwecanaskofourdatasetis,givenaposition deviationofthedistribution.ByusingourPDFsbasedonknowl- inprojectedphasespace,whatisthedistributionofpossibleinfall edgeofthe(R,V)coordinatesofeachsatellite,weassignthein- times(oranotherparameterofinterest),andwhatisthelikelihood falltimecorrectlytowithin±2.58Gyrin68percentofcases.For ofeach?Thisquestioniseasilyansweredinastatisticalmannerby comparison,wealsoplotthedistributionof∆tobtainedifonlythe samplingallsatellitesinasmallregionofphasespaceandbinning position coordinate R of the haloes is known, accurate to within thembyinfalltime.TheresultisshowninFig.5foraselectionof ±2.64Gyrin68percentofcases,andifnoneofthecoordinates pointsinphasespace,varyingboththeradialcoordinate(left-right areknown;inthiscase,wesimplydrawvaluesfromthedistribu- acrossthepanels)andthevelocitycoordinate(up-down).Wefocus tionofinfalltimesofourentiresampleatrandom,andfindweare hereonthetrendswiththevelocitycoordinate.Thefirsttrendwe accuratewithin±3.10Gyrin68percentofcases.Finally,weplot note isthat at a given radius, satelliteswithhigher v typically LoS acurveshowingthedistributionof∆tforaparticularsubsample haveslightlymorerecentinfalltimesthantheirlow vLoS counter- ofsatelliteschosenbyeyewhichhave V >−4 R +2.Thissub- parts. This is because a satellite with high vLoS is more likely to sampleisdesignedtoretainprimarilyiσnfalling3sravitrellites(seeFig. haveahightotalspeedandcanpenetratedeeperintothehostpo- 4),andinthiscasetheassignmentofinfalltimesisevenmorere- tentialinagivenamountoftimethanasatellitewithlowspeed. liable.Thisdemonstratesthatifaparticularpopulationofsatellites Insomecases,thevelocitycoordinateallowsustodiscrimi- isofinterest,itisoftenpossibletochoosearegionofphasespace natebetweendifferentsatellitepopulations.Considertherightmost thatmaximisesthelikelihoodofcorrectlyassigningt .Forthis infall panels (R = 1.5) of Fig. 5. One peak in the distribution of in- example,wecorrectlyassignt within±2.48Gyrin68percent infall falltimesisclearlyvisibleatallvaluesofv ,ata ≈ 0.85;itis LoS ofcases.Inpractice,thismakesitpossibletoincreasethepurityof madeupofinfallingsatellites.Asecondpeakata ≈ 0.6ismade anobservationalsampleofgalaxiesattheexpenseofcompleteness up of backsplash satellites, and is only present for low values of ofthesamplebylimitingtheregionofphasespacefromwhichthe v .Thebackspashgalaxieshavelowerkineticenergyrelativeto LoS sampleisdrawn. thehostpotentialthanrecentinfallsduetoacombinationofmass Fig.7showstheaccuracyoftheassignmentoft atthe68 accretionbythehost(increasingσ,thereforecausinganapparent infall percentconfidencelevelforbinsin(R,V)space.ThePDFsgive slowingofhaloes)anddynamicalfriction. themostreliableresultsinthoseregionswithbothgoodaccuracy Given a sufficiently large sample of observed galaxies, the andalargepopulationofsatellites.Intheoutskirtsofclusters,an PDFswehavecreatedwillallowustostatisticallyassignaninfall accuracy ∆t of about 3 Gyr is sufficient to robustly separate in- timetoeachoneusingalltheavailabledynamicalinformationand fallingandbacksplashsatellites. ameaningfuluncertaintyinourassignment.Wehavedevelopeda codeandacompactdatatabletothisendwhichwearepreparedto Weconcludethatusingallobservablecoordinatesofasatel- shareonrequest. lite(R,V)offersanimprovementinassigningt correctlyover infall (cid:13)c 0000RAS,MNRAS000,000–000 6 K. A. Oman,M. J. Hudson&P.S. Behroozi 2.0 time since infall=0-12 Gyr 0-1 Gyr 1-2 Gyr N=31666 N=31874 1.0 3.2 0.0 2.8 -1.0 0 = 2.4 -2.0 z at 2-3 Gyr 3-4 Gyr 4-5 Gyr σ 1.0 N=36739 N=35016 N=38163 / 2.0 r ) v N y ( cit 0.0 g10 o 1.6 lo el -1.0 v al di -2.0 1.2 a r 5-6 Gyr 6-7 Gyr 7-12 Gyr N=30205 N=27064 N=21383 1.0 0.8 0.0 0.4 -1.0 -2.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 radial position r/r at z=0 vir Figure3.Theupperleftpanelshowsthephasespacedistributionofsatellitehaloes(noprojection).Theinfallingpopulationofhaloesisparticularlydistinct, formingthelongdarkbarwithv < 0.Thebacksplashpopulationformstheupperandloweredgesoftherestofthemaindistribution,whilethevirialized populationfillsinthecentre.Theotherpanelscorrespondtobinsbysatellite infalltime,aslabelled (mostbinsare1Gyr).Eachpanelshowsthez = 0 distribution ofsatellites inphasespace.Different satellite populations occupydistinct regions ofphasespace; compareforinstance theupperrightpanel showingmostlyinfallingsatellites,thecentrerightpanelshowingmostlybacksplashsatellitesandthelowerrightpanelshowingmostlyvirializedsatellites. EachbinisalsolabelledwiththenumberofsatellitesNcontainedinthebin. usingonlythepositioncoordinateRcomparableto,butsomewhat ineachinfalltime-radialdistancebinandcomparedtothefiducial lessthan,theimprovementseenwhenusingthepositioncoordinate abundanceofsatellitesinthatbin.Cellswithareddishcolouration Rratherthannoknowledgeofsatellitecoordinatesatall.Careful are preferentially occupied by satellites around high mass hosts, selectionoftheregionofphasespacetobesampledcan,inmany whilecellswithabluishcolourationarepreferentiallyoccupiedby cases,furtherincreasethereliabilityinestimatingt . satellitesaroundlowmasshosts. infall Intheinfallingpopulationofsatellites(t < 4GyrinFig.8, leftpanel)thesatellitesofhighmasshostsappeartofallintotheir 4.3 Masstrends hostsomewhatfasterthanthesatellitesoflowmasshosts;atagiven Whilehaloesofdifferentmassesareexpectedtobeself-similarin timesinceinfall,asatelliteofalowmasshosthasalargertypical mostways,westillfindsometrendswithbothhosthalomassand radialdistancethanasatelliteofalowmasshost.Weproposetwo satellitehalomass.Westudythesetrendsbyseparatingthehaloes possible explanations forthiseffect. First,satellitesof high mass ofinterest–eitherhostsorsatellites–crudelyintoa‘highmass’ hosts tend to have more radial orbits than satellites of low mass anda‘lowmass’bin,thencomparethedistributionofsatellitesin hosts (Wetzel2011), causing them tomove radially inward more phasespaceandinfalltimeforthetwobins. rapidlyon average. Alternately, because thehosts arecontinually Fig.8showsacomparisonofsatellitesaroundhigh-andlow- accretingmass, theirvirialradiusgradually increases. Hostswith masshostsininfalltimevs.radialpositionspace(leftpanel),and highermasseshavehigherpresent-dayaccretionrates;thisisvis- in phase space (right panel). Low mass hosts are defined to have ible in Fig. 8 (right panel) where the region of phase space oc- 1014 M⊙ < M < 1014.5 M⊙while high mass hosts are in the cupied byinfalling satellitesshows anexcess of satellitesaround range1014.5 M⊙ < M < 1015 M⊙.Thepopulationofsatellites highermasshaloes(seealsoWechsleretal.2002,fig.3thereines- aroundeachtypeofhostisnormalized,thenthetwoaresubtracted pecially).Theirsatellitesthereforeappeartomoveinwardslightly (cid:13)c 0000RAS,MNRAS000,000–000 Disentanglingsatellitegalaxypopulations 7 2.0 time since infall=0-12 Gyr 0-1 Gyr 1-2 Gyr N=31580 N=31901 1.5 3.2 1.0 0 2.8 = z 0.5 t a σ 2.4 / 0.0 S o L 2-3 Gyr 3-4 Gyr 4-5 Gyr V y 1.5 N=36722 N=35151 N=38193 2.0 cit N) o ( l 1.0 0 e 1 v 1.6 og ) l S 0.5 o L ( d 1.2 0.0 e t c 5-6 Gyr 6-7 Gyr 7-12 Gyr e N=30097 N=27117 N=21349 oj 1.5 r 0.8 p 1.0 0.4 0.5 0.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 projected radial position R/r at z=0 vir Figure4.AsinFig.3,butusingradialdistancefromclustercentreprojectedalongoneaxisofthesimulationboxandvelocityprojectedalongthesameaxis (againsimulatingcoordinatesofanobservedsystem).MuchofthestructurevisibleinFig.3islostinprojection,buttheuseofLoSvelocitydataallowsbetter spearationofdifferentsatellitepopulationsthanusingtheradialcoordinatealone.Thedashedgraylinemarks V =−4 R +2;see§4.2. σ 3rvir fasterthanthoseoflowmasshostsinthiscoordinatesystem.These distributionofgalaxiesinacluster.Baryons(especiallythestellar twoexplanations couldbeconsidered anargument foradifferent component)aretypicallymoretightlyboundthantheirassociated normalizationoftheradialcoordinate,howeverotherchoices(e.g. darkmatterhalo,andshouldthereforeoutlivethehalointhecluster thevirialradiusofthehostattheinfalltimeofeachsatellite)still environment.Thisrestrictsthesatellites,astracedbygalaxies,that introduce similareffects, and the present virial radius of the host canbestudiedusingourmethodtothosewhichweexpecttohave hastheadvantageofbeingmorerelatedtoobservablequantities.A a surviving DM halo. With the MDR1 dataset, this corresponds morepracticalapproachistocomputePDFsfornarrowhostmass to galaxies with associated DM halo masses of ∼ 1011.9 M⊙or bins (∼ 0.5 dex) and use whichever isapplicable toan observed greater.Smallersatellitesmaystillbestudiedbyusinghigherres- systemof interest;oursample containsenough satellitestomake olution simulations (e.g. the Bolshoi simulation of Klypinetal. thisfeasible. (2011),which hasidentical parameterstoMDR1 but withhigher resolution and a smaller box size). Low mass satellitesare much Wealsoconsidertrendswithsatellitemass.Becausesatellite moreabundant,sothesmallervolumeofahigherresolutionsimu- masstypicallydecreaseswithincreasedtimespentinaclusterenvi- lationshouldnotimpactourabilitytoobtainalargesample,except ronment,weusethesatellitemassattimeofinfall(firstcrossingof perhapsforlow masssatellitesaround verylargehosts(of which 2.5r )asacharacteristicmassforthisanalysis.Fig.9showsthat vir theremayonlybeafewinasimulationsuchasBolshoi). lower mass satellitesexperience backsplashes to largerradii than highmasssatellites.Thisisbecausetheslowingduetodynamical frictionis proportional tothe mass of thesatellite, so that higher masssatelliteslosealargerfractionoftheirkineticenergyduring 4.4 ResolutionEffects apassagethroughacluster.Toaccountforthistrendwithsatellite As shown in section 3, some halos which experience a close ap- mass,separatePDFscanbeproducedforrelativelynarrowbinsin proachtothecentreofalargerhaloexperienceartificialdisruption. satellitemass. Weestimate that any given bin in our PDFsisless than 20% in- Care must be taken when using our method to interpret the complete,andthatoursampleofsatellitesasawholeislessthan (cid:13)c 0000RAS,MNRAS000,000–000 8 K. A. Oman,M. J. Hudson&P.S. Behroozi 01..40 vLoS=0.9,R=0.5 vLoS=0.9,R=1 vLoS=0.9,R=1.5 0.3 N=1321 N=514 N=193 0.2 0.1 0.8 0.0 vLoS=0.6,R=0.5 vLoS=0.6,R=1 vLoS=0.6,R=1.5 0.3 N=2171 N=1358 N=661 y t0.2 si0.6 n e0.1 d y t0.0 bili vLoS=0.3,R=0.5 vLoS=0.3,R=1 vLoS=0.3,R=1.5 a0.3 b N=2856 N=2272 N=1359 o0.4 r0.2 p 0.1 0.0 vLoS=0,R=0.5 vLoS=0,R=1 vLoS=0,R=1.5 0.2 0.3 N=3276 N=2595 N=1626 0.2 0.1 00..00 102.0.0 9.0 6.00.23.0 12.0 0.94.0 6.0 3.00.6 12.0 9.00.86.0 3.0 01..00 time since infall [Gyr] Figure5.Probabilitydensityfunctions(PDFs)ofinfalltimesforaselectionofpoints(R/rvir,V/σ)inprojectedphasespace.Eachpointissampledina regionouttoadistanceabout3percentofthefullrangeofeachcoordinatefromthelabelledpoint.ThenumberofsatellitesineachregionislabelledN, givingameasureofthestatisticsofeachPDF. 0 0 1.0 mass) 1.0 mass) 0.1 0.8 w 0 2 0.8 w time since infall [Gyr]146820 000001112.......2346825zinfall redshift −−−0000....0000246...642mass)N(lowmass))/N(lo− v/σz=dial velocity at r−011 −−−0000....0000246...642mass)N(lowmass))/N(lo− 3 −0.8high ra−2 −0.8high 12 −1.0( −1.0( 0.0 0.5 1.0 1.5 2.0 2.5 N 0.0 0.5 1.0 1.5 2.0 2.5 N radial distance r/rvir at z=0 ( radial position r/rvir at z=0 ( Figure8.Relativeabundanceofsatellitesinthespaceofinfalltimesvs.radialpositions(leftpanel)andphasespace(rightpanel),comparingsatellitesaround lowmass(1014−1014.5 M⊙)hostsandhighmass(1014.5−1015 M⊙)hosts.Thetwopopulationsarenormalized,subtractedineachbin,thencompared tothefiducialabundanceofsatellitesinthatbin(arbitrarilychosentobethepopulationwithlowmasshosts).Onlybinscontainingatleast100satellitesare shown. (cid:13)c 0000RAS,MNRAS000,000–000 Disentanglingsatellitegalaxypopulations 9 0.5 s) s N=248415 (R,V) known 0 0 1.0 ma sity0.4 o(Rn,lVy) R u nknknowownn yr] 2 00..12 00..68 N(high y den0.3 (R,V) cut nfall [G 4 00..34zshift 00..24 mass))/ robabilit0.2 me since i 68 00111....6825infall red −−0.000..42s)N(low− p0.1 ti10 2 −0.6mas −0.8h 3 g 0.0 12 −1.0(hi −5 0 5 0.0 0.5 1.0 1.5 2.0 2.5 N ∆t=tinfall(actual)−tinfall(estimated) [Gyr] radial distance r/rvir at z=0 ( Figure9.Relativeabundanceofsatellitesinthespaceofinfalltimesvs.ra- Figure6.Thedistributionof∆t,ameasureoftherateofsuccessofusing iosuprlPoDtteFdswtoithesatimthaictektrhedesinoflaidllltiinme.e∆titnfa=llo0frseaptreelslietnetshaalosuesccienssofuurlseasmtimplae-, d(1ia0l1p2o.2si−tio1n0s1c2o.8mhp−a1rinMg⊙low)samtealslsite(1s.0T11h.e9tw−o1p0o1p2u.2latMion⊙s)aarendnohrimghalmizeadss, subtracted ineachbin,thencomparedtothefiducialabundance ofsatel- tion,whileincreasing|∆t|representsincreasinganincreasingdiscrepancy litesinthatbin(arbitrarily chosentobethehighmasspopulation). Only withthecorrectvalue.Asharppeakat∆t=0thereforerepresentsahigh binscontaining atleast100satellites areshown.Highmasssatellites are rateofsuccess.Theblackdottedlineshowsthedistributionifweassume slowedmorethanlowmasssatellites bydynamicalfrictionandtherefore noknowledgeoftheLoSvelocity ofthesatellites, whilethegraydotted havelowertypicalbacksplashdistancesthantheirlowmasscounterparts. lineshowsthedistributionifweassumenoknowledgewhatsoeverofthe coordinatesofthesatellites.Eachadditionalcoordinateusedincreasesthe reliabilityofthepredictions.Thethinsolidredcurveshowsthedistribution of∆tforasubsampleofsatellitesselectedtostudyaparticularpopulation 4%incomplete down to1011.9 M⊙.Theeffect onthepredictive ofsatellites(seetextforfulldetails).Thisshowsanexampleofrestricting powerofourmethodwasinvestigatedbygeneratinganorbitcat- theregionofphasespaceconsideredtoincreasethereliabilityinestimating alogue with extra orbits added to compensate for artificially dis- tinfall.Wequantifythedegreeofsuccessinestimatingtinfallbythesharp- ruptedhalos.Theeffectofartificialdisruptiononthedistributions nessofthepeakinthedistributionof∆t,measuredbyitsstandarddevi- of∆t(suchasthoseshowninFig.6)isverysmall,causingchanges ation.Thestandarddeviations forthefourcurvesare2.58Gyr,2.64Gyr, ontheorderofafewtenthsofapercent. 3.10Gyr,2.48Gyr(inthesameorderaslabelsinthelegend).Thenumber Ourinitialinterestforapplicationsof ourmethod istolarge satellitesusedtotestthePDFsislabelledN. satellites (halo masses & 1012.5 M⊙) around hosts with halo masses & 1014 M⊙, which motivated our choice of the MDR1 0 simulation as a starting point. Applying our method to smaller = satellitesofsmallerhostsissimplyamatterofchoosinganappro- z2.0 3.50 at 3.25el priate simulation; our method is easily applied to any simulation σ v thatcanbeprocessedbythe ROCKSTARcode.TheBolshoisimu- V/LoS1.5 23..7050ce le lraetsipoenctisssoafveparretsiocululatironinatenrdesctosuilndcteheitreisfoirdeebneticuasledtoinMcDonRju1nicntioalnl velocity 1.0 1000 100 22..2550confiden wwihtihleMmDaRin1tationienxgtegnodotdhestraatnisgteicosfaotutrhemheitghhodmtaoslsowenedr.massranges ) 2.00% S o 1.758 5 CONCLUSIONS d (L0.5 1.50at 6 Thephasespacedistributionofinfalling,backsplashandvirialized cte 1.25∆t satellitehalos aredifferent but not everywhere distinct. TheLOS e oj0.0 1.00 velocitydistributionswerecoverareinagreementwiththeresults r 0.0 0.5 1.0 1.5 2.0 2.5 ofGilletal.(2005).Likethem,wefindthatdifferentpopulationsof p projected radial position R/rvir at z=0 satellitehalosarebetterseparatedinphasespacethanintheradial coordinatealone,butthatthereisnoimmediatelyobviouscutthat Figure7.Thedistributionof∆tatthe68percentconfidencelevelinthe wecanimposeontheprojectedphasespacecoordinatesofasatel- (R,V)plane; ourPDFswillbemostaccurate whenapplied tosatellites litegalaxytoseparatedifferentpopulations.Mahajanetal.(2011) thatoccupythereddest(darkest)regionsofthespace.UseofthePDFsalso identifiedsomeregionsofprojectedphasespacewherepartsofthe requires areasonable samplesize inthe region ofinterest; contours (0.5 dexintervals) illustrate thenumberofsatellites percell. Wefindthatthe infalling or backsplash populations could be picked out with lit- PDFsbecometoosparseforreliableuseincellscontaininglessthanafew tlecontamination byotherpopulations. Buildingonthisidea,we hundredsatellites.ThedashedgraylinemarksthesameregionasinFig.4 haveexaminedtheentireprojectedphasespaceanddeterminedthe confidence with which the time since infall can be assigned to a satelliteoccupyingthatregion.Thisletsuseasilyidentifyregions (cid:13)c 0000RAS,MNRAS000,000–000 10 K. A. Oman,M. J. Hudson& P.S. Behroozi wherethetimesinceinfallcanbedeterminedaccuratelyenoughto Dressler,A.1980,ApJ,236,351 reliablyseparatesatellitepopulations.Suchregionsthatweidentify Gabor,J.M.,Dave´,R.,Finlator,K.,&Oppenheimer,B.D.2010, areasupersetofthoseidentifiedbyMahajanetal.(2011).Thisal- MNRAS,407,749 lowsanincreaseoftheareaofprojectedphasespaceandtherefore Gao,L.,White,S.D.M.,Jenkins,A.,Stoehr,F.,&Springel,V. the number of satellitegalaxies available for use instudying star 2004,MNRAS,355,819 formationandothereffectsthatmaydependontheorbitalhistory Gill,S.P.D.,Knebe, A.,&Gibson, B.K.2005, MNRAS,356, ofasatellite. 1327 We have developed a tool that estimates the infall time and Gunn,J.E.,&Gott,III,J.R.1972,ApJ,176,1 aconfidenceintheestimateforasatellitehalogivenitsprojected Hogg, D. W., Blanton, M. R., Brinchmann, J., et al. 2004, ApJ, phasespacecoordinates. Thepossibleinfalltimesgivenapairof 601,L29 projected phase space coordinates are weighted according to the Ja´chym,P.,Palousˇ,J.,Ko¨ppen,J.,&Combes,F.2007,A&A,472, frequency of their occurence in simulation, then an infall time is 5 randomlyselectedfromthisweighteddistribution.Wepredictthat, Kitzbichler,M.G.,&White,S.D.M.2008,MNRAS,391,1489 whenappliedtoalargesampleofobservedgalaxies,thismethod Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999, willallowcorrelationsbetweeninfalltimesandsatellitestarforma- ApJ,522,82 tionhistoriestobestudied.Ourmethodiseasilyadaptedtoother Klypin,A.A.,Trujillo-Gomez,S.,&Primack,J.2011,ApJ,740, similarparameters(closestapproachtohostcentre,timesincefirst 102 pericentre,etc.)thatwillbeconsideredinourforthcomingstudyof Larson,R.B.,Tinsley,B.M.,&Caldwell,C.N.1980,ApJ,237, SFquenchinginclusterenvironments,andto‘preprocessing’sce- 692 narios–accretionontoagroupsizedhalobeforeaccretionontoa Ludlow,A.D.,Navarro,J.F.,Springel,V.,etal.2009,ApJ,692, clustersizedone.Itwouldbestraightforwardtoadaptourmethod 931 to systems at higher redshift where we think the different satel- Mahajan,S.,Mamon,G.A.,&Raychaudhury,S.2011,MNRAS, litepopulationsmaybebetterseparatedthanatlowredshift.Our 416,2882 frameworkwouldalsobeverywellsuitedtostudyingdarkmatter Mamon, G.A.,Sanchis, T.,Salvador-Sole´,E.,&Solanes, J.M. strippingofsatellites. 2004,A&A,414,445 Mayer,L.,Mastropietro,C.,Wadsley,J.,Stadel,J.,&Moore,B. 2006,MNRAS,369,1021 McNamara, B. R., Rafferty, D. A., Bˆırzan, L.,et al. 2006, ApJ, ACKNOWLEDGEMENTS 648,164 WewishtothanktheauthorsoftheBolshoiandMDR1simulations Moore,B.,Katz,N.,Lake,G.,Dressler,A.,&Oemler,A.1996, formakingtheirsimulationoutputspubliclyavailable. Nature,379,613 PSBwassupportedbyaHubbleTheorygrant;programnum- Prada, F., Klypin, A. A., Cuesta, A. J., Betancort-Rijo, J. E., & berHST-AR-12159.01-AwasprovidedbyNASAthroughagrant Primack,J.2012,MNRAS,423,3018 fromtheSpaceTelescopeScienceInstitute,whichisoperated by Smith, R., Davies, J. I., & Nelson, A. H. 2010a, MNRAS, 405, theAssociationofUniversitiesforResearchinAstronomy, Incor- 1723 porated,underNASAcontractNAS5-26555. Smith, R. J., Lucey, J. R., Hammer, D., et al. 2010b, MNRAS, MJHacknowledgessupportfromanNSERCDiscoverygrant. 408,1417 Taranu, D. S., Hudson, M. J., Balogh, M. L., et al. 2012, arXiv:1211.3411 Tinker, J. L., Sheldon, E. S., Wechsler, R. H., et al. 2012, ApJ, REFERENCES 745,16 Abadi, M. G.,Moore, B.,&Bower, R.G. 1999, MNRAS,308, Toomre,A.,&Toomre,J.1972,ApJ,178,623 947 Wang, H., Mo, H. J., Jing, Y. P., Yang, X., & Wang, Y. 2011, Balogh, M. L., Baldry, I. K., Nichol, R., et al. 2004, ApJ, 615, MNRAS,413,1973 L101 Wang,H.Y.,Jing,Y.P.,Mao,S.,&Kang,X.2005,MNRAS,364, Balogh,M.L.,Navarro,J.F.,&Morris,S.L.2000,ApJ,540,113 424 Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2012, Wechsler,R.H.,Bullock,J.S.,Primack,J.R.,Kravtsov,A.V.,& arXiv:1207.6105 Dekel,A.2002,ApJ,568,52 Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2011a, Weinmann,S.M.,Kauffmann,G.,vonderLinden,A.,&DeLu- arXiv:1110.4372 cia,G.2010,MNRAS,406,2249 Behroozi, P. S., Wechsler, R. H., Wu, H.-Y., et al. 2011b, Wetzel,A.R.2011,MNRAS,412,49 arXiv:1110.4370 Wetzel,A.R.,Tinker,J.L.,Conroy,C.,&vandenBosch,F.C. Bertschinger,E.1985,ApJS,58,39 2012,arXiv:1206.3571 Birnboim,Y.,&Dekel,A.2003,MNRAS,345,349 Bryan,G.L.,&Norman,M.L.1998,ApJ,495,80 Cox,T.J.,Jonsson,P.,Primack,J.R.,&Somerville,R.S.2006, MNRAS,373,1013 Croton,D.J.,Springel,V.,White,S.D.M.,etal.2006,MNRAS, 365,11 De Lucia, G., Weinmann, S., Poggianti, B. M., Arago´n- Salamanca,A.,&Zaritsky,D.2012,MNRAS,423,1277 Dekel,A.,&Birnboim,Y.2006,MNRAS,368,2 (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.