d i s s e r t a t i o n s | 2 3 Miguel Ángel Muñoz-Ruiz 5 | M Disease State Index i g u e and Neuroimaging in l Alzheimer’s disease (AD) is the most Á n Frontotemporal Dementia, prevalent disease of the dementia ge Miguel Ángel Muñoz-Ruiz l Alzheimer’s Disease and diseases while frontotemporal dementia M (FTD) is relatively common in people u Disease State Index and ñ Mild Cognitive Impairment o younger than 65 years of age. Early and z - R Neuroimaging in Frontotemporal precise diagnosis of these two diseases u i z is a major challenge. There is a need to | D Dementia, Alzheimer’s Disease and identify new methods that could achieve is e a an earlier and more precise diagnosis, and s Mild Cognitive Impairment e to integrate all these data originating from Sta multiple sources, in order to facilitate the te I n clinical diagnosis. This thesis introduces d e x the use of a new combination of different a n d methods in the differential diagnosis of N e AD, mild cognitive impairment stages and u r o FTD, and a tool (Disease State Index and im a Disease State Fingerprint) that collates gin g data from different sources to help in F clinicians to profile a patient as having r o n either AD or FTD. to te m p or Publications of the University of Eastern Finland a l D Dissertations in Health Sciences e m e n t ia , A lz h e Publications of the University of Eastern Finland im e Dissertations in Health Sciences r ’s ... isbn 978-952-61-1479-8 MIGUEL ÁNGEL MUÑOZ-RUIZ Disease State Index and neuroimaging in frontotemporal dementia, Alzheimer’s disease and mild cognitive impairment Neuroimaging and Disease State Index in dementia diseases To be presented by permission of the Faculty of Health Sciences, University of Eastern Finland for public examination in Canthia L3, Kuopio, on Wednesday, June 11th 2014, at 12 noon Publications of the University of Eastern Finland Dissertations in Health Sciences Number 235 Department of Neurology, Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland Neurocenter / Neurology Kuopio University Hospital Kuopio 2014 Kopijyvä Oy Kuopio, 2014 Series Editors: Professor Veli-Matti Kosma, M.D., Ph.D. Institute of Clinical Medicine, Pathology Faculty of Health Sciences Professor Hannele Turunen, Ph.D. Department of Nursing Science Faculty of Health Sciences Professor Olli Gröhn, Ph.D. A.I. Virtanen Institute for Molecular Sciences Faculty of Health Sciences Professor Kai Kaarniranta, M.D., Ph.D. Institute of Clinical Medicine, Ophthalmology Faculty of Health Sciences Lecturer Veli-Pekka Ranta, Ph.D. (pharmacy) School of Pharmacy Faculty of Health Sciences Distributor: University of Eastern Finland Kuopio Campus Library P.O.Box 1627 FI-70211 Kuopio, Finland http://www.uef.fi/kirjasto ISBN (print): 978-952-61-1479-8 ISBN (pdf): 978-952-61-1480-4 ISSN (print): 1798-5706 ISSN (pdf): 1798-5714 ISSN-L: 1798-5706 III Author’s address: Department of Neurology, Institute of Clinical Medicine, School of Medicine University of Eastern Finland KUOPIO FINLAND Supervisors: Professor Hilkka Soininen, M.D., Ph.D. Department of Neurology, Institute of Clinical Medicine, School of Medicine University of Eastern Finland KUOPIO FINLAND Docent Päivi Hartikainen, M.D., Ph.D. Department of Neurology Kuopio University Hospital KUOPIO FINLAND Docent Yawu Liu, M.D., Ph.D. Department of Neurology, Institute of Clinical Medicine, School of Medicine University of Eastern Finland KUOPIO FINLAND Reviewers: Professor Matti Viitanen, M.D., Ph.D. Department of Geriatrics University of Turku TURKU FINLAND Associate Professor Vesa Kiviniemi, M.D., Ph.D. Department of Radiology University of Oulu OULU FINLAND Opponent: Professor Alberto Lleó Bisa, M.D., Ph.D. Hospital de la Santa Creu I Sant Pau BARCELONA SPAIN IV V Muñoz-Ruiz, Miguel Ángel Disease State Index and neuroimaging in frontotemporal dementia, Alzheimer’s disease and mild cognitive impairment; Neuroimaging and Disease State Index in dementia diseases University of Eastern Finland, Faculty of Health Sciences Publications of the University of Eastern Finland. Dissertations in Health Sciences 235. 2014. 135 p. ISBN (print): 978-952-61-1479-8 ISBN (pdf): 978-952-61-1480-4 ISSN (print): 1798-5706 ISSN (pdf): 1798-5714 ISSN-L: 1798-5706 ABSTRACT: The differential diagnosis of dementia diseases represents a challenge particularly in early phases of the diseases. Many studies have focused on predictive factors for conversion from mild cognitive impairment (MCI) to dementia, most often to Alzheimer’s disease (AD). Several methods have been proposed for differentiating between AD and frontotemporal dementia (FTD), another relative common degenerative dementia. The differential diagnosis is not easy due to overlapping clinical and biomarker findings. This thesis introduces the use of a new combination of different methods in the differential diagnosis of AD, MCI and FTD, and describes a tool, Disease State Index (DSI) and its visual counterpart, Disease State Fingerprint which collates data from different modalities and facilitates clinicians to profile a patient as having either AD or FTD. The first publication compared the benefits of hippocampal volumetry (HV), tensor-based morphometry (TBM) and voxel-based morphometry (VBM), in order to identify the most accurate method for differentiating FTD from controls, AD, stable MCI and progressive MCI. Controls can clearly be differentiated from FTD by using HV (Accuracy=0.83), TBM (0.82) and VBM (0.83). VBM achieved the highest accuracy of the methods used in its ability to differentiate between FTD and AD (0.72). The second report described a comparison of FTD cases with AD, MCI and controls, including into the DSI in addition to the imaging methods assessed in study I, also values from CSF, APOE and MMSE. The highest accuracy was reached when comparing FTD with controls (0.84), followed by FTD compared with MCI (0.79) and AD (0.69). MRI is the most relevant feature in FTD in comparison to the situation for MCI and AD, however in the controls vs. FTD comparison, the most relevant feature was the MMSE. The third publication compared FTD cases with AD and controls, including in DSI data from clinical symptoms, Hachinski ischemic score, Webster total score, Hamilton depression scale, MMSE, and tests for assessing functions such as language, memory, visuo-construction and executive-function, MRI, SPECT, APOE genotype and CSF biomarker results. The highest accuracy was achieved in differentiating controls from patients with AD (0.99) and from FTD (0.97). In addition, AD could be differentiated from FTD with a high degree of accuracy (0.86). Clinical symptoms and neuropsychological tests were the most relevant categories in differentiating between AD and FTD. With respect to the imaging methods, MRI was particularly useful in differentiating a healthy state from AD, while SPECT was more relevant in separating FTD from controls and AD. The fourth publication investigated the generalizability of DSI in 875 MCI cases from four cohorts (ADNI, DESCRIPA, AddNeuroMed and Kuopio L-MCI). This report examined the VI accuracy to predict progression from MCI to AD and included MRI imaging analysis, HV, TBM, VBM and as well as CSF biomarkers, neuropsychological tests, MMSE and APOE. MRI features alone achieved good classification accuracies (0.67-0.81) in the four cohorts studied, which can be slightly improved by adding values from MMSE, APOE, CSF and neuropsychological test data. The results revealed that the prediction accuracy of the combined cohort (0.70) was close to the average of the individual cohort accuracies (0.68- 0.82). It is feasible to use different cohorts as training sets for the DSI, as long as they are sufficiently similar. Results from this thesis point to the conclusion that HV, TBM and VBM provide accurate results when comparing the healthy state with disease and for predicting the conversion to AD and may also help in differentiating between AD and FTD. DSI incorporating data from several tests and biomarkers can be supportive in the differentiation of different patients group i.e. controls, MCI, AD, FTD. National Library of Medicine Classification: WL 141.5, WL 358.5, WT 155, WN 185 Medical Subject Headings: Alzheimer Disease; Biological Markers; Diagnosis, Computer-Assisted; Dementia; Diagnosis, Differential; Frontotemporal Dementia; Hippocampus; Magnetic Resonance Imaging; Mild Cognitive Impairment; Neuroimaging; Neuropsychological Tests VII Muñoz-Ruiz, Miguel Ángel Disease State Index and neuroimaging in frontotemporal dementia, Alzheimer’s disease and mild cognitive impairment; Neuroimaging and Disease State Index in dementia diseases Itä-Suomen yliopisto, terveystieteiden tiedekunta Publications of the University of Eastern Finland. Dissertations in Health Sciences 235. 2014. 135 s. ISBN (print): 978-952-61-1479-8 ISBN (pdf): 978-952-61-1480-4 ISSN (print): 1798-5706 ISSN (pdf): 1798-5714 ISSN-L: 1798-5706 TIIVISTELMÄ: Muistisairauden erotusdiagnoosi on haastavaa erityisesti sairauden alkuvaiheessa. Monet tutkimukset ovat keskittyneet tutkimaan niitä tekijöitä, jotka ennustavat lievän kognitiivisen heikentymisen (mild cognitive impairment, MCI)) etenemistä dementiaan, tavallisimmin Alzheimerin tautiin (AT). Useita menetelmiä on ehdottu erottelemaan AT ja otsalohko dementia (frontotemporaali dementia (FTD), joka on melko yleinen muistisairaus nuoremmissa ikäryhmissä. Erotusdiagnoosi ei ole helppoa, koska on kliinisissä oireissa ja biologisissa merkkiaineissa on osittain samankaltaisuutta näissä sairauksissa. Tässä väitöskirjassa tutkittiin uutta menetelmien yhdistelmää AT, MCI ja FTD välisessä erotusdiagnostiikassa. Työssä käytetään työkalua, Disease State Index (DSI, sairausindeksi) ja sen visuaalinen vastinetta, Disease State Fingerprint (taudin sormenjälki), mikä yhdistää tietoja ja helpottaa lääkäriä profiilimaan potilaan. Ensimmäisessä osatyössä vertailtiin hippokampuksen tilavuusmittauksen (volumetrian, HV), tensor-based morphometrian (TBM) ja voxel-based morphometrian (VBM) tarkkuutta erottaa FTD, kontrolleista sekä AT ja MCI potilaista. Kontrollit voitiin erottaa hyvin FTD potilaista käyttämällä HV (tarkkuus=0.83), TBM (0.82) ja VBM menetelmiä (0.83). VBM oli tarkin erottamaan FTD ja AT potilaat (0.72). Toisessa osatyössä verrattiin FTD, AT, MCI ja kontrolli ryhmiä siten, että DSI sisälsi MRI:n lisäksi myös likvorin (CSF) biologiset merkkiaineet, APOE ja MMSE testin tulokset. Paras tarkkuus saatiin FTD ja kontrolli ryhmien vertailussa (0.84), FTD MCI vertailussa (0.79) ja alhaisin FTD / AT vertailussa (0.69). MRI oli tärkein FTD /MCI ja FTD/AT erottelussa. Kolmannessa osatyössä FTD / AT / kontrollit vertailussa DSI sisälsi myös oireiden arviointiasteikkoja, laajempia neuropsykologisia testejä, MRI, SPECT, APOE ja CSF tuloksia. Paras tarkkuus saavutettiin kontrolli / AT (0.99) ja kontrolli / FTD (0.97) vertailuissa. Myös AT potilaat voitiin erottaa FTD potilaista (0.86). Kliiniset oireet ja neuropsykologiset testit olivat tärkeimmät AT ja FTD erottelussa. Kuvantamistutkimuksista MRI oli erityisen hyödyllinen erottamaan terveet AT potilaista, mutta SPECT oli merkityksellinen erottamaan FTD kontrolleista ja AT potilaista. Neljännessä osatyössä tutkittiin DSI:n yleistettävyyttä 875 MCI potilaalla neljässä kohortissa (ADNI, DESCRIPA, AddNeuroMed and Kuopio L-MCI). Tämä työ tutki tarkkuutta ennustaa MCI:n etenemistä dementiaan (AT). Analyysiin otettiin mukaan MRI (HV, TBM, VBM) sekä CSF tulokset, neuropsykologisia testejä, MMSE ja APOE. MRI yksin saavutti hyvän tarkkuuden (0.67-0.81) neljässä kohortissa. Tuloksen paranivat hieman lisäämällä MMSE:n arvot, APOE, CSF ja neuropsykologia testituloksia. Ennustearvon tarkkuus yhdistetyssä kohortissa (0.70) oli lähellä keskimääräisen yksittäisten kohorttien tarkkuutta (0.68-0.82). Tutkimus osoitti DSI:n yleistettävyyden myös eri kohortteja käytettäessä, jos kohortit ovat riittävän samanlaisia ja sisältävät samoja muuttujia. VIII Tulokset osoittivat, että käytetyillä MRI menetelmillä päästään hyvään tarkkuuteen tutkittujen muistisairauksien erotusdiagnostiikassa. Testien, kuvantamisen ja biologisten merkkiaineiden tuloksia yhdistävä DSI voi tukea diagnostiikkaa muistisairauksissa. Luokitus: WL 141.5, WL 358.5, WT 155, WN 185 Yleinen Suomalainen asiasanasto: Alzheimerin tauti; merkkiaineet; Diagnoosi-tietokoneavusteisuus; Dementia; Erotusdiagnostiikka; Otsalohkodementia; Hippokampus; Magneettitutkimus; Neurologia- kuvantaminen; Neuropsykologia-testit IX To my family
Description: