ebook img

Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs PDF

20 Pages·2015·1.85 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs

Originally published as: Dahm, T., Cesca, S., Hainzl, S., Braun, T., Krüger, F. (2015): Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters. - Journal of Geophysical Research, 120, p. 2491-2509. DOI: http://doi.org/10.1002/2014JB011778 JournalofGeophysicalResearch:SolidEarth RESEARCHARTICLE Discrimination between induced, triggered, and natural 10.1002/2014JB011778 earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the KeyPoints: •Novelprobabilisticdiscriminationfor modeling of depletion-induced stress induced,triggered,andnaturalEQ •Demonstratemethodwiththree changes and seismological applications •Studyisofrelevancetoacademia, source parameters industry,andpublic TorstenDahm1,2,SimoneCesca1,2,SebastianHainzl1,ThomasBraun3,andFrankKrüger2 Correspondenceto: T.Dahm, 1GFZGermanResearchCentreforGeosciences,Potsdam,Germany,2InstitutfürErd-undUmweltwissenschaften, [email protected] UniversitätPotsdam,Germany,3IstitutoNazionalediGeofisicaeVulcanologia,Seismology&Tectonophysics,Arezzo,Italy Citation: AbstractEarthquakesoccurringclosetohydrocarbonfieldsunderproductionareoftenundercritical Dahm,T.,S.Cesca,S.Hainzl,T.Braun, andF.Krüger(2015),Discrimination viewofbeinginducedortriggered.However,clearandtestablerulestodiscriminatethedifferentevents betweeninduced,triggered,and haverarelybeendevelopedandtested.Theunresolvedscientificproblemmayleadtolengthypublic naturalearthquakesclosetohydro- disputeswithunpredictableimpactonthelocalacceptanceoftheexploitationandfieldoperations.We carbonreservoirs:Aprobabilistic approachbasedonthemodelingof proposeaquantitativeapproachtodiscriminateinduced,triggered,andnaturalearthquakes,whichis depletion-inducedstresschanges basedontestableinputparameters.Maximaofoccurrenceprobabilitiesarecomparedforthecasesunder andseismologicalsourceparameters, question,andasingleprobabilityofbeingtriggeredorinducedisreported.Theuncertaintiesofearthquake J.Geophys.Res.SolidEarth,120, 2491–2509,doi:10.1002/2014JB011778. locationandotherinputparametersareconsideredintermsoftheintegrationoverprobabilitydensity functions.Theprobabilitythateventshavebeenhumantriggered/inducedisderivedfromthemodeling ofCoulombstresschangesandarateandstate-dependentseismicitymodel.Inourcasea3-Dboundary Received17NOV2014 Accepted5MAR2015 elementmethodhasbeenadaptedforthenucleiofstrainapproachtoestimatethestresschangesoutside Acceptedarticleonline10MAR2015 thereservoir,whicharerelatedtoporepressurechangesinthefieldformation.Thepredictedrateof Publishedonline13APR2015 naturalearthquakesiseitherderivedfromthebackgroundseismicityor,incaseofrareevents,froman estimateofthetectonicstressrate.Instrumentallyderivedseismologicalinformationontheeventlocation, sourcemechanism,andthesizeoftheruptureplaneisofadvantageforthemethod.Iftheruptureplane hasbeenestimated,thediscriminationbetweeninducedoronlytriggeredeventsistheoreticallypossibleif probabilityfunctionsareconvolvedwitharupturefaultfilter.Weapplytheapproachtothreerecentmain shockevents:(1)theM 4.3Ekofisk2001,NorthSea,earthquakeclosetotheEkofiskoilfield;(2)theM 4.4 w w Rotenburg2004,NorthernGermany,earthquakeinthevicinityoftheSöhlingengasfield;and(3)theM 6.1 w Emilia2012,NorthernItaly,earthquakeinthevicinityofahydrocarbonreservoir.Thethreetestcasescover thecompleterangeofpossiblecauses:clearly“humaninduced,”“notevenhumantriggered,”andathird caseinbetweenbothextremes. 1.Introduction Theproblemofinducedandtriggeredearthquakesandthediscriminationbetweennaturaland human-relatedearthquakesisold.Alreadyin1908thefirstlocalseismicnetworkwasestablishedinBochum intheRuhrarea,Germany,tomonitorpossibleinducedearthquakesrelatedtocoalmining[see,e.g., McGarretal.,2002].Sincethen,strongereventsinducedortriggeredbycoalmininginGermanyreached magnitudesofM 4.2[e.g.,Cescaetal.,2013a;Dahmetal.,2010,andreferencestherein].Themostsevere L inducedearthquakesinGermany,however,wererelatedtopotashmining(M 5Heringen/Widdernhausen L 1953,M 5.2Sünna/Werra1975,M 5.5Völkershausen1989,andM 4.9Teutschenthal/Halle1996)[see L L L GrünthalandMinkley,2005,andreferencestherein]andtoconventionalgasproduction(e.g.,M 4.4 W Rotenburg2004[seeDahmetal.,2007]).Worldwide,evenlargerhuman-triggeredearthquakeshavebeen discussed,amongwhichseveralM > 6earthquakesincludeeventsinvicinitytohydrocarbonreservoirs (see,e.g.,McGarretal.[2002]forahistoricalreview)andartificialwaterreservoirs(e.g.,1967M6.3Koyna earthquake,India[Gupta,2002]).Thepossiblehumaninfluenceforsuchdamagingearthquakescloseto DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2491 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 geotechnicaloperationsoftenleadstolongdisputesbetweenseismologists,thepublic,andstakeholders fromindustry,especiallysincecommonlyacceptedrulesforthediscriminationbetweenhuman-induced andnaturalearthquakesdonotactuallyexist. Inordertotacklethediscriminationproblem,usually,thetemporalandspatialcorrelationofearthquakesto regionsundergeotechnicalactivitiesisinvestigated.Iftheeventis”closeenough”and”occurredwithinthe periodofhumanactivity,”itisassumedtoberelatedtotheactivity.However,acleardefinitionof”closeness” or”period”isnotestablished.Suchadefinitionshouldconsider,atleast,thetypeandthesizeoftheregion affectedbythegeotechnicaloperationaswellasthesizeoftheruptureplane. AnotherqualitativediscriminationapproachhasbeensuggestedbyDavisandFrohlich[1993]forfluid injectionandbyDavisetal.[1995]forfluidwithdrawal,whereeithersevenornineYES-NOcriteriaare assessed.Thequestionsinvestigatethebackgroundseismicity,theuniquenessoftheoccurrenceatthe givenposition,theclosenesstothefieldactivityandactivityperiod,thecorrelationbetweenseismicityand withdrawal,andthepossiblephysicalmechanism.IfmorethanhalfofthequestionsareansweredbyYES, theeventisconsideredtobelikelyinduced.Althoughsuchadiscriminationapproachisstillqualitative, italreadyinvolvesakindofBayesianapproachtocombineexpertopinionsanddifferentaspectsofthe complexproblem. However,suchweakdefinitionsandweakregulationsmaybehandableifenoughhuman-relatedseismicity occurredinotherwisenontectonicregionswithnearlynoseismicity,as,e.g.,NorthGermany,sothatclear statisticalcorrelationscanbeassessed.Moredifficultdiscriminationproblemsmayariseifthegeotechnical operationsaresituatedintectonicallyactiveregions.There,earthquakesoftectonicoriginmayhavesimilar epicentersthanthosecausedbyhumaninfluence,andtheYES-NOquestionsmaynotbesufficientto adequatelyhandletheproblem.ThePoPlainandtheAdriaticsedimentarybasininNorthernItalymaybe anexample,amongothers,whereoilandgasfieldshavebeenexploitedinaregionwherenaturaltectonic earthquakeshavefrequentlyoccurred. Thediscriminationproblemisevenmoredifficultifhuman-triggeredandhuman-inducedearthquakesare distinguished(fordefinitions,seeMcGarr[1991],Bossu[1996],McGarrandSimpson[1997],Gupta[2002], Dahmetal.[2013],Cescaetal.[2013b,2014],andShapiroetal.[2013]).Weuseadefinitionfortriggered andinducedeventssimilartoMcGarrandSimpson[1997]andShapiroetal.[2013]butfurtherspecifiedin termsofgeometricalconsiderations[seealsoDahmetal.,2013].AccordingtoMcGarrandSimpson[1997], inducedearthquakesarecommonlyunderstoodaseventswheremostofthestresschangereleasedduring rupturewasproducedbythehumanaction,whiletriggeredeventsreleaseasubstantialamountoftectonic stress.McGarrandSimpson[1997]alsopointoutthegeneralmotivationforsuchadistinction:triggered eventsoftenhaveadifferentfrequencymagnitudedistributionandadifferenthazardincomparisonto inducedones.Onlyforsomefewtypesofhumanactions,as,e.g.,pureinjection,thedistinctionispossibly notneededsincealleventsarealwaystriggeredandnotinduced[Gupta,2002;Ellsworth,2013]. Recently,probabilisticdiscriminationcriteriahavebeensuggestedinordertodevelopclear,quantitative, andtestablediscriminationrules[e.g.,Cescaetal.,2013a;Dahmetal.,2013;Passarellietal.,2013].Our contributionreferstothislineofresearchanddevelopsaprobabilisticdiscriminationschemeforthe problemofconventionalproductionofoilandgasfieldsanddepletion-inducedanddepletion-triggered earthquakes.Themethodisbasedonphysical-statisticalseismicitymodels.Itconsiderstheuncertaintyin earthquakelocationandotherinputparametersanddistinguishesbetweennatural,human-triggered,and human-inducedearthquakes.Themethodisdemonstratedandtestedforthreeexamples:(1)the2001M W 4.3Ekofisk,NorthSea,oilfield-inducedearthquake;(2)the2004M 4.4Rotenburg,NorthernGermany;and W (3)the2012M 6.1Emilia,NorthernItaly,gasfield-relatedearthquakes(Figure1). W 2.Method Weassumethatanearthquakeoccurrednearanoilorgasfieldthatcontinuouslyproducedoveraperiod ofseveralyearsandisdepleted.Thepurposeoftheschemeistoevaluate(estimate)theprobabilitythat theearthquakehasbeenhumantriggeredorhasbeenhumaninduced.Weuseadefinitionof”triggered” and”induced”suggestedbyDahmetal.[2010,2013]andsimilartoMcGarrandSimpson[1997]but specifying—forreasonsgivenbelow—theportionoflargestressreleaseontheruptureplane,instead ofusinganintegralvalueonly.SuchadefinitionissimilartotheonebyShapiroetal.[2013].Triggered DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2492 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 Figure1.Overviewplot.Earthquakesunderstudyaredeclaredasredfilledcircles.Dashedpolygonsindicate seismogeniczones[seeGrünthaletal.,2010;Bungumetal.,2000;Giardinietal.,2013].Greyfilledcircles(size scaledbymagnitude)indicatetectonicearthquakespriortothestudiedevents(M >4.5from1000to2006, W European-MediterraneanEarthquakecatalogue[seeGrünthalandWahlström,2012]).(a)TheNorthSeaandNorthern Germanyarea.Gasandoilfieldsareindicatedbycoloredfilledpolygons(grey=Carbon,red=Rotliegend,green= Zechstein,yellow=post-Zechstein).Human-relatedearthquakes(1986–2012,M>3)closetofieldsareplottedbylight redfilledcircles(cataloguesprovidedbyBGRHannover,Germany,andtheRoyalNetherlandsMeteorologicalInstitute, DeBuilt,Netherlands).(b)TheNorthernItalyarea.TheCavoneoilfieldisindicatedbythecoloredpolygon.Thedashed linedepictstheareaofthezoneITAS293. isunderstoodinthesensethattheruptureinitiationwascausedbythedepletion-inducedstressrate atthehypocenteroftheearthquake.Ruptureinitiationistestedbystudyingthe“humaninfluence”at thehypocenter.Aninducedearthquakeisunderstoodinthesensethattherupturewasdrivenbythe depletion-inducedstressoverthefullruptureplane,which,forinstance,foraM 6crustalearthquakemay W easilyreachadimensionofabout10km×10km[e.g.,WellsandCoppersmith,1994;Blaseretal.,2010]. Wefurtherassumethataseismologicalstudyhadbeenperformed”apriori”andthatboththehypocenter orcentroidlocationincludingitsuncertainty(e.g.,1𝜎errorellipsoid)andthesourcemechanismofthe earthquakeareknown.Ifpossible,alsothefaultandauxiliaryplaneanditsrespectiveuncertaintiesshould havebeenidentifiedapriori. Wespecificallyassumetwoperiodsofsteadystateconditionswithinarockvolumewithlineardimension significantlylargerthantheruptureplane.Thereferenceperiodisbeforetheproductionhasstarted,where aconstanttectonicstressrate𝜏̇T isactingonthefaultplaneofthestudiedearthquakeinrakedirection ofthemomenttensorsolution(e.g.,definedasCoulombstressrate).Thebackgroundstressisrelatedto aconstantrateofearthquakes(backgroundeventrate),rT,e.g.,expressedbytherateandstateseismicity modelbyDieterich[1994].ThevaluerT isdefinedforagivenmagnitude(interval).Itcanbeestimatedfrom thenumberof(similar)tectoniceventsperunitareaandtimeinterval.Kostrov[1974]establishedalinear relationbetween𝜏̇T andrT byexploiting𝜏̇T ∼ ⟨M ⟩rT∕V,where⟨M ⟩isthescalarvalueofsummedseismic 0 0 momenttensorsdividedbythenumberofearthquakesandVtheseismogenicvolume[Catallietal.,2008; Hainzletal.,2010].Assumingthatthefocalmechanismsaresimilar,⟨M ⟩canbeestimatedbyintegration 0 oftheproductofthescalarseismicmomentandtheprobabilitydensityforagivenmagnitudedistribution. HereweassumeadoublytruncatedGutenberg-Richterdistribution.Thenhavingtheinformationofannual earthquakerate10aofM≥0events(i.e.,theavalue),thebvalue,themaximummagnitudeM ,andthe max areaoftheseismogeniczoneAaswellastheseismogenicwidthD,thebackgroundshearstressrate𝜎̇T is S [e.g.,Hainzletal.,2010] 𝜎̇T =⟨M ⟩10a−bMmin =10a+9.1 b 10(1.5−b)Mmax −10(1.5−b)Mmin 1 S 0 AD 1.5−b 1−10−b(Mmax−Mmin) AD lim 𝜎̇T =10a+9.1 b 10(1.5−b)Mmax (b<1.5) (1) Mmin→−∞ S 1.5−b AD DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2493 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 Table1.ParameterDefinitionsandNomenclaturea Parameter Description p (x)andp(𝜽) probabilitydensitydistributionoftheearthquakelocationandthe e modelinputparameter,respectively r(x,𝜽),rT(x,𝜽), earthquakerate:total,tectonicbackground,anddepletioninduced, andrD(x,𝜽) respectively 𝜏̇(x,𝜽),𝜏̇T(x,𝜽), Coulombstressratesonthefaultplaneindirectionofobservedslip: and𝜏̇D(x,𝜽) total,tectonicbackground,andfielddepletion,respectively pD(x,𝜽)and triggerpotentialofbeingcausedbyfielddepletionortectonic pT(x,𝜽) stressing,respectively P andP averageprobabilitythattheeventwasdepletiontriggeredor trig ind depletioninduced,respectively aAll rate and event numbers are defined per unit volume for a given magnitude interval,M≥M . c withunits(Pa/y)ifAandDaregiveninunitsofm2andm,respectively.ThetectonicCoulombstressrate employedisthen ( ) [ ( ) ] ( ) 𝜏̇T = 𝜎̇T +𝜇 𝜎̇T −Ṗ = n̂ × T×n̂ ⋅𝚫û +𝜇 T⋅n̂ −Ṗ , (2) S N f f whereT = 𝜎 n̂,𝝈istheregionalstresstensorandn̂ and𝚫û arethenormalandslipunitvectorsofthe i ij j ruptureplane,respectively,P istheporepressureintherockand𝜇isthefrictionangleintheCoulomb f failurelaw. Ifthetectonicsurfacedisplacementfieldhasbeenaccuratelymeasured,andthecouplingoftheplateis sufficientlywellknown,𝜏̇Tmayalternativelybeestimatedfromstrainrates. Thesecondperiodunderconsiderationisdefinedsomeyearsafterthestartofoilorgasrecoveryuntil theoccurrenceoftheevent.Mostoften,theannualproductionratesareroughlyconstantafterthe infrastructuresareinstalled.Weuseaconstantdepletionrateforsimplicity.If𝜏̇Disthedepletion-induced Coulombstressrateonthefault,thetotalactingstressrateis𝜏̇ = 𝜏̇T +𝜏̇D.Accordingly,theexpectedtotal earthquakerateinthevolumeunderconsiderationisr = rT +rD.Usually,rT isasmoothfunctionofspace, whilerDand𝜏̇Darevariablefunctionsofspace,decayingtozeroifthefaultisfarfromtheexploitedfield. EmployingtheDieterichseismicitymodel[e.g.,Dieterich,1994,1995]understeadystateconditions,itiseasy toshowthat r 𝜏̇ rD 𝜏̇D = andaccordingly = . (3) rT 𝜏̇T rT 𝜏̇T Wewillusethisrelationtogetherwith(2)toderiverDandrandtodefineatriggerprobability.Forinstance, thedepletion-inducedstressratecanbeestimatedbyelasticmodelingconsideringtheconceptofnuclei ofstrain[e.g.,Geertsma,1973].Sincewedonotwanttoevaluatetheeffectofpossiblestressshadows,we willconsideronlyvaluesof𝜏̇D≥0andthereforedefinethehuman-inducedstressrateby𝜏̇DH(𝜏̇D),where HdefinestheHeavisidefunction.Inotherwords,wewilldiscardherethepossiblestabilizingeffectoffield depletiononearthquakeoccurrence,whereP isapriorizero. trig Theprobabilisticdiscriminatorymethodisstraightforward.Anoverviewoftheparameterdefinitionsand nomenclatureisprovidedinTable1.Thesetofmodelparameterstocalculate𝜏̇D∕𝜏̇T ismappedinto vector𝜽.Wefirstdefineatriggerpotentialthatanevent,whichwaslocatedatpointx,hasbeentriggered bydepletion rD(x,𝜽) H(𝜏̇D)𝜏̇D(x,𝜽) pD(x,𝜽))= = . (4) rD(x,𝜽)+rT(x,𝜽) H(𝜏̇D)𝜏̇D(x,𝜽)+𝜏̇T(x,𝜽) DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2494 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 Thisfunctiongivestheprobabilitythatthe rupturenucleationwastriggeredbyfield depletionassumingthatweknowexactly thehypocenterlocationoftheearthquake (Figure2,blacksolidline).Thetrigger potential,assumingthattheeventwas oftectoniccause,pT,issimilarlyequated byreplacingrDbyrT inthedenominator sothatpT(x,𝜽) = 1 − pD(x,𝜽).Note thatthesameapproach(equation(4))is usedtocalculatetheprobabilitytobean aftershockorbackgroundevent[Zhuang andOgata,2004]. Inpractice,spatialcoordinatesandparam- etervaluesarediscretizedonregulargrids, andwemaycalculatepDateachgrid pointinavolumeunderstudy.Thetrigger potentialhastobeconsideredatthe Figure2.Sketchtoillustratetheapproachin1-D.(a)Geometryof hypocenteroftheearthquake.Ifwewould theproblem.Anearthquakeislocatedclosetoanoilfieldandin somedistancetoanactivetectonicfault.(b)Thedepletion-induced notknowwheretheearthquakeoccurred, (red)andtectoniceventrates(blue)areplottedalongprofilex, themaximumofpDwouldindicatethe wheretheoilfieldissituatedbetween−10kmand10km.Below, mostlikelylocationandparametervalue thetriggerpotentialpD(blacksolidline)isplottedtogetherwiththe giventhattheeventwasdepletion filteredfunctionf∗pD(dashed),wherethefilterlengthoftheboxcar triggered,whilethemaximumofpT would functionwas100km.Verticaldashedlinesspecifythecentroid positionsoftwohypotheticalearthquakecentroids. indicatethemostlikelylocationgiventhat theeventwastectonictriggered. Thehypocenterlocationuncertaintycanbegivenintermsoftheprobabilitydensityfunction (pdf)p (x).Forinstance,well-locatedearthquakesmayhaveaGaussianlocationlikelihoodas e pe(x) = [2𝜋]3∕12s s s e−12(x−s2xx̄)2 e−12(y−s2yȳ)2e−12(z−s2zz̄)2,where(x̄,ȳ,z̄)declaresthebesthypocenterlocationand x y z (s ,s ,s )the1𝜎standarddeviation.Iftheuncertaintyofthelocationislarge,p maybeaflatconstantlike- x y z e lihoodoversomedistancewithradiusr.Forinstance,rmaybedefinedfrommacroseismicdataandthen usedtodefineavolumeVtosuggestanequaldistributionlocationlikelihoodasp =1∕V(orp =1∕Aforan e e areaapproach).Ifweconsiderthelocationpdfandequivalentlythepdfoftheinputparameter,p(𝜽),the triggerprobabilitycanbeequatedby P = pD(x,𝜽)p (x)p(𝜽)d𝜽dx. (5) trig ∫ ∫ e V 𝜃 Ifuncertaintiesarepresent,P istheweightedaverageofthetriggerpotentialfromthevaluessampled trig bythepdfsoftheinputparameterandthehypocenterlocation(Figure2).Wecalculatetheprobabilitybya bootstrappingapproach:locationsandparametersarerandomlysampledfromtheirpdfs,andtheresulting distributionofthetriggerpotentialisanalyzedintermsofitsaverageormediananditsspreadintermsofa standarddeviationorpercentile. Equation(5)isusedtoestimatethetriggerprobabilityofthehypocenteroftheevent,i.e.,thenucleation pointofrupture.Thiscorrespondstotheprobabilitythattheearthquakewastriggeredbyfielddepletion, independentofthequestionwhetheralargeportionoftherupturewasdrivenbytectonicstressornot andwhetheralargeportionoftheruptureplaneliesoutsidethevolumeinfluencedbyfielddepletion. Ifwewanttotestwhetherthecompleterupturewaslikelydrivenbydepletion-inducedstressrates,we calculatetheaveragetriggerprobabilityofallpossiblenucleationpointsontheruptureplane,independent ofthequestionwherethetruenucleationpointwas.Iftheearthquakeruptureisviewedasasubsequent triggeringofmanysmallrupturesegments,eachsinglerupturesegmentwouldhavehad,onaverage,a highlikelihoodofbeinghumantriggered.Althoughthissimplifiedmodelisonlyaroughapproximation ofaphysicalrupture,i.e.,sincesegment-segmentinteractionisneglected,itcanbeusedasaproxyfor DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2495 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 Figure3.StressandlocationmodelfortheEkofiskcase.Thegreenlineindicatestheerrorellipsederivedfromtravel- timeinversion.TheEkofiskandWestEkofiskoilfieldsareindicatedbythickgreylines.Thebluefilledpolygonsshow anareaoflocalizedpreseismicupliftduetounintendedwaterinjection[seeOttemölleretal.,2005].(a)Comparisonof measured(coloredcontours)andmodeledsubsidencebowl(coloredgrid)in2001bysimulatingnucleiofstrainat3km depthatthegivenrectangularboundaryelements.(b)SimulatedCoulombstressrate(coloredgrid)onasubhorizontal planein2kmdepthparalleltotheassumedfaultplane.Thesourcemechanismoftheearthquakeisindicatedbylower hemisphericalprojectionofthePwaveradiationpattern.Thethickblackarrowindicatesthecentroidlocationand rupturedirectionasderivedfromthekinematicwaveforminversion[Cescaetal.,2011].Theblueandredarrowsshow theGPS-observednear-fieldcoseismicgroundmotioninhorizontalandverticaldirection,respectively.Theblackcrossis areferencepoint. thediscriminationbetweentriggeredandinducedearthquakes.Thetestmayberealizedbydefininga representativevolumeembeddingtheruptureplane.Thisiseitherretrievedfromaseismologicalkinematic sourceinversionorbymeansofscalingrelations.Forinstance,thevolumemaybeformedbytherupture planewithlengthLandwidthWasbaseandonegridsizeinperpendicularheight.Ifthelocationofthe ruptureplaneisnotwellconstrained,theperpendicularheightmaybeincreasedoracubearoundthe centroidmaybechoseniftheruptureplaneorientationisuncertain.Then,eachcentroidpointx inpDhas i tobeintegratedineachcoordinatedirectionoverthelengthintervaldefinedbythechosenvolume,e.g., inlengthdirectionalongstrikeintheinterval[x −L∕2,x +L∕2].Theintegrationrepresentsasmoothing i i operation,e.g.,aconvolutionwithafault-likeboxcarfunction(faultfilter).Forthetestofaninduced earthquake,wethereforefirstsmooththetriggerpotentialwithafaultfilterf(x,L,W,strike,dip)andapply i thenequation(5)tothefilteredresultsoff ∗pD [ ] P = f(x,L)∗pD(x,𝜽) p (x)p(𝜽)d𝜽dx, (6) ind ∫ ∫ e V 𝜃 where∗declaresaconvolutionintegral.Thefaultfilterisnormalizedsothatitsintegralisequalto1. Equation(5)canbeinterpretedasaspecialcaseof(6)forwhichthelengthLisreducedtothegridsizeof thecentroidpointsundertesting. P isusuallysmallerthanP .ThisisillustratedinFigure2.Forinstance,theearthquakeunderstudymay ind trig havehadamagnitudeofM7andafaultsizeof10km×100km.Thedimensionofthestressrateanomaly oftheoilfieldispossiblyonly20kmindiameter.Iftheearthquakenucleatedinadistanceof40kmfrom thecenteroftheoilfield,thetriggerprobabilityinourcasewouldbezero.Ifitnucleateddirectlyabovethe field,thetriggerprobabilityinourexamplewouldbenearly80%.However,theprobabilitytobeinduced overthefaultlengthof100kmislessthan20%evenabovethefield(Figure2,dashedcurve),soP will ind besmalleveniflocationuncertaintieswouldbetakenintoaccount.ThenucleationofthehypotheticM 7earthquakewouldhavebeenhumantriggered,butthe100kmlongrupturewouldbeclassifiedtobe DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2496 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 nothumanrelatedandmostlydrivenbytectonicstress.Thisisinlinewithinterpretationsgivenbyothers [e.g.,McGarrandSimpson,1997]. 3.Applications 3.1.The2001M 4.3Ekofisk,NorthSea,Earthquake W The7May2001M 4.3EkofiskinducedearthquakewaslocatedincloseproximitytotheEkofiskoilfields W intheNorthSeawithawaterdepthofabout80m(Figure3aand,e.g.,Ottemölleretal.[2005]).TheEkofisk oilfieldissituatedinabout3.1kmdepthwithinthepost-Zechsteinformationbelowanoverburdenmostly composedofclayandshales,interbeddedbysiltystreaks[Abdulraheemetal.,1994].Theearthquake locationuncertaintieswere4.7kminlatitudeand7.6kminlongitude[Ottemölleretal.,2005].Adetailed waveformmodelingcombiningbroadbandregionalandteleseismicdatawithnear-fieldGlobalPositioning System(GPS)dataretrievedabestfocalmechanismwithstrike161◦,dip77◦,rake−100◦,scalar moment2.85⋅1015Nm,anddepthof2km.Especiallythenear-fieldGPSdatawithobservedupliftcould demonstrate,incombinationwiththeretrievedsourcemechanism,thattheseismicsourcecentroidwas shallowabovethefieldformationattheeasternborderofthefield[Cescaetal.,2011].Akinematicinversion forparametersoftheextendedsourceandrupturefurtherindicatedthatthesubhorizontalplaneruptured unilaterallyoveralengthofabout6kminazimuthaldirectionofabout133◦[Cescaetal.,2011].The kinematicsolutionfurtherindicatedaveryslowrupturevelocityofonlyabout500ms−1(equalto0.26 timestheshearwavevelocity)andalongrisetimeofabout7s.Theunusualslowandlongruptureexplains thatsuchamoderate-strongearthquakewasabletoradiateenergeticlow-frequencyRayleighandLove waveswellobservedupto2000kmepicentraldistance.AssuggestedbyOttemölleretal.[2005]and supportedbythekinematicsourceinversionofCescaetal.[2011],therupturewaslikelytobetriggeredby anunintendedwaterinjectionduringabout2yearsof1.9⋅106m3in2kmdepthnearthenortherncentral partofthefield[Ottemölleretal.,2005](seeFigure3aforlocation).Thetriggeringoftheearthquakerupture mayhavebeenrealizedbytheformationandslowgrowthofalargehorizontalhydrofracturewithinthe overburdeninabout2kmdepthwithintheshaleandmudrocks.Thecreationandsubhorizontalorientation ofsuchahydrofracturewaslikelyduringtheperiodofthewaterleakagebecauseofthehighinjection pressureexceedingthetensilestrengthofthesediments[seeOttemölleretal.,2005,Figure11]andbecause oftheshapeofthedepletion-inducedstressellipsoidwasfavorableforhorizontalfracturegrowth.Theuplift retrievedbydifferentialbathymetrybeforeandaftertheearthquakeintheregionofthewaterinjection hole[seeOttemölleretal.,2005]supportstheideathatasubhorizontalhydrofracturedidform. Knowingtheearthquakehypocenterandcentroidlocation,therakedirectionandthesizeanddepthofthe faultplane,weaimtotestwhethertheearthquakewasnatural,depletiontriggered,ordepletioninduced. Afirststepistoderiveadepletion-inducedstressratemodelforthevolumeoftheoverburdenabovethe oil-bearinglayer.Asaconsequenceoftheporepressuredecreaseinthereservoir,thereservoirformation compactsandtherockvolumeaboveandbelowthereservoirdeforms.Weusethemodelofnucleiofstrain [Geertsma,1973]andsimulatethedepletioneffectconsideringtheextent,shape,anddepthoftheEkofisk oilfield.Theoilfieldisapproximatedasathinporouslayerembeddedinanimpermeablehalf-space.We assumeahalf-spacemodelwithashearmodulusof6GPaandaPoissonratioof0.25.Notethattheabsolute valuesoftheelasticmodulesarenotveryimportant,sincewecalibratethestressandporepressuremodel bythemeasuredseafloorsubsidence.Forinstance,assumingastifferoverburdenpredictslargerpore pressurereductionstoexplainagivensubsidencerate(deformation)butleadstosimilarstressratesin therock. Fieldgeometryisoftenirregularandoflargeextent,and3-Dmodelingisneededtoanalyzetheproblem. Wemodifya3-Ddisplacementdiscontinuitymethodtoconsidertheeffectofundrainedporoelasticfield depletion.Thethickness,Biot’sconstant,andeffectiveuniaxialcompactioncoefficientofthefieldare considered(AppendixB). Themaximalvalueofthedepletion-inducedsubsidenceoftheseaflooroveraproductionperiodofabout 30yearsoccurredroughlyinthemiddleoftheEkofiskfieldandwasmorethan8.26m(Figure3a).The Ekofiskfieldisneithercircularnordiskshaped,andoursimulatedsubsidencepatternisthereforenot exactlybowlshapedaspredictedbyanalyticalsolutions[e.g.,Geertsma,1973;Chan,2004].Ourreservoir porepressuremodelexplainswellthegeneralpatternandquantitativevaluesofthesubsidenceinterms ofmagnitudeandshape(Figure3a).Aporepressuredecreaseofabout47MPaisneededtoexplainthe DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2497 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 Table2.SeismicityParameters(TakenFromSHAREProject[Giardinietal.,2013])andtheResultingTectonicStressRate FromEquation(1)WithItsStandardDeviation(inBrackets)a Earthquake SourceZone A(km2) a N(M≥5/year) b M (Weight) D(km) 𝜏̇T (Pa/yr) max Ekofisk NLAS037 174,800 2.8 0.006 1.0 6.5(0.5),6.7(0.2),6.9(0.2),7.1(0.1) 20 1.1(0.4) Rotenburg BAAS191 39,800 3.7 0.158 0.9 7.3(0.5),7.5(0.2),7.7(0.2),7.9(0.1) 16.0 521.7(274.5) Emilia ITAS293 11,080 3.7 0.050 1.0 7.3(0.5),7.5(0.2),7.7(0.2),7.9(0.1) 10.0 714.7(388.0) aDetailsofthedeterminationoftheseismicityparameterscanbefoundathttp://www.share-eu.org.Uncertainties aretakenintoaccountby(i)probabilitiesforM asprovidedbySHARE(seetable),(ii)uniformdistributedrates max N(M≥5/year)within±50%,(iii)uniformdistributedbvalueswithb±0.1,and(iv)uniformdistributedDvalueswithin D±5kmthecorrespondingdistributionofavaluesiscalculatedbya = log(N) + 5b.Thescalefactorofw = 1is assumedin(2)sincetheearthquakeswerefavorableorientedwithrespecttotheregionalstressorientation. subsidenceovertheperiodof30years.Ifweassumeahomogeneousproductionrate,thisresultsinapore pressurereductionrateofabout1.6MPa/yr.Thisestimateiswellinagreementwithaninitialporepressure intheEkofiskfieldofabout47MPa,droppedtonearlyzeroduringtheproductionperiod[Ottemölleretal., 2005]andsupportsthechoiceofparameterinthemodelingstudy. Fromthereservoirdepletionmodelwecalculatethestressrateforeachstresscomponentateach half-spacegridpointwithaspacingof500m.Figure3bshowstheCoulombstressrateindirectionofthe slipvectoroftheearthquakeonahorizontalplaneat2kmdepth.ItisnoteworthythatthehighestCoulomb stressratesupto120kPa/yroccuralongthenorthernandeasternbordersofthefieldwheretherupture waslocatedbyCescaetal.[2011].TheCoulombstressrateinFigure3bisassociatedwith𝜏̇D,aparameter neededinthediscriminatoryequation(5). Theotherquantityneededisthenaturalstressrate𝜏̇T.TheEkofiskoilfieldislocatedwithintheNorthSea Centralgrabensystem,afailedcontinentalriftsystemthatwasformedduringtheTriassicandJurassic periodsandisinactivetoday.Thehistoricalandinstrumentalseismicityoverthelast100yearsisminor. TheVikinggraben,whichisnorthoftheCentralgraben,appearsslightlymoreactivethantheCentral grabensystem[e.g.,Bungumetal.,1991].ThelargestinstrumentallyrecordedearthquakeintheNorthSea wastheM 6.11931DoggerBankearthquakeoffcoastSEEngland.However,thisisabout300kmsouth L ofEkofiskandnotassociatedwiththeseismiczoneofCentralgrabenatEkofisk.Theaveragerecurrence periodforM>3.8intheseismiczoneoftheEkofiskeventisabout100years,withabvalueofabout1 [Bungumetal.,2000;Grünthaletal.,2010;Giardinietal.,2013].Theaveragetectonicstressrateisestimated 𝜏T≈(1.1±0.4)Pa/yr(5%and95%percentilesat0.5Pa/yrand2.0Pa/yr,respectively)dependingonthe assumedseismogenicthicknessandmaximalmagnitudeM .TheestimatesinTable2areconsideredto max containtheminimalandmaximalboundsofthetectonicstressrate.Theestimatedupperlimitispossibly toohigh.Forcomparison,thetectonicstressrateintheCentralAppenninesgrabensystemintheregion ofAquila,whereseveralM < 6earthquakeswerereportedduringhistoricaltimes,isestimatedatabout 0.7kPa/yr[Catallietal.,2008]. Figure4showstheresultofthediscriminationtestsbyusinganupperboundvalueof𝜏̇T = 0.0015kPa/yr andaporepressuredropintheoilfieldofΔP≈47MPa(5%and95%percentilesat44MPaand50MPa, respectively).Figure4ashowsthediscriminationtriggerpotentialpDinaplaneat2kmdepth.Overthe regionofthelocationuncertainty,pDisalmostalwayscloseto1.TheestimatedprobabilitythattheEkofisk earthquakehasbeentriggeredbyfielddepletioniscloseto0.99. WetestwhethertheEkofiskeventwasnotonlytriggeredatthenucleationpointbutdepletiondrivenover thefullsizeofitsruptureplane.Figure4bshowstheprobabilitytohavebeeninducedifwefilterpDwith faultfilterof10×10kmsothatthefaultwouldcovernearlyhalfoftheareaoftheEkofiskfield.Thetrigger potentialfunctionisthereforespatiallysmoothed.Theprobabilitytobeinducedisestimatedstillveryhigh atP ≈0.74±0.28. ind 3.2.The2004M 4.4Rotenburg,NorthernGermany,Earthquake W The20October2004M 4.4Rotenburgearthquakeoccurredincloseproximitytothethreemost W productivegasfieldsinNorthGermany,theSöhlingen,theRotenburg,andtheVölkersenfields(Figure5a). ThreeaftershockswithM between1.7and2.2couldbedetectedandlocatedduringthefirst4daysafter L themainshock.TheeventswereinproximitytothesouthwesternborderoftheSöhlingenfield,whichis situatedintheRotliegendDethlingensandstonein5.8kmdepth.ThetightgasfieldiscoveredbyZechstein DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2498 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 Figure4.(a)Thetriggerpotentialat2kmdepthfromdepletionoftheEkofiskoilfield(coloredgrid)isplottedtogether withthelocationerrorellipse(greensolidline).Thetriggerpotentialwascalculatedforthesubhorizontalplane.Oil platformsareindicated.(b)SameasinFigure4abutforthepotentialthattheM 4.3earthquakewasinducedassuming W afaultfilterdimensionof5×5km.Theinletfigureshowsthefrequencydistributionoftheinducedprobability. salt,whichformedatthepositionoftheSöhlingenfieldasaltdome.ThesubsaltRotliegendlayeriscutby severalNNW-SSEstriking,deepanglenormalfaultswithoffsetsofabout100–200m(e.g.,GeotectonicAtlas [Baldschuhetal.,2001]andfrompublishedgeologicalcrosssectionsatdrillingsiteofZ16boreholein2006). Adetailedseismologicalstudy[e.g.,Dahmetal.,2007]revealedanepicentrallocationat9.625◦longitude and53.009◦latitudewithanerrorellipseof7.3kmand5.8kmhalf-lengthoftheprincipalaxis(inclinedby azimuthof100◦).Thehypocentraldepthwasestimatedbetween5.0and6.4kmfromteleseismicdepth phasesatseismologicalarraysinUSAandCanada[Dahmetal.,2007].Inthepresentstudyweuseadepth at(6±5)km.TheretrievedseismicmomentwasM 4.4,theruptureduration1.32±0.6s,andtherupture W Figure5.Coulombstressratemodels(coloredgrid)areplottedtogetherwiththelocationofthemainshockandthree aftershocksoftheRotenburgsequence(bluestars).(a)Thegreenlineindicatestheepicentererrorellipsederived fromtraveltimeinversion.TheSöhlingengasfieldandotherneighboringgasfieldsareindicatedbygreypolygons. Themomenttensorsourcemechanismisgivenbylowerhemisphericalprojection(seeDahmetal.[2007]fordetails). Coulombstressratewascalculatedonahorizontalgridin6kmdepthinearthquakeslipdirectionforplanessubparallel totheNEdippingfaultplane.Dashedgreylinesindicatemappedbasementfaultsinabout6kmdepthfromtheTertiary period[Brückner-Röhlingetal.,2004].Z16showsthepositionofafrackingboreholedrilledin2006(seetextforfurther explanation).(b)Coulombstressrateisplottedonagridalongstrikeanddowndipontheassumedfaultplane(seegrey solidprofileinFigure5a).TheprojecteddepthoftheSöhlingenfieldisindicatedbythethickgreyline. DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2499

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.