Originally published as: Dahm, T., Cesca, S., Hainzl, S., Braun, T., Krüger, F. (2015): Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters. - Journal of Geophysical Research, 120, p. 2491-2509. DOI: http://doi.org/10.1002/2014JB011778 JournalofGeophysicalResearch:SolidEarth RESEARCHARTICLE Discrimination between induced, triggered, and natural 10.1002/2014JB011778 earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the KeyPoints: •Novelprobabilisticdiscriminationfor modeling of depletion-induced stress induced,triggered,andnaturalEQ •Demonstratemethodwiththree changes and seismological applications •Studyisofrelevancetoacademia, source parameters industry,andpublic TorstenDahm1,2,SimoneCesca1,2,SebastianHainzl1,ThomasBraun3,andFrankKrüger2 Correspondenceto: T.Dahm, 1GFZGermanResearchCentreforGeosciences,Potsdam,Germany,2InstitutfürErd-undUmweltwissenschaften, [email protected] UniversitätPotsdam,Germany,3IstitutoNazionalediGeofisicaeVulcanologia,Seismology&Tectonophysics,Arezzo,Italy Citation: AbstractEarthquakesoccurringclosetohydrocarbonfieldsunderproductionareoftenundercritical Dahm,T.,S.Cesca,S.Hainzl,T.Braun, andF.Krüger(2015),Discrimination viewofbeinginducedortriggered.However,clearandtestablerulestodiscriminatethedifferentevents betweeninduced,triggered,and haverarelybeendevelopedandtested.Theunresolvedscientificproblemmayleadtolengthypublic naturalearthquakesclosetohydro- disputeswithunpredictableimpactonthelocalacceptanceoftheexploitationandfieldoperations.We carbonreservoirs:Aprobabilistic approachbasedonthemodelingof proposeaquantitativeapproachtodiscriminateinduced,triggered,andnaturalearthquakes,whichis depletion-inducedstresschanges basedontestableinputparameters.Maximaofoccurrenceprobabilitiesarecomparedforthecasesunder andseismologicalsourceparameters, question,andasingleprobabilityofbeingtriggeredorinducedisreported.Theuncertaintiesofearthquake J.Geophys.Res.SolidEarth,120, 2491–2509,doi:10.1002/2014JB011778. locationandotherinputparametersareconsideredintermsoftheintegrationoverprobabilitydensity functions.Theprobabilitythateventshavebeenhumantriggered/inducedisderivedfromthemodeling ofCoulombstresschangesandarateandstate-dependentseismicitymodel.Inourcasea3-Dboundary Received17NOV2014 Accepted5MAR2015 elementmethodhasbeenadaptedforthenucleiofstrainapproachtoestimatethestresschangesoutside Acceptedarticleonline10MAR2015 thereservoir,whicharerelatedtoporepressurechangesinthefieldformation.Thepredictedrateof Publishedonline13APR2015 naturalearthquakesiseitherderivedfromthebackgroundseismicityor,incaseofrareevents,froman estimateofthetectonicstressrate.Instrumentallyderivedseismologicalinformationontheeventlocation, sourcemechanism,andthesizeoftheruptureplaneisofadvantageforthemethod.Iftheruptureplane hasbeenestimated,thediscriminationbetweeninducedoronlytriggeredeventsistheoreticallypossibleif probabilityfunctionsareconvolvedwitharupturefaultfilter.Weapplytheapproachtothreerecentmain shockevents:(1)theM 4.3Ekofisk2001,NorthSea,earthquakeclosetotheEkofiskoilfield;(2)theM 4.4 w w Rotenburg2004,NorthernGermany,earthquakeinthevicinityoftheSöhlingengasfield;and(3)theM 6.1 w Emilia2012,NorthernItaly,earthquakeinthevicinityofahydrocarbonreservoir.Thethreetestcasescover thecompleterangeofpossiblecauses:clearly“humaninduced,”“notevenhumantriggered,”andathird caseinbetweenbothextremes. 1.Introduction Theproblemofinducedandtriggeredearthquakesandthediscriminationbetweennaturaland human-relatedearthquakesisold.Alreadyin1908thefirstlocalseismicnetworkwasestablishedinBochum intheRuhrarea,Germany,tomonitorpossibleinducedearthquakesrelatedtocoalmining[see,e.g., McGarretal.,2002].Sincethen,strongereventsinducedortriggeredbycoalmininginGermanyreached magnitudesofM 4.2[e.g.,Cescaetal.,2013a;Dahmetal.,2010,andreferencestherein].Themostsevere L inducedearthquakesinGermany,however,wererelatedtopotashmining(M 5Heringen/Widdernhausen L 1953,M 5.2Sünna/Werra1975,M 5.5Völkershausen1989,andM 4.9Teutschenthal/Halle1996)[see L L L GrünthalandMinkley,2005,andreferencestherein]andtoconventionalgasproduction(e.g.,M 4.4 W Rotenburg2004[seeDahmetal.,2007]).Worldwide,evenlargerhuman-triggeredearthquakeshavebeen discussed,amongwhichseveralM > 6earthquakesincludeeventsinvicinitytohydrocarbonreservoirs (see,e.g.,McGarretal.[2002]forahistoricalreview)andartificialwaterreservoirs(e.g.,1967M6.3Koyna earthquake,India[Gupta,2002]).Thepossiblehumaninfluenceforsuchdamagingearthquakescloseto DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2491 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 geotechnicaloperationsoftenleadstolongdisputesbetweenseismologists,thepublic,andstakeholders fromindustry,especiallysincecommonlyacceptedrulesforthediscriminationbetweenhuman-induced andnaturalearthquakesdonotactuallyexist. Inordertotacklethediscriminationproblem,usually,thetemporalandspatialcorrelationofearthquakesto regionsundergeotechnicalactivitiesisinvestigated.Iftheeventis”closeenough”and”occurredwithinthe periodofhumanactivity,”itisassumedtoberelatedtotheactivity.However,acleardefinitionof”closeness” or”period”isnotestablished.Suchadefinitionshouldconsider,atleast,thetypeandthesizeoftheregion affectedbythegeotechnicaloperationaswellasthesizeoftheruptureplane. AnotherqualitativediscriminationapproachhasbeensuggestedbyDavisandFrohlich[1993]forfluid injectionandbyDavisetal.[1995]forfluidwithdrawal,whereeithersevenornineYES-NOcriteriaare assessed.Thequestionsinvestigatethebackgroundseismicity,theuniquenessoftheoccurrenceatthe givenposition,theclosenesstothefieldactivityandactivityperiod,thecorrelationbetweenseismicityand withdrawal,andthepossiblephysicalmechanism.IfmorethanhalfofthequestionsareansweredbyYES, theeventisconsideredtobelikelyinduced.Althoughsuchadiscriminationapproachisstillqualitative, italreadyinvolvesakindofBayesianapproachtocombineexpertopinionsanddifferentaspectsofthe complexproblem. However,suchweakdefinitionsandweakregulationsmaybehandableifenoughhuman-relatedseismicity occurredinotherwisenontectonicregionswithnearlynoseismicity,as,e.g.,NorthGermany,sothatclear statisticalcorrelationscanbeassessed.Moredifficultdiscriminationproblemsmayariseifthegeotechnical operationsaresituatedintectonicallyactiveregions.There,earthquakesoftectonicoriginmayhavesimilar epicentersthanthosecausedbyhumaninfluence,andtheYES-NOquestionsmaynotbesufficientto adequatelyhandletheproblem.ThePoPlainandtheAdriaticsedimentarybasininNorthernItalymaybe anexample,amongothers,whereoilandgasfieldshavebeenexploitedinaregionwherenaturaltectonic earthquakeshavefrequentlyoccurred. Thediscriminationproblemisevenmoredifficultifhuman-triggeredandhuman-inducedearthquakesare distinguished(fordefinitions,seeMcGarr[1991],Bossu[1996],McGarrandSimpson[1997],Gupta[2002], Dahmetal.[2013],Cescaetal.[2013b,2014],andShapiroetal.[2013]).Weuseadefinitionfortriggered andinducedeventssimilartoMcGarrandSimpson[1997]andShapiroetal.[2013]butfurtherspecifiedin termsofgeometricalconsiderations[seealsoDahmetal.,2013].AccordingtoMcGarrandSimpson[1997], inducedearthquakesarecommonlyunderstoodaseventswheremostofthestresschangereleasedduring rupturewasproducedbythehumanaction,whiletriggeredeventsreleaseasubstantialamountoftectonic stress.McGarrandSimpson[1997]alsopointoutthegeneralmotivationforsuchadistinction:triggered eventsoftenhaveadifferentfrequencymagnitudedistributionandadifferenthazardincomparisonto inducedones.Onlyforsomefewtypesofhumanactions,as,e.g.,pureinjection,thedistinctionispossibly notneededsincealleventsarealwaystriggeredandnotinduced[Gupta,2002;Ellsworth,2013]. Recently,probabilisticdiscriminationcriteriahavebeensuggestedinordertodevelopclear,quantitative, andtestablediscriminationrules[e.g.,Cescaetal.,2013a;Dahmetal.,2013;Passarellietal.,2013].Our contributionreferstothislineofresearchanddevelopsaprobabilisticdiscriminationschemeforthe problemofconventionalproductionofoilandgasfieldsanddepletion-inducedanddepletion-triggered earthquakes.Themethodisbasedonphysical-statisticalseismicitymodels.Itconsiderstheuncertaintyin earthquakelocationandotherinputparametersanddistinguishesbetweennatural,human-triggered,and human-inducedearthquakes.Themethodisdemonstratedandtestedforthreeexamples:(1)the2001M W 4.3Ekofisk,NorthSea,oilfield-inducedearthquake;(2)the2004M 4.4Rotenburg,NorthernGermany;and W (3)the2012M 6.1Emilia,NorthernItaly,gasfield-relatedearthquakes(Figure1). W 2.Method Weassumethatanearthquakeoccurrednearanoilorgasfieldthatcontinuouslyproducedoveraperiod ofseveralyearsandisdepleted.Thepurposeoftheschemeistoevaluate(estimate)theprobabilitythat theearthquakehasbeenhumantriggeredorhasbeenhumaninduced.Weuseadefinitionof”triggered” and”induced”suggestedbyDahmetal.[2010,2013]andsimilartoMcGarrandSimpson[1997]but specifying—forreasonsgivenbelow—theportionoflargestressreleaseontheruptureplane,instead ofusinganintegralvalueonly.SuchadefinitionissimilartotheonebyShapiroetal.[2013].Triggered DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2492 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 Figure1.Overviewplot.Earthquakesunderstudyaredeclaredasredfilledcircles.Dashedpolygonsindicate seismogeniczones[seeGrünthaletal.,2010;Bungumetal.,2000;Giardinietal.,2013].Greyfilledcircles(size scaledbymagnitude)indicatetectonicearthquakespriortothestudiedevents(M >4.5from1000to2006, W European-MediterraneanEarthquakecatalogue[seeGrünthalandWahlström,2012]).(a)TheNorthSeaandNorthern Germanyarea.Gasandoilfieldsareindicatedbycoloredfilledpolygons(grey=Carbon,red=Rotliegend,green= Zechstein,yellow=post-Zechstein).Human-relatedearthquakes(1986–2012,M>3)closetofieldsareplottedbylight redfilledcircles(cataloguesprovidedbyBGRHannover,Germany,andtheRoyalNetherlandsMeteorologicalInstitute, DeBuilt,Netherlands).(b)TheNorthernItalyarea.TheCavoneoilfieldisindicatedbythecoloredpolygon.Thedashed linedepictstheareaofthezoneITAS293. isunderstoodinthesensethattheruptureinitiationwascausedbythedepletion-inducedstressrate atthehypocenteroftheearthquake.Ruptureinitiationistestedbystudyingthe“humaninfluence”at thehypocenter.Aninducedearthquakeisunderstoodinthesensethattherupturewasdrivenbythe depletion-inducedstressoverthefullruptureplane,which,forinstance,foraM 6crustalearthquakemay W easilyreachadimensionofabout10km×10km[e.g.,WellsandCoppersmith,1994;Blaseretal.,2010]. Wefurtherassumethataseismologicalstudyhadbeenperformed”apriori”andthatboththehypocenter orcentroidlocationincludingitsuncertainty(e.g.,1𝜎errorellipsoid)andthesourcemechanismofthe earthquakeareknown.Ifpossible,alsothefaultandauxiliaryplaneanditsrespectiveuncertaintiesshould havebeenidentifiedapriori. Wespecificallyassumetwoperiodsofsteadystateconditionswithinarockvolumewithlineardimension significantlylargerthantheruptureplane.Thereferenceperiodisbeforetheproductionhasstarted,where aconstanttectonicstressrate𝜏̇T isactingonthefaultplaneofthestudiedearthquakeinrakedirection ofthemomenttensorsolution(e.g.,definedasCoulombstressrate).Thebackgroundstressisrelatedto aconstantrateofearthquakes(backgroundeventrate),rT,e.g.,expressedbytherateandstateseismicity modelbyDieterich[1994].ThevaluerT isdefinedforagivenmagnitude(interval).Itcanbeestimatedfrom thenumberof(similar)tectoniceventsperunitareaandtimeinterval.Kostrov[1974]establishedalinear relationbetween𝜏̇T andrT byexploiting𝜏̇T ∼ ⟨M ⟩rT∕V,where⟨M ⟩isthescalarvalueofsummedseismic 0 0 momenttensorsdividedbythenumberofearthquakesandVtheseismogenicvolume[Catallietal.,2008; Hainzletal.,2010].Assumingthatthefocalmechanismsaresimilar,⟨M ⟩canbeestimatedbyintegration 0 oftheproductofthescalarseismicmomentandtheprobabilitydensityforagivenmagnitudedistribution. HereweassumeadoublytruncatedGutenberg-Richterdistribution.Thenhavingtheinformationofannual earthquakerate10aofM≥0events(i.e.,theavalue),thebvalue,themaximummagnitudeM ,andthe max areaoftheseismogeniczoneAaswellastheseismogenicwidthD,thebackgroundshearstressrate𝜎̇T is S [e.g.,Hainzletal.,2010] 𝜎̇T =⟨M ⟩10a−bMmin =10a+9.1 b 10(1.5−b)Mmax −10(1.5−b)Mmin 1 S 0 AD 1.5−b 1−10−b(Mmax−Mmin) AD lim 𝜎̇T =10a+9.1 b 10(1.5−b)Mmax (b<1.5) (1) Mmin→−∞ S 1.5−b AD DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2493 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 Table1.ParameterDefinitionsandNomenclaturea Parameter Description p (x)andp(𝜽) probabilitydensitydistributionoftheearthquakelocationandthe e modelinputparameter,respectively r(x,𝜽),rT(x,𝜽), earthquakerate:total,tectonicbackground,anddepletioninduced, andrD(x,𝜽) respectively 𝜏̇(x,𝜽),𝜏̇T(x,𝜽), Coulombstressratesonthefaultplaneindirectionofobservedslip: and𝜏̇D(x,𝜽) total,tectonicbackground,andfielddepletion,respectively pD(x,𝜽)and triggerpotentialofbeingcausedbyfielddepletionortectonic pT(x,𝜽) stressing,respectively P andP averageprobabilitythattheeventwasdepletiontriggeredor trig ind depletioninduced,respectively aAll rate and event numbers are defined per unit volume for a given magnitude interval,M≥M . c withunits(Pa/y)ifAandDaregiveninunitsofm2andm,respectively.ThetectonicCoulombstressrate employedisthen ( ) [ ( ) ] ( ) 𝜏̇T = 𝜎̇T +𝜇 𝜎̇T −Ṗ = n̂ × T×n̂ ⋅𝚫û +𝜇 T⋅n̂ −Ṗ , (2) S N f f whereT = 𝜎 n̂,𝝈istheregionalstresstensorandn̂ and𝚫û arethenormalandslipunitvectorsofthe i ij j ruptureplane,respectively,P istheporepressureintherockand𝜇isthefrictionangleintheCoulomb f failurelaw. Ifthetectonicsurfacedisplacementfieldhasbeenaccuratelymeasured,andthecouplingoftheplateis sufficientlywellknown,𝜏̇Tmayalternativelybeestimatedfromstrainrates. Thesecondperiodunderconsiderationisdefinedsomeyearsafterthestartofoilorgasrecoveryuntil theoccurrenceoftheevent.Mostoften,theannualproductionratesareroughlyconstantafterthe infrastructuresareinstalled.Weuseaconstantdepletionrateforsimplicity.If𝜏̇Disthedepletion-induced Coulombstressrateonthefault,thetotalactingstressrateis𝜏̇ = 𝜏̇T +𝜏̇D.Accordingly,theexpectedtotal earthquakerateinthevolumeunderconsiderationisr = rT +rD.Usually,rT isasmoothfunctionofspace, whilerDand𝜏̇Darevariablefunctionsofspace,decayingtozeroifthefaultisfarfromtheexploitedfield. EmployingtheDieterichseismicitymodel[e.g.,Dieterich,1994,1995]understeadystateconditions,itiseasy toshowthat r 𝜏̇ rD 𝜏̇D = andaccordingly = . (3) rT 𝜏̇T rT 𝜏̇T Wewillusethisrelationtogetherwith(2)toderiverDandrandtodefineatriggerprobability.Forinstance, thedepletion-inducedstressratecanbeestimatedbyelasticmodelingconsideringtheconceptofnuclei ofstrain[e.g.,Geertsma,1973].Sincewedonotwanttoevaluatetheeffectofpossiblestressshadows,we willconsideronlyvaluesof𝜏̇D≥0andthereforedefinethehuman-inducedstressrateby𝜏̇DH(𝜏̇D),where HdefinestheHeavisidefunction.Inotherwords,wewilldiscardherethepossiblestabilizingeffectoffield depletiononearthquakeoccurrence,whereP isapriorizero. trig Theprobabilisticdiscriminatorymethodisstraightforward.Anoverviewoftheparameterdefinitionsand nomenclatureisprovidedinTable1.Thesetofmodelparameterstocalculate𝜏̇D∕𝜏̇T ismappedinto vector𝜽.Wefirstdefineatriggerpotentialthatanevent,whichwaslocatedatpointx,hasbeentriggered bydepletion rD(x,𝜽) H(𝜏̇D)𝜏̇D(x,𝜽) pD(x,𝜽))= = . (4) rD(x,𝜽)+rT(x,𝜽) H(𝜏̇D)𝜏̇D(x,𝜽)+𝜏̇T(x,𝜽) DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2494 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 Thisfunctiongivestheprobabilitythatthe rupturenucleationwastriggeredbyfield depletionassumingthatweknowexactly thehypocenterlocationoftheearthquake (Figure2,blacksolidline).Thetrigger potential,assumingthattheeventwas oftectoniccause,pT,issimilarlyequated byreplacingrDbyrT inthedenominator sothatpT(x,𝜽) = 1 − pD(x,𝜽).Note thatthesameapproach(equation(4))is usedtocalculatetheprobabilitytobean aftershockorbackgroundevent[Zhuang andOgata,2004]. Inpractice,spatialcoordinatesandparam- etervaluesarediscretizedonregulargrids, andwemaycalculatepDateachgrid pointinavolumeunderstudy.Thetrigger potentialhastobeconsideredatthe Figure2.Sketchtoillustratetheapproachin1-D.(a)Geometryof hypocenteroftheearthquake.Ifwewould theproblem.Anearthquakeislocatedclosetoanoilfieldandin somedistancetoanactivetectonicfault.(b)Thedepletion-induced notknowwheretheearthquakeoccurred, (red)andtectoniceventrates(blue)areplottedalongprofilex, themaximumofpDwouldindicatethe wheretheoilfieldissituatedbetween−10kmand10km.Below, mostlikelylocationandparametervalue thetriggerpotentialpD(blacksolidline)isplottedtogetherwiththe giventhattheeventwasdepletion filteredfunctionf∗pD(dashed),wherethefilterlengthoftheboxcar triggered,whilethemaximumofpT would functionwas100km.Verticaldashedlinesspecifythecentroid positionsoftwohypotheticalearthquakecentroids. indicatethemostlikelylocationgiventhat theeventwastectonictriggered. Thehypocenterlocationuncertaintycanbegivenintermsoftheprobabilitydensityfunction (pdf)p (x).Forinstance,well-locatedearthquakesmayhaveaGaussianlocationlikelihoodas e pe(x) = [2𝜋]3∕12s s s e−12(x−s2xx̄)2 e−12(y−s2yȳ)2e−12(z−s2zz̄)2,where(x̄,ȳ,z̄)declaresthebesthypocenterlocationand x y z (s ,s ,s )the1𝜎standarddeviation.Iftheuncertaintyofthelocationislarge,p maybeaflatconstantlike- x y z e lihoodoversomedistancewithradiusr.Forinstance,rmaybedefinedfrommacroseismicdataandthen usedtodefineavolumeVtosuggestanequaldistributionlocationlikelihoodasp =1∕V(orp =1∕Aforan e e areaapproach).Ifweconsiderthelocationpdfandequivalentlythepdfoftheinputparameter,p(𝜽),the triggerprobabilitycanbeequatedby P = pD(x,𝜽)p (x)p(𝜽)d𝜽dx. (5) trig ∫ ∫ e V 𝜃 Ifuncertaintiesarepresent,P istheweightedaverageofthetriggerpotentialfromthevaluessampled trig bythepdfsoftheinputparameterandthehypocenterlocation(Figure2).Wecalculatetheprobabilitybya bootstrappingapproach:locationsandparametersarerandomlysampledfromtheirpdfs,andtheresulting distributionofthetriggerpotentialisanalyzedintermsofitsaverageormediananditsspreadintermsofa standarddeviationorpercentile. Equation(5)isusedtoestimatethetriggerprobabilityofthehypocenteroftheevent,i.e.,thenucleation pointofrupture.Thiscorrespondstotheprobabilitythattheearthquakewastriggeredbyfielddepletion, independentofthequestionwhetheralargeportionoftherupturewasdrivenbytectonicstressornot andwhetheralargeportionoftheruptureplaneliesoutsidethevolumeinfluencedbyfielddepletion. Ifwewanttotestwhetherthecompleterupturewaslikelydrivenbydepletion-inducedstressrates,we calculatetheaveragetriggerprobabilityofallpossiblenucleationpointsontheruptureplane,independent ofthequestionwherethetruenucleationpointwas.Iftheearthquakeruptureisviewedasasubsequent triggeringofmanysmallrupturesegments,eachsinglerupturesegmentwouldhavehad,onaverage,a highlikelihoodofbeinghumantriggered.Althoughthissimplifiedmodelisonlyaroughapproximation ofaphysicalrupture,i.e.,sincesegment-segmentinteractionisneglected,itcanbeusedasaproxyfor DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2495 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 Figure3.StressandlocationmodelfortheEkofiskcase.Thegreenlineindicatestheerrorellipsederivedfromtravel- timeinversion.TheEkofiskandWestEkofiskoilfieldsareindicatedbythickgreylines.Thebluefilledpolygonsshow anareaoflocalizedpreseismicupliftduetounintendedwaterinjection[seeOttemölleretal.,2005].(a)Comparisonof measured(coloredcontours)andmodeledsubsidencebowl(coloredgrid)in2001bysimulatingnucleiofstrainat3km depthatthegivenrectangularboundaryelements.(b)SimulatedCoulombstressrate(coloredgrid)onasubhorizontal planein2kmdepthparalleltotheassumedfaultplane.Thesourcemechanismoftheearthquakeisindicatedbylower hemisphericalprojectionofthePwaveradiationpattern.Thethickblackarrowindicatesthecentroidlocationand rupturedirectionasderivedfromthekinematicwaveforminversion[Cescaetal.,2011].Theblueandredarrowsshow theGPS-observednear-fieldcoseismicgroundmotioninhorizontalandverticaldirection,respectively.Theblackcrossis areferencepoint. thediscriminationbetweentriggeredandinducedearthquakes.Thetestmayberealizedbydefininga representativevolumeembeddingtheruptureplane.Thisiseitherretrievedfromaseismologicalkinematic sourceinversionorbymeansofscalingrelations.Forinstance,thevolumemaybeformedbytherupture planewithlengthLandwidthWasbaseandonegridsizeinperpendicularheight.Ifthelocationofthe ruptureplaneisnotwellconstrained,theperpendicularheightmaybeincreasedoracubearoundthe centroidmaybechoseniftheruptureplaneorientationisuncertain.Then,eachcentroidpointx inpDhas i tobeintegratedineachcoordinatedirectionoverthelengthintervaldefinedbythechosenvolume,e.g., inlengthdirectionalongstrikeintheinterval[x −L∕2,x +L∕2].Theintegrationrepresentsasmoothing i i operation,e.g.,aconvolutionwithafault-likeboxcarfunction(faultfilter).Forthetestofaninduced earthquake,wethereforefirstsmooththetriggerpotentialwithafaultfilterf(x,L,W,strike,dip)andapply i thenequation(5)tothefilteredresultsoff ∗pD [ ] P = f(x,L)∗pD(x,𝜽) p (x)p(𝜽)d𝜽dx, (6) ind ∫ ∫ e V 𝜃 where∗declaresaconvolutionintegral.Thefaultfilterisnormalizedsothatitsintegralisequalto1. Equation(5)canbeinterpretedasaspecialcaseof(6)forwhichthelengthLisreducedtothegridsizeof thecentroidpointsundertesting. P isusuallysmallerthanP .ThisisillustratedinFigure2.Forinstance,theearthquakeunderstudymay ind trig havehadamagnitudeofM7andafaultsizeof10km×100km.Thedimensionofthestressrateanomaly oftheoilfieldispossiblyonly20kmindiameter.Iftheearthquakenucleatedinadistanceof40kmfrom thecenteroftheoilfield,thetriggerprobabilityinourcasewouldbezero.Ifitnucleateddirectlyabovethe field,thetriggerprobabilityinourexamplewouldbenearly80%.However,theprobabilitytobeinduced overthefaultlengthof100kmislessthan20%evenabovethefield(Figure2,dashedcurve),soP will ind besmalleveniflocationuncertaintieswouldbetakenintoaccount.ThenucleationofthehypotheticM 7earthquakewouldhavebeenhumantriggered,butthe100kmlongrupturewouldbeclassifiedtobe DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2496 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 nothumanrelatedandmostlydrivenbytectonicstress.Thisisinlinewithinterpretationsgivenbyothers [e.g.,McGarrandSimpson,1997]. 3.Applications 3.1.The2001M 4.3Ekofisk,NorthSea,Earthquake W The7May2001M 4.3EkofiskinducedearthquakewaslocatedincloseproximitytotheEkofiskoilfields W intheNorthSeawithawaterdepthofabout80m(Figure3aand,e.g.,Ottemölleretal.[2005]).TheEkofisk oilfieldissituatedinabout3.1kmdepthwithinthepost-Zechsteinformationbelowanoverburdenmostly composedofclayandshales,interbeddedbysiltystreaks[Abdulraheemetal.,1994].Theearthquake locationuncertaintieswere4.7kminlatitudeand7.6kminlongitude[Ottemölleretal.,2005].Adetailed waveformmodelingcombiningbroadbandregionalandteleseismicdatawithnear-fieldGlobalPositioning System(GPS)dataretrievedabestfocalmechanismwithstrike161◦,dip77◦,rake−100◦,scalar moment2.85⋅1015Nm,anddepthof2km.Especiallythenear-fieldGPSdatawithobservedupliftcould demonstrate,incombinationwiththeretrievedsourcemechanism,thattheseismicsourcecentroidwas shallowabovethefieldformationattheeasternborderofthefield[Cescaetal.,2011].Akinematicinversion forparametersoftheextendedsourceandrupturefurtherindicatedthatthesubhorizontalplaneruptured unilaterallyoveralengthofabout6kminazimuthaldirectionofabout133◦[Cescaetal.,2011].The kinematicsolutionfurtherindicatedaveryslowrupturevelocityofonlyabout500ms−1(equalto0.26 timestheshearwavevelocity)andalongrisetimeofabout7s.Theunusualslowandlongruptureexplains thatsuchamoderate-strongearthquakewasabletoradiateenergeticlow-frequencyRayleighandLove waveswellobservedupto2000kmepicentraldistance.AssuggestedbyOttemölleretal.[2005]and supportedbythekinematicsourceinversionofCescaetal.[2011],therupturewaslikelytobetriggeredby anunintendedwaterinjectionduringabout2yearsof1.9⋅106m3in2kmdepthnearthenortherncentral partofthefield[Ottemölleretal.,2005](seeFigure3aforlocation).Thetriggeringoftheearthquakerupture mayhavebeenrealizedbytheformationandslowgrowthofalargehorizontalhydrofracturewithinthe overburdeninabout2kmdepthwithintheshaleandmudrocks.Thecreationandsubhorizontalorientation ofsuchahydrofracturewaslikelyduringtheperiodofthewaterleakagebecauseofthehighinjection pressureexceedingthetensilestrengthofthesediments[seeOttemölleretal.,2005,Figure11]andbecause oftheshapeofthedepletion-inducedstressellipsoidwasfavorableforhorizontalfracturegrowth.Theuplift retrievedbydifferentialbathymetrybeforeandaftertheearthquakeintheregionofthewaterinjection hole[seeOttemölleretal.,2005]supportstheideathatasubhorizontalhydrofracturedidform. Knowingtheearthquakehypocenterandcentroidlocation,therakedirectionandthesizeanddepthofthe faultplane,weaimtotestwhethertheearthquakewasnatural,depletiontriggered,ordepletioninduced. Afirststepistoderiveadepletion-inducedstressratemodelforthevolumeoftheoverburdenabovethe oil-bearinglayer.Asaconsequenceoftheporepressuredecreaseinthereservoir,thereservoirformation compactsandtherockvolumeaboveandbelowthereservoirdeforms.Weusethemodelofnucleiofstrain [Geertsma,1973]andsimulatethedepletioneffectconsideringtheextent,shape,anddepthoftheEkofisk oilfield.Theoilfieldisapproximatedasathinporouslayerembeddedinanimpermeablehalf-space.We assumeahalf-spacemodelwithashearmodulusof6GPaandaPoissonratioof0.25.Notethattheabsolute valuesoftheelasticmodulesarenotveryimportant,sincewecalibratethestressandporepressuremodel bythemeasuredseafloorsubsidence.Forinstance,assumingastifferoverburdenpredictslargerpore pressurereductionstoexplainagivensubsidencerate(deformation)butleadstosimilarstressratesin therock. Fieldgeometryisoftenirregularandoflargeextent,and3-Dmodelingisneededtoanalyzetheproblem. Wemodifya3-Ddisplacementdiscontinuitymethodtoconsidertheeffectofundrainedporoelasticfield depletion.Thethickness,Biot’sconstant,andeffectiveuniaxialcompactioncoefficientofthefieldare considered(AppendixB). Themaximalvalueofthedepletion-inducedsubsidenceoftheseaflooroveraproductionperiodofabout 30yearsoccurredroughlyinthemiddleoftheEkofiskfieldandwasmorethan8.26m(Figure3a).The Ekofiskfieldisneithercircularnordiskshaped,andoursimulatedsubsidencepatternisthereforenot exactlybowlshapedaspredictedbyanalyticalsolutions[e.g.,Geertsma,1973;Chan,2004].Ourreservoir porepressuremodelexplainswellthegeneralpatternandquantitativevaluesofthesubsidenceinterms ofmagnitudeandshape(Figure3a).Aporepressuredecreaseofabout47MPaisneededtoexplainthe DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2497 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 Table2.SeismicityParameters(TakenFromSHAREProject[Giardinietal.,2013])andtheResultingTectonicStressRate FromEquation(1)WithItsStandardDeviation(inBrackets)a Earthquake SourceZone A(km2) a N(M≥5/year) b M (Weight) D(km) 𝜏̇T (Pa/yr) max Ekofisk NLAS037 174,800 2.8 0.006 1.0 6.5(0.5),6.7(0.2),6.9(0.2),7.1(0.1) 20 1.1(0.4) Rotenburg BAAS191 39,800 3.7 0.158 0.9 7.3(0.5),7.5(0.2),7.7(0.2),7.9(0.1) 16.0 521.7(274.5) Emilia ITAS293 11,080 3.7 0.050 1.0 7.3(0.5),7.5(0.2),7.7(0.2),7.9(0.1) 10.0 714.7(388.0) aDetailsofthedeterminationoftheseismicityparameterscanbefoundathttp://www.share-eu.org.Uncertainties aretakenintoaccountby(i)probabilitiesforM asprovidedbySHARE(seetable),(ii)uniformdistributedrates max N(M≥5/year)within±50%,(iii)uniformdistributedbvalueswithb±0.1,and(iv)uniformdistributedDvalueswithin D±5kmthecorrespondingdistributionofavaluesiscalculatedbya = log(N) + 5b.Thescalefactorofw = 1is assumedin(2)sincetheearthquakeswerefavorableorientedwithrespecttotheregionalstressorientation. subsidenceovertheperiodof30years.Ifweassumeahomogeneousproductionrate,thisresultsinapore pressurereductionrateofabout1.6MPa/yr.Thisestimateiswellinagreementwithaninitialporepressure intheEkofiskfieldofabout47MPa,droppedtonearlyzeroduringtheproductionperiod[Ottemölleretal., 2005]andsupportsthechoiceofparameterinthemodelingstudy. Fromthereservoirdepletionmodelwecalculatethestressrateforeachstresscomponentateach half-spacegridpointwithaspacingof500m.Figure3bshowstheCoulombstressrateindirectionofthe slipvectoroftheearthquakeonahorizontalplaneat2kmdepth.ItisnoteworthythatthehighestCoulomb stressratesupto120kPa/yroccuralongthenorthernandeasternbordersofthefieldwheretherupture waslocatedbyCescaetal.[2011].TheCoulombstressrateinFigure3bisassociatedwith𝜏̇D,aparameter neededinthediscriminatoryequation(5). Theotherquantityneededisthenaturalstressrate𝜏̇T.TheEkofiskoilfieldislocatedwithintheNorthSea Centralgrabensystem,afailedcontinentalriftsystemthatwasformedduringtheTriassicandJurassic periodsandisinactivetoday.Thehistoricalandinstrumentalseismicityoverthelast100yearsisminor. TheVikinggraben,whichisnorthoftheCentralgraben,appearsslightlymoreactivethantheCentral grabensystem[e.g.,Bungumetal.,1991].ThelargestinstrumentallyrecordedearthquakeintheNorthSea wastheM 6.11931DoggerBankearthquakeoffcoastSEEngland.However,thisisabout300kmsouth L ofEkofiskandnotassociatedwiththeseismiczoneofCentralgrabenatEkofisk.Theaveragerecurrence periodforM>3.8intheseismiczoneoftheEkofiskeventisabout100years,withabvalueofabout1 [Bungumetal.,2000;Grünthaletal.,2010;Giardinietal.,2013].Theaveragetectonicstressrateisestimated 𝜏T≈(1.1±0.4)Pa/yr(5%and95%percentilesat0.5Pa/yrand2.0Pa/yr,respectively)dependingonthe assumedseismogenicthicknessandmaximalmagnitudeM .TheestimatesinTable2areconsideredto max containtheminimalandmaximalboundsofthetectonicstressrate.Theestimatedupperlimitispossibly toohigh.Forcomparison,thetectonicstressrateintheCentralAppenninesgrabensystemintheregion ofAquila,whereseveralM < 6earthquakeswerereportedduringhistoricaltimes,isestimatedatabout 0.7kPa/yr[Catallietal.,2008]. Figure4showstheresultofthediscriminationtestsbyusinganupperboundvalueof𝜏̇T = 0.0015kPa/yr andaporepressuredropintheoilfieldofΔP≈47MPa(5%and95%percentilesat44MPaand50MPa, respectively).Figure4ashowsthediscriminationtriggerpotentialpDinaplaneat2kmdepth.Overthe regionofthelocationuncertainty,pDisalmostalwayscloseto1.TheestimatedprobabilitythattheEkofisk earthquakehasbeentriggeredbyfielddepletioniscloseto0.99. WetestwhethertheEkofiskeventwasnotonlytriggeredatthenucleationpointbutdepletiondrivenover thefullsizeofitsruptureplane.Figure4bshowstheprobabilitytohavebeeninducedifwefilterpDwith faultfilterof10×10kmsothatthefaultwouldcovernearlyhalfoftheareaoftheEkofiskfield.Thetrigger potentialfunctionisthereforespatiallysmoothed.Theprobabilitytobeinducedisestimatedstillveryhigh atP ≈0.74±0.28. ind 3.2.The2004M 4.4Rotenburg,NorthernGermany,Earthquake W The20October2004M 4.4Rotenburgearthquakeoccurredincloseproximitytothethreemost W productivegasfieldsinNorthGermany,theSöhlingen,theRotenburg,andtheVölkersenfields(Figure5a). ThreeaftershockswithM between1.7and2.2couldbedetectedandlocatedduringthefirst4daysafter L themainshock.TheeventswereinproximitytothesouthwesternborderoftheSöhlingenfield,whichis situatedintheRotliegendDethlingensandstonein5.8kmdepth.ThetightgasfieldiscoveredbyZechstein DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2498 Journal of Geophysical Research: Solid Earth 10.1002/2014JB011778 Figure4.(a)Thetriggerpotentialat2kmdepthfromdepletionoftheEkofiskoilfield(coloredgrid)isplottedtogether withthelocationerrorellipse(greensolidline).Thetriggerpotentialwascalculatedforthesubhorizontalplane.Oil platformsareindicated.(b)SameasinFigure4abutforthepotentialthattheM 4.3earthquakewasinducedassuming W afaultfilterdimensionof5×5km.Theinletfigureshowsthefrequencydistributionoftheinducedprobability. salt,whichformedatthepositionoftheSöhlingenfieldasaltdome.ThesubsaltRotliegendlayeriscutby severalNNW-SSEstriking,deepanglenormalfaultswithoffsetsofabout100–200m(e.g.,GeotectonicAtlas [Baldschuhetal.,2001]andfrompublishedgeologicalcrosssectionsatdrillingsiteofZ16boreholein2006). Adetailedseismologicalstudy[e.g.,Dahmetal.,2007]revealedanepicentrallocationat9.625◦longitude and53.009◦latitudewithanerrorellipseof7.3kmand5.8kmhalf-lengthoftheprincipalaxis(inclinedby azimuthof100◦).Thehypocentraldepthwasestimatedbetween5.0and6.4kmfromteleseismicdepth phasesatseismologicalarraysinUSAandCanada[Dahmetal.,2007].Inthepresentstudyweuseadepth at(6±5)km.TheretrievedseismicmomentwasM 4.4,theruptureduration1.32±0.6s,andtherupture W Figure5.Coulombstressratemodels(coloredgrid)areplottedtogetherwiththelocationofthemainshockandthree aftershocksoftheRotenburgsequence(bluestars).(a)Thegreenlineindicatestheepicentererrorellipsederived fromtraveltimeinversion.TheSöhlingengasfieldandotherneighboringgasfieldsareindicatedbygreypolygons. Themomenttensorsourcemechanismisgivenbylowerhemisphericalprojection(seeDahmetal.[2007]fordetails). Coulombstressratewascalculatedonahorizontalgridin6kmdepthinearthquakeslipdirectionforplanessubparallel totheNEdippingfaultplane.Dashedgreylinesindicatemappedbasementfaultsinabout6kmdepthfromtheTertiary period[Brückner-Röhlingetal.,2004].Z16showsthepositionofafrackingboreholedrilledin2006(seetextforfurther explanation).(b)Coulombstressrateisplottedonagridalongstrikeanddowndipontheassumedfaultplane(seegrey solidprofileinFigure5a).TheprojecteddepthoftheSöhlingenfieldisindicatedbythethickgreyline. DAHMETAL. ©2015.AmericanGeophysicalUnion.AllRightsReserved. 2499