Discrimination between CMV infection and Alzheimer's disease as driving forces for immune senescence Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von David Goldeck aus Fulda Tübingen 2014 Tag der mündlichen Qualifikation: 19.05.2014 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Graham Pawelec 2. Berichterstatter: Prof. Dr. Hans-Georg Rammensee Acknowledgements This thesis wouldn’t have been possible without many helping hands and minds which I grate- fullythank: • Prof. Dr. GrahamPawelec fortheopportunitytoworkintheTATIgroupandforguidingandsupervisingme,correc- tingandimprovingmytalks,postersandpresentations; • Prof. Dr. Hans-GeorgRammensee forthegreattimeattheGRK794andforactingasmysecondreviewer; • Dr. AnisLarbi forbeingmysupervisor,whotaughtmealot,andcameupwiththeinterestingtopic; • the helpful colleagues which worked hard in the lab to perform the studies presented in thisthesis,namely IftikharAlam,MarkusClaus,LillyOettinger,MariavaleriaPellicanó,SimonWalker; • all other TATI members for teaching me methods, for fruitful discussions and for a warm andjoyfulatmospherewheresciencebringshappinessinyourlife, Wim Adriaensen, Mathias Blaurock, Silvio Buffa, Evelyna Derhovanessian, Svetlana Di Benedetto, Andrea Groeger, Lutz Grossmann, Karin Hähnel, Florian Heubach, Kyriaki Ioannou,NicoleJanssen,JithendraKiniBailur,AlexanderMartens,ArnikaRehbein,Flavia Ribeiro, Graziella Rubino, Chris Shipp, Lisa Speigl, Christina Stutz, Kilian Wistuba- Hamprecht,HenningZelba; • WolfgangKunert forgreatadditionalITsupport; • allcollaboratingpartnerswhoprovidedsamplesandgoodadvice Prof. Klaus Hamprecht, Prof. Dorothee Wernet, Prof. Calogero Caruso, Prof. Guiseppina Colonna Romano, Prof. Inga Zerr, Dr. Christian Schmidt, Prof. Tamàs Fülöp , Prof. RobertoPaganelli; • my family, especially my parents and siblings, for supporting me to come that far and helpingoutwithmythesis; • andallwhichIhaveforgotten. I Contents 1 Introduction 1 1.1 Typesofdementiaandtheirdiagnosis . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Mildcognitiveimpairment(MCI)andthedifficultiesofitsdiagnosis . . 3 1.1.2 Alzheimer’sDisease(AD) . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Vasculardementia(VaD) . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.4 Differentialdiagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.5 TheFolsteinTestandtheMMSEvalue . . . . . . . . . . . . . . . . . . 11 1.1.6 TreatmentsforAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 ImmunesignaturesofhealthyindividualsandADpatients . . . . . . . . . . . . 13 1.2.1 T-cellheterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.2 T-cellphenotypesinhealthyelderlyandADpatients . . . . . . . . . . . 16 1.2.3 Tregphenotypesandtheirassociationwithageinganddementia . . . . . 17 1.2.4 B-cellphenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2.5 SystemicinflammationinAD . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.6 PlasmaandserumcytokinelevelsinthecontextofinflammationinAD . 20 1.3 CMV,dementiaandtheimmunesystem . . . . . . . . . . . . . . . . . . . . . . 21 1.3.1 AssociationbetweenCMVinfectionandT-celldifferentiation . . . . . . 21 1.3.2 HerpesvirusesandAD . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4 BraininfiltrationbyperipheralimmunecellsalongachemokinegradientinAD . 23 1.5 Rationaleofthepresentstudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 MaterialsandMethods 28 2.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.1 Buffersandreagents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.2 Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.3 Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.1.4 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2 Samplecollectionandprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.1 Collaboratorswhoprovidedsamples . . . . . . . . . . . . . . . . . . . . 31 2.2.2 PBMCisolation,freezingandstorage . . . . . . . . . . . . . . . . . . . 32 2.2.3 Frozenwholebloodstorage . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.4 Preparationofsamplesforflowcytometricanalysis . . . . . . . . . . . . 32 2.2.5 Experimentaldesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 II 2.2.6 StainingcellsurfaceproteinsandintracellularFoxp3withfluorochrome- conjugatedantibodiesforflowcytometricanalysis . . . . . . . . . . . . 34 2.2.7 Intracellularcytokinestaining . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.8 TestingPBMCuptakeofamyloidbeta . . . . . . . . . . . . . . . . . . . 35 2.3 TestingCMVserostatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Flowcytometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Results 40 3.1 CharacterisationofT-cellphenotypesinpatientswithmildandmoderateAD . . 40 3.1.1 Mild AD is associated with dramatic shifts in circulating CD4 but not CD8T-cellsubsetsrelativetoage-matchedcontrols . . . . . . . . . . . . 40 3.1.2 Frequency of naïve, late-differentiated and regulatory T-cells in the pe- ripheralbloodofpatientswithmildandmoderateAD . . . . . . . . . . 41 3.2 ImmunesignaturesofCanadianpatientswithmild,moderateorsevereAD . . . 47 3.2.1 T-cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.2 Tregs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.3 Chemokine receptor expression on the leukocytes of AD patients and healthycontrols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.4 InducedcytokineproductionprofilesofCD4+T-cellsinADpatientsand healthycontrols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 ImmuneprofileofItalianpatientswithAD,VaDormixeddementia . . . . . . . 58 3.3.1 T-cellsandtheirphenotype . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.2 RegulatoryT-cellsandchemokinereceptors . . . . . . . . . . . . . . . . 63 3.3.3 Leukocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.4 Amyloidbetauptake . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.5 Cytokineprofile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.6 CMVserostatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4 ComparisonofrpAD,MCI,ADandhealthyimmunestatus . . . . . . . . . . . . 69 3.4.1 T-cellphenotypesinADpatientsandhealthycontrols . . . . . . . . . . 69 3.4.2 Tregs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4.3 Otherleukocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4.4 B-cellphenotypefrequenciesinADpatientsandhealthycontrols . . . . 76 3.4.5 Chemokinereceptorexpression . . . . . . . . . . . . . . . . . . . . . . 80 4 Discussion 84 4.1 T-cell phenotypes: a shift from early- to late-differentiated CD4+ T-cells in AD patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2 DistributionofregulatoryT-cellsubsetsinADpatients . . . . . . . . . . . . . . 89 4.3 LeukocytesinhealthycontrolsandADpatients . . . . . . . . . . . . . . . . . . 90 4.3.1 ControversialresultsconcerningthefrequencyofT-cellsinAD . . . . . 90 III 4.3.2 Reduced frequencies of naïve B-cells in AD patients compared with healthycontrols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3.3 NodifferenceinthefrequencyofNK-andNKT-likecellsinADpatients 93 4.3.4 No significant differences in the frequency of monocytes between de- mentiapatientsandhealthycontrols . . . . . . . . . . . . . . . . . . . . 93 4.4 Degree of T-cell cytokine production does not differ between AD patients and healthycontrols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.5 Higher chemokine receptor expression in AD patients compared with healthy controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 Summary 101 5.1 SummaryinGerman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Glossary 124 IV Chapter 1 Introduction 1.1 Types of dementia and their diagnosis Dementiaisdefinedasalossofmemoryandothercognitivefunctionsrelevanttodailylifewhich persists for more than six months. The cause of the disease is the destruction or death of brain cells. Inorderfordementiatobediagnosed,atleasttwoofthefollowingfourcognitivefunctions shouldbeimpaired: "(1) memory; (2) ability to speak or understand language; (3) capacity to plan, make sound judgments, and carry out complex tasks; and (4) ability to process and interpretvisualinformation" [70]. ClinicallydementiacanbeclassifiedintodifferentcategoriesshowninFigure1.1. Dementia with Parkinson, Lewy bodies Frontotemporal dementia, HIV encephalopathy Vascular dementia MIXED dementia Alzheimer disease Figure1.1: Formsofdementia;afterBosser,1992(modified)[17] 1 Table1.1: Riskfactorsfordementia categoryofdementia factor reference cognitivedecline sex [1] cognitivedecline age [1] cognitivedecline education [1] dementia income [1] PD3 nocigarettesmoking [97] neuronaldamage noconsumptionofnicotineandcaffeine [97] cognitivedecline chronichealthconditions [1] cognitivedecline inflammatorymarkers(CRP2,cytokines) [1] AD,PD3 nononsteroidalanti-inflammatorydrugs [97] AD,PD3 infections(influenza? Borelia? others?) [97] cognitivedecline1 serumantibodiestoCMV,HSV-1,HSV-2 [146] cognitivedecline maybehighanti-CMVIgGantibodylevels [1] cognitivedecline HSV-1+positiveforApoE-E4allele [1] AD ApoE-E4genemutation/ApoEstatus [70] AD PS1/PS2genemutation [58] AD familyhistoryofAD [70] AD DownSyndrome [70] PD3 excessweight/bmi4inmidlife [97] AD obesity [70] PD3 highcaloricintake [97] AD hypercholesterolemia [70] AD highhomocysteine [70] AD hypertension [70] AD type2diabetes [70] AD metabolicsyndrome [70] AD heartdisease [70] AD cerebrovasculardisease [70] AD folateorotherB-vitamindeficiencies [70] 1 inelderlyFinishwithvasculardisease 2 C-reactiveprotein 3 Parkinson’sdisease 4 bodymassindex 2 1.1.1 Mild cognitive impairment (MCI) and the difficulties of its diagnosis Mildcognitiveimpairment(MCI)isabraindisorderassociatedwithadeclineincognitivefunc- tion that does not interfere with daily life [90]. It is considered a transitional state that in many cases leads to dementia [9]. There are many subtypes of MCI with amnestic MCI (aMCI) be- ing the most prominent. aMCI is diagnosed when cognitive decline is accompanied by memory impairment [112]. Both types can, but must not necessarily, progress to the different types of dementia, including Alzheimer’s Disease (AD) [53, 174, 43]. Dubois et al. studied a cohort of people with amnestic mild cognitive impairment. Of those which - according to the criteria of that time - were clinically identified to have progressed to dementia only 70% met the neu- ropathological criteria for AD. Therefore a question is posed as to when MCI can be considered tohaveprogressedtoADandwheretodrawthedefininglineinwhatappearstobeacontinuous process [32]. In order to identify predictive markers for this progression, Tabert and colleagues analysed 148 patients and 63 age-matched controls in a follow-up study. The main conclusion was that "deficits in verbal memory and psychomotor speed/executive function abilities strongly predicted conversion to AD" [148]. Other risk factors for dementia are listed in Table 1.1. For diagnosticvisualisationoftheconversionfromMCItoAD,MRI(MagneticResonanceImaging) patterns of hippocampus atrophy were proposed [165] or in a more recent study a "Short-form Everyday Technology Use Questionnaire" that can be used as a screening tool for evaluating the use of everyday technology (e.g. using a telephone or household equipment, managing fi- nances and transportation) [72]. Using MRI it is possible to analyse loss of grey matter, while questionnaires can assess memory function, but neither technique is able to explain the origin of disease. Another idea discussed in this context is the use of biological markers, such as spe- cificimmunesignatureswhichmaycontributetounderstandingthediseaseprocessitself. Inthis context, the present work was performed with the hypothesis that Cytomegalovirus (CMV) and dementia(primarilyAD)influencetheimmunesystem. CMVinfectionhasbeenimplicatedasa potential risk factor for AD (Table 1.1). It has a major impact on immune signatures which may be relevant to MCI and in determining which patients with MCI may progress to AD. Earlier, more accurate diagnoses would allow earlier therapeutic intervention which might increase the cognitivelyhealthytimeperiodofaffectedindividuals. 1.1.2 Alzheimer’s Disease (AD) FirstreportsonAD Alzheimer’s Disease is the most common form of dementia, it occurs predominately in elderly peopleabove65yearsofage. Accordingtothe2007FactsandFiguresreportoftheAlzheimer’s AssociationoftheUnitedStates,96%ofallADpatientsareover65yearsofage. Theworldwide prevalenceofADwasestimatedtobe18millionin2008[70],withapredictedincreasingpreva- lenceduetorisinglifeexpectanciesandareductionindeathsfrominfectiousdiseasesassociated withadvancesinmodernmedicine. Becauseofthis,thestudyofdementiaisbecomingmorerel- evanttosocietalhealthandtheburdenofdisease. ADwasfirstdescribedbyAloysiusAlzheimer in the beginning of the 20th century. Alzheimer observed memory decline, disorientation and 3 confusion in a 51 year-old patient in 1901 [70]. After autopsy in 1906, Alzheimer described the main characteristics of AD: an atrophied brain, dead and dying brain cells, plaques consist- ing of amyloid beta and neurofibrillary tangles (NFT) [5]. This led eventually to the "amyloid hypothesis". Amyloidbetaandtau DespitecontroversialissuessurroundingthecauseandclassificationofAD,formationofamyloid plaques remains the main diagnostic and causative factor. It has been suggested by the group of LaFerlathatamyloidbeta(Aβ)maychangefrombeingabeneficialmoleculewithantimicrobial activity that is involved in protection against oxidative stress, cholesterol transport and is im- plicated in certain signalling pathways, to one of the major candidate molecules suggested to contribute to AD pathology (Fig. 1.2). The amyloid precursor protein (APP) is processed in cholesterolrichmembraneregions,so-calledlipidrafts. SecretasescleaveAPPintoproteinsbe- tween 36 and 43 amino acids long. The most important forms for AD pathology are suggested to be Aβ-40 and Aβ-42. Aβ can accumulate and aggregate, which according to the amyloid hypothesis initiates the onset of AD [117]. It is believed that Aβ exerts negative (for exam- ple neurotoxic) effects and has an immunomodulatory role. Synaptic dysfunctions within the brain and a systemic inflammation are some of the consequences of Aβ accumulation. With mi- croscopy studies the La Ferla group showed co-localisation of ubiquitin and Aβ, implying that proteasomalfunctionsareinvolvedintherolethatAβ mayplayinADpathology. Onetargetfor proteasomal degradation is phosphorylated tau, which can accumulate and form neurofibrillary tangles, as observed by Alzheimer within the brain of one of his patients. Tau is a microtubule- binding protein, which is involved in axonal transport, also of APP, and can so influence Aβ distributionand/orproduction. AnotherhypothesisisthatAβ activatestaukinaseswhichleadto hyperphosphorylation of tau. The consequence is dissociation from microtubuli which then de- polymerise, which results in axonal transport deficits and accumulation of hyperphosphorylated tauinADpatients. Additionally,consistentwithastateofsystemicinflammation,microgliaand astrocytes are activated and are located near Aβ plaques, - as for example shown by La Ferla. These cells possess phagocytic activity and degrade Aβ plaques. In addition they produce high levels of pro-inflammatory cytokines, which can activate certain kinases, leading to tau hyper- phosphorylation[13]. AmyloidbetaasthecauseofAD-acontroversialhypothesis Among several theories suggested to explain the cause of AD, the amyloid beta hypothesis is the most prominent. In 1991 Hardy and Allsop proposed a sequence of events characteristic of AD. Due to an imbalance between production and clearance of Aβ, the primary component of the plaques seen by Alzheimer, there is an accumulation of Aβ. This leads to formation of neurofibrillary tangles and subsequent to neuronal death [57]. This hypothesis is supported by the fact that the gene for the Aβ precursor protein (APP) is located on chromosome 21 and that individuals suffering from Down Syndrome that possess an extra copy of chromosome 21 fre- quently develop AD [89]. In addition, mutations in the APP gene could cause Aβ accumulation 4
Description: