ebook img

Discrete uniformizing metrics on distributional limits of sphere packings PDF

1.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discrete uniformizing metrics on distributional limits of sphere packings

Discrete uniformizing metrics on distributional limits of sphere packings JamesR.Lee UniversityofWashington 7 1 0 Abstract 2 Suppose that {G } is a sequence of finite graphs such that each G is the tangency graph n n n a of a sphere packing in Rd. Let ρn be a uniformly random vertex of Gn and suppose that J (G,ρ)isthedistributionallimitof{(G ,ρ )}inthesenseofBenjaminiandSchramm. Thenthe n n 5 conformalgrowthexponentof(G,ρ)isatmostd. Inotherwords,thereexistsaunimodular 2 “unitvolume”weightingofthegraphmetricon(G,ρ)suchthatthevolumegrowthofballsis ] asymptoticallypolynomialwithexponentd. Thisgeneralizestolimitsofgraphsthatcanbe G “quasisymmetrically”packedinanAhlforsd-regularmetricmeasurespace. M Inparticular,aresultoftheauthorimpliesthatundermomentconditionsonthedegreeof . therootρ, thealmostsurespectraldimensionofGisatmostd. Asanotherapplication, we h t showthatthespectrumoffinitegraphssphere-packedinRdisdominatedbyavariantofthe a d-dimensionalWeyllaw. m [ 1 1 Introduction v 7 2 Thetheoryofrandomplanargraphshasbeenanactiveareaofstudyinthelasttwentyyears(see, 2 e.g.,[Ben10]),inspiredpartiallybytheconnectiontotwo-dimensionalquantumgravity[ADJ97]. 7 0 AsnotedbyBenjaminiandCurien[BC11],ananalogoustheoryinhigherdimensionshasproved 1. elusive,inpartbasedonthedifficultyofenumerationforhigher-dimenisonalsimplicialcomplexes 0 (see[BZ11]andthereferencestherein). 7 1 To address this discrepancy, the authors of [BC11] explored the extension of analytic and : probabilisticmethodsbasedonpotentialtheory. AgraphGissaidtobesphere-packedinRd ifGis v i thetangencygraphofacollectionofinterior-disjointspheresinRd. BenjaminiandCurienproved X thatifafamilyoffinitegraphscanbesphere-packedinRd withspheresofboundedaspectratio(so r a thattheratiooftheradiioftangentspheresisO(1)),thenadistributionallimitofsuchgraphsis d-parabolic. Roughly speaking, d-parabolicity mans that the Ld extremal length from a fixed vertex to ∞ is infinite, where the Ld extremal length is a natural analog Cannon’s vertex extremal length [Can94] (the case d = 2); see also [Duf62] and Section 1.3. It is well-known that the special case of2-parabolicitycarriesstrongprobabilisticsignificance;forinstance,forgraphswithuniformly boundeddegrees,2-parabolicityisequivalenttorecurrenceoftherandomwalk(see[Duf62,DS84]). Unfortunately,ford > 2,thetheoryofLd extremallengthissomewhatmoreunwieldy,andisnot knowntoyieldsuchcontrolontherandomwalk. Inthiswork,westudyarelatednotionthatonemightrefertoasthe“extremalgrowthrate.” Forgraphsthatcanbesphere-packedinRd,weshowthatitispossibletoconstructmetricsthat 1 uniformize their underlying geometry so that the counting measure has d-dimensional volume growth. Employingtheresultsof[Lee17a],onedoesobtainsubstantialprobabilisticconsequences, including d-dimensional lower bounds on the diagonal heat kernel (see Theorem 1.4 below). Moreover,ourresultsholdinconsiderablegenerality;theyrequirenoassumptiononthedegreeor aspectratioofthepacking,andtheyextendtographsthatcanbe“quasisymmetrically”packedin anAhlforsd-regularmetricmeasurespace. ThemethodofproofisbasedpartiallyonacelebratedlemmaofBenjaminiandSchramm[BS01]. Theyshowthatif{G }isasequenceoffiniteplanartriangulationswithuniformlyboundeddegrees n and{G }convergestoadistributionallimit(G,ρ),thenalmostsurelyanycirclepackingofGhasat n mostoneaccumulationpointintheplane. Ananalogousresultholdsforgraphssphere-packedin Rd whend > 2[BC11]. Wearguethat,inaquantativesense,aslongastheaccumulationpointsremainseparated,one canconstructamulti-scalereweightingofthespheresinthepacking,endowingthegraphwitha metricthatreflectsitsd-dimensionalstructurewithrespecttotheunderlyingcountingmeasure. ThisiscarriedoutinSection2. InSection3, wediscussbrieflyaconjecturethatwecallthe“systolicminorproblem”based on analogies with systolic geometry. This problem arises partly out of an attempt to connect theconstructionofSection2tothemoretopologicalmethodsof[BLR10,KLPT11,Mat15,Lee16] as explored in [Lee17a, Lee17b], and to extend the isoperimetric theorem of [BP11] to higher dimensions. 1.1 Discreteconformalmetricsonsphere-packedgraphs Consider a locally finite, connected graph G. A conformal metric on G is a map ω : V(G) → R+. This endows G with a graph distance as follows: Give to every edge {u,v} ∈ E(G) a length lenω({u,v}) := 12(ω(u)+ω(v)). This prescribes to every path γ = {v0,v1,v2,...} in G the induced length (cid:88) lenω(γ) = lenω({vk,vk+1}). k(cid:62)0 Nowforu,v ∈ V(G),onedefinesthepathmetricdistω(u,v)astheinfimumofthelengthsofallu-v pathsinG. Denotetheclosedball Bω(x,R) = (cid:8)y ∈ V(G) : distω(x,y) (cid:54) R(cid:9) . We can now state a special case of our main technical theorem; the connection to distributional limitsandrandomwalksisdiscussedsubsequently. Theorem1.1. Foreveryd (cid:62) 1,thereisaconstantC = C(d)suchthatthefollowingholds. IfG = (V,E)isa finitegraphthatcanbesphere-packedinRd,thenthereisaconformalmetricω : V → R+ thatsatisfies 1 (cid:88) ω(x)d = 1, |V| x∈V andsuchthat max |Bω(x,R)| (cid:54) CRd(logR)2 ∀R (cid:62) 1. x∈V(G) 2 1.2 Conformalgrowthexponents If(G,ρ)israndomrootedgraph,thenaconformalmetricon(G,ρ)isarandomtriple(G(cid:48),ω,ρ(cid:48))with ω : V(G) → R+ suchthat(G,ρ)and(G(cid:48),ρ(cid:48))havethesamelaw. Wesaythattheconformalweightis (cid:104) (cid:105) normalizedifE ω(ρ)2 = 1. Onethinksofsuchametricω : V(G) → R+ asdeformingthegeometry oftheunderlyinggraphsubjecttoaboundonthetotal“area.” Asshownin[Lee17a],normalized conformal metrics with nice geometric properties form a powerful tool in understanding the structureof(G,ρ). In the present work, we consider unimodular random graphs (see Section 1.6); such graphs ariseasdistributionallimitsoffiniterandomrootedgraphs{(G ,ρ )}whereρ ∈ V(G )ischosen n n n n uniformlyatrandom. Wewillconsideronlyunimodularconformalmetricsωon(G,ρ);inother words,thesettingwhere(G,ω,ρ)isunimodularasamarkedgraph. Conformal growth exponents. Consider a unimodular random graph (G,ρ). In [Lee17a], we definedtheupperandlowerconformalgrowthexponentsof(G,ρ),respectively,by dim (G,ρ) := inflimsup log(cid:107)#Bω(ρ,R)(cid:107)L∞ , (1.1) cg ω R→∞ logR dim (G,ρ) := infliminf log(cid:107)#Bω(ρ,R)(cid:107)L∞ , (1.2) cg ω R→∞ logR where the infimum is over all normalized unimodular conformal metrics on (G,ρ), and we use (cid:107)X(cid:107)L∞ todenotetheessentialsupremumofarandomvariableX,and#Stodenotethecardinalityof asetS. Whendim (G,ρ) = dim (G,ρ),definetheconformalgrowthexponentby cg cg dim (G,ρ) := dim (G,ρ) = dim (G,ρ). cg cg cg Notethatthequantitiesdim ,dim ,dim arefunctionsofthelawof(G,ρ);theyarenotdefined cg cg cg on(fixed)rootedgraphs. NotethattheconformalgrowthexponentbearsaphilosophicalresemblancetoPansu’snotion ofconformaldimension[Pan89]. WerefertoPansu’srecentwork[Pan16]whichexploresindetailthe relationshipbetweenspherepackingsandthetheoryoflarge-scaleconformalmaps. Lq conformal growth rate. Let us define a generalization: If (G,ω,ρ) is a unimodular random conformalgraph,wedenote (cid:107)ω(cid:107)Lq := (cid:0)Eω(ρ)q(cid:1)1/q . SaythatωisLq-normalizedif(cid:107)ω(cid:107)Lq = 1. DefinetheanalogousLq quantities: dimq ,dimq ,dimq wherenowtheinfimain(1.1)and(1.2) cg cg cg areoverallLq-normalizedconformalmetricson(G,ρ). Observethat,bymonotonicityofLq norms, wehave q (cid:54) q(cid:48) =⇒ dimq (G,ρ) (cid:54) dimq(cid:48) (G,ρ). cg cg ⇒ The next theorem constitutes the main new result presented here. We use to denote convergenceinthedistributionalsense;seeSection1.6. Theorem1.2. Foranyd (cid:62) 1,thefollowingholds. If{G }arefinitegraphsthatcanbesphere-packedinRd n and{Gn} ⇒ (G,ρ),thenthereisanLd-normalizedunimodularconformalmetricω : V(G) → R+ suchthat forallR (cid:62) 1, (cid:107)#Bω(ρ,R)(cid:107)L∞ (cid:54) O(Rd(logR)2). (1.3) Inparticular,dim (G,ρ) (cid:54) d. cg 3 For d = 1, the theorem is uninteresting; the trivial weight ω ≡ 1 suffices. For d (cid:62) 2, the last assertionfollowsfromdim (G,ρ) = dim2 (G,ρ) (cid:54) dimd (G,ρ). cg cg cg Weremarkthatsome(logR)O(1) factorisnecessaryevenforthecased = 2(planargraphs);see [Lee17a,§2]. Infact,weproveTheorem1.2insomewhatgreatergenerality: Forgraphsthatare “quasisymmetrically”packedinanAhlforsd-regularmetricmeasurespaceusingbodiesthatare appropriately“round”(seeSection2fortheprecisedefinitions). A primary motivation for Theorem 1.2 is that such metrics can be used to obtain estimates on the almost sure spectral dimension of G. For a locally finite, connected graph G, denote the discrete-timeheatkernel pG(x,y) := P[X = y | X = x], T T 0 where{X }isthestandardrandomwalkonG. WerecallthespectraldimensionofG: n −2logpG (x,x) dim (G) := lim 2n , sp n→∞ logn wheneverthelimitexists. Ifthelimitdoesexist,thenitisthesameforallx ∈ V(G). Say that a real-valued random variable X has negligible tails if its tails decay faster than any inversepolynomial: logn = , lim 0 (1.4) n→∞ |logP[|X| > n]| wherewetakelog(0) = −∞intheprecedingdefinition(inthecasethatXisessentiallybounded). Thenexttheoremisfrom[Lee17a];itassertsthatifdim (G,ρ) (cid:54) d,thenalmostsurelyGadmits cg d-dimensionallowerboundsonthediagonalheatkernel: pG (ρ,ρ) (cid:62) n−d/2+o(1) as n → ∞. 2n Theorem1.3. Supposethat(G,ρ)isaunimodularrandomgraphsuchthatdeg (ρ)hasnegligibletails. G Thenalmostsurely: −2logpG (x,x) limsup 2n (cid:54) dim (G,ρ). cg n→∞ logn Inparticular,ifthereisanumberdsuchthatalmostsurelydim (G) = d,thend (cid:54) dim (G,ρ). sp cg Incertainsituations,onecangivestrongerestimates. Indeed,whentheconformalgrowthrate hasonlyapolylogarithmiccorrectionasin(1.3),oneobtainsstrongerresults(see[Lee17a,§4.2]). Theorem1.4. Suppose(G,ρ)isthedistributionallimitoffinitegraphsthatcanbesphere-packedinRd, andthatdeg (ρ)hasexponentialtails. Thenthereisaconstantc (cid:62) 1suchthatfornsufficientlylarge, G (cid:34) n−d/2 (cid:35) 1 P pG (ρ,ρ) (cid:62) (cid:62) 1− . 2n (logn)c logn 1.3 Gaugedconformalgrowthandd-parabolicity ConsideralocallyfiniteconnectedgraphG = (V,E). LetΓ denoteacollectionofsimplepathsinG. G The(cid:96) -vertexextremallengthofΓ isdefinedby d G γ lenω( ) VEL (Γ ) := sup inf , d G ω γ∈ΓG (cid:107)ω(cid:107)(cid:96)d(V) 4 (cid:16)(cid:80) (cid:17)1/d wheretheinfimumisoverallconformalmetricsonG,and(cid:107)ω(cid:107)(cid:96)d(V) = v∈Vω(v)d . Fixavertexv ∈ V andletΓ (v )denotethesetofinfinitesimplepathsinGemenatingfrom 0 G 0 v . OnesaysthatGisd-parabolicifVEL (Γ (v )) = ∞(see[HS95,BS13]). Onecancheckthatthis 0 d G 0 definitiondoesnotdependonthechoiceofv ∈ V. 0 Consider a sequence {G } of finite graphs with uniformly bounded degrees. Furthermore, n suppose that each G is sphere-packed in Rd and {G } ⇒ (G,ρ). There are examples where n n G is almost surely 2-parabolic, but dimd (G,ρ) (cid:62) dim (G,ρ) = ∞, and other examples where cg cg dim (G,ρ) = d (cid:62) 2butGisalmostsurelynotd-parabolic;seeSection2.2. cg Gaugedgrowth. Ontheotherhand,thereisacommonstrengtheningoftheconditions. Saythat (G,ρ)has(C,R,d)-growthifthereisanLd-normalizedconformalmetricω : V(G) → R+ suchthat (cid:107)#Bω(ρ,R)(cid:107)L∞ (cid:54) CRd. (1.5) Saythat(G,ρ)hasgaugedd-dimensionalconformalgrowthifthereisaconstantC (cid:62) 1suchthat(G,ρ) has(C,R,d)-growthforallR (cid:62) 0. Asequence{(G ,ρ )}hasuniformgaugedd-dimensionalconformal n n growthifthereisaconstantC (cid:62) 1suchthat(G ,ρ )has(C,R,d)-growthforallR (cid:62) 0andn (cid:62) 1. n n Itisstraightforwardtoseethatif(G,ρ)hasgaugedd-dimensionalgrowth,thendimd (G,ρ) (cid:54) d: cg Foreachk (cid:62) 0,letω denoteanLd-normalizedconformalmetricon(G,ρ)satisfying(1.5)anddefine k ωˆ := π62 (cid:88) ωk2dk1/d . k(cid:62)0 Establishingd-parabolicityissomewhatmoreinvolved;thed = 2caseofthefollowingtheoremis [Lee17a,Thm. 2.1]. Theorem 1.5. For every d (cid:62) 2, the following holds. If (G,ρ) is a unimodular random graph such that deg (ρ)isessentiallyboundedand(G,ρ)hasgaugedd-dimensionalconformalgrowth,thenGisalmost G surelyd-parabolic. InordertoestablishTheorem1.2,weprovethefollowingstrongerstatement;seeCorollary2.2. Theorem1.6. Supposethat{G }isasequenceoffinitegraphsandthateachG admitsasphere-packingin n n Rd. If{G } ⇒ (G,ρ),then(G,ρ)hasgaugedd-dimensionalconformalgrowth. n 1.4 TheLaplacianspectrumoffinitegraphs LetG = (V,E)denoteafiniteconnectedgraphandletn = |V|. Let{1−λ (G) : k = 0,1,...,n−1}be k theeigenvaluesoftherandomwalkoperatoronG,where 0 = λ0(G) (cid:54) λ1(G) (cid:54) ··· (cid:54) λn−1(G). Definealso (cid:88) ∆ (k) := max deg (x), G S⊆V:|S|(cid:54)k G x∈S wheredeg (x)denotesthedegreeofavertexx ∈ V. G In[KLPT11],itisshownthatthereisaconstantC > 0suchthatifGisaplanargraph,thenfor allk = 1,...,n−1, k λ (cid:54) C∆ (1) , k G n 5 where ∆ (1) is the maximum degree in G. The estimate for k = 2 is due to Spielman and Teng G [ST07]. In[Lee17a],theauthorimprovesthisboundto ∆ (k) λ (cid:54) C G . k n While the utility of this improvement is not immediately apparent, the correct quantitative dependenceisessentialtoaspectralargumentprovingthattheuniforminfiniteplanartriangulation isalmostsurelyrecurrent[Lee17a];thisfactwasfirstestablishedbyGurel-GurevichandNachmias ff [GN13]usinge ectiveresistanceestimates. InSection2.3,weuseTheorem1.1toproveananalogousstatementforgraphssphere-packed inRd. Theorem1.7. Foreveryd (cid:62) 2,thereisaconstantc suchthatthefollowingholds. IfGisann-vertexgraph d thatcanbesphere-packedinRd,thenfork = 1,2,...,n−1, ∆ (k) (cid:18) n(cid:19)2(cid:32)k(cid:33)2/d λ (G) (cid:54) c G log . k d k k n Notethat∆ (k)/kistheaveragedegreeofthekverticesoflargestdegreeinG. Uptothefactor G of(log(n/k))2,thisboundistightforad-dimensionalbox{1,2,...,n1/d}d consideredasasubgraph of the integer lattice Zd. Whether the (log(n/k))2 factor can be removed from the bound is an interestingopenquestion. 1.5 Preliminaries R = ,∞ Z = Z∩R Weusethenotations + [0 )and + +. Allgraphsappearinginthispaperareundirectedandlocallyfiniteandwithoutloopsormultiple edges. IfGissuchagraph,weuseV(G)andE(G)todenotethevertexandedgesetofG,respectively. If S ⊆ V(G), we use G[S] for the induced subgraph on S. For A,B ⊆ V(G), we write E (A,B) for G the set of edges with one endpoint in A and the other in B. We write dist for the unweighted G pathmetriconV(G),andB (x,r) = {y ∈ V(G) : dist (x,y) (cid:54) r}todenotetheclosedr-ballaround G G x ∈ V(G). Alsoletdeg (x)denotethedegreeofavertexx ∈ V(G),andd (G) = sup deg (x). G max x∈V(G) G Write G (cid:27) G to denote that G and G are isomorphic as graphs. If (G ,ρ ) and (G ,ρ ) are 1 2 1 2 1 1 2 2 rootedgraphs,wewrite(G1,ρ1) (cid:27)ρ (G2,ρ2)todenotetheexistenceofarootedisomorphism. 1.6 Unimodularrandomgraphsanddistributionallimits We begin with a discussion of unimodular random graphs and distributional limits. One may ff consult the extensive reference of Aldous and Lyons [AL07]. The paper [BS01] o ers a concise introductiontodistributionallimitsoffiniteplanargraphs. Webrieflyreviewsomerelevantpoints. G G Let denotethesetofisomorphismclassesofconnected,locallyfinitegraphs;let • denotethe setofrootedisomorphismclassesofrooted,connected,locallyfinitegraphs. DefineametriconG• as follows: (cid:0)(G ,ρ ),(G ,ρ )(cid:1) = 1/(1+α),where loc 1 1 2 2 (cid:110) (cid:111) α = sup r > 0 : BG1(ρ1,r) (cid:27)ρ BG2(ρ2,r) . G , {µ },µ G {µ } ⇒ µ ( • loc)isaseparable,completemetricspace. Forprobabilitymeasures n on •,write n µ µ when convergesweaklyto withrespectto . n loc 6 TheMass-TransportPrinciple. LetG•• denotethesetofdoubly-rootedisomorphismclassesof doubly-rooted,connected,locallyfinitegraphs. AprobabilitymeasureµonG• isunimodularifit obeysthefollowingMass-TransportPrinciple: ForallBorel-measurableF : G•• → [0,∞], (cid:90) (cid:90) (cid:88) (cid:88) F(G,ρ,x)dµ((G,ρ)) = F(G,x,ρ)dµ((G,ρ)). (1.6) x∈V(G) x∈V(G) If(G,ρ)isarandomrootedgraphwithlawµ,andµisunimodular,wesaythat(G,ρ)isaunimodular randomgraph;wewilloftenomittheword“random”andsimplyreferto(G,ρ)asaunimodular randomgraph. Distributionallimitsoffinitegraphs. AsobservedbyBenjaminiandSchramm[BS01],unimod- ularrandomgraphscanbeobtainedfromlimitsoffinitegraphs. Considerasequence{G } ⊆ Gof n finitegraphs,andletρ denoteauniformlyrandomelementofV(G ). Then{(G ,ρ )}isasequence n n n n G of •-valuedrandomvariables,andonehasthefollowing. Lemma1.8. If{(G ,ρ )} ⇒ (G,ρ),then(G,ρ)isunimodular. n n If{(G ,ρ )} ⇒ (G,ρ),wesaythat(G,ρ)isthedistributionallimitofthesequence{(G ,ρ )}. When n n n n {G }isasequenceoffinitegraphs,wewrite{G } ⇒ (G,ρ)for{(G ,ρ )} ⇒ (G,ρ)whereρ ∈ V(G ) n n n n n n ischosenuniformlyatrandom. Unimodularrandomconformalgraphs. Aconformalgraphisapair(G,ω),whereGisaconnected, locally finite graph and ω : V(G) → R+. Let G∗ and G∗• denote the collections of isomorphism classesofconformalgraphsandconformalrootedgraphs,respectively. AsinSection1.6,onecan defineametriconG∗• asfollows: ∗loc(cid:0)(G1,ω1,ρ1),(G2,ω2,ρ2)(cid:1) = 1/(α+1),where (cid:26) (cid:16) (cid:17) 1(cid:27) α = sup r > 0 : BG1(ρ1,r) (cid:27)ρ BG2(ρ2,r)and ω1|BG1(ρ1,r),ω2|BG2(ρ2,r) (cid:54) r , wherefortwoweightsω1 : V(H1) → R+andω2 : V(H2) → R+onrooted-isomorphicgraphs(H1,ρ1) and(H ,ρ ),wewrite 2 2 (cid:13) (cid:13) (ω1,ω2) := ψ:V(Hi1n)→fV(H2)(cid:13)(cid:13)ω2◦ψ−ω1(cid:13)(cid:13)(cid:96)∞ , andtheinfimumisoverallgraphisomorphismsfromH toH satisfyingψ(ρ ) = ρ . 1 2 1 2 {µ } µ G∗ {µ } ⇒ µ If n and are probability measures on •, we abuse notation and write n to ∗ denote weak convergence with respect to . One defines unimodularity of a random rooted loc conformalgraph(G,ω,ρ)analogouslyto(1.6): ItshouldnowholdthatforallBorel-measurable F : G∗•• → [0,∞], (cid:90) (cid:90) (cid:88) (cid:88) F(G,ω,ρ,x)dµ((G,ω,ρ)) = F(G,ω,x,ρ)dµ((G,ω,ρ)). x∈V(G) x∈V(G) Indeed,suchdecoratedgraphsareaspecialcaseofthemarkednetworksconsideredin[AL07],and againitholdsthateverydistributionallimitoffiniteunimodularrandomconformalgraphsisa unimodularrandomconformalgraph. Supposethat(G,ρ)isaunimodularrandomgraph. Aconformalweighton(G,ρ)isaunimodular conformalgraph(G(cid:48),ω,ρ(cid:48))suchthat(G,ρ)and(G(cid:48),ρ(cid:48))havethesamelaw. Wewillspeaksimplyof a“conformalmetricωon(G,ρ).” Onlysuchunimodularmetricsareconsideredinthiswork. 7 1.6.1 Conformalgrowthratesunderdistributionallimits In order to establish our main result, we need to pass from a sequence of conformal metrics on finitegraphstoaconformalmetriconthedistributionallimit. Theorem1.9. Considerd,q (cid:62) 1. Suppose{(G ,ρ )}isasequenceoffiniteunimodularrandomgraphsand n n {(Gn,ρn)} ⇒ (G,ρ). Ifthereisafunctionh : R+ → R+ suchthath(R) (cid:54) Ro(1) asR → ∞,andasequenceof Lq-normalizedunimodularrandomconformalgraphs{(G ,ω ,ρ )}satisfying n n n (cid:107)Bωn(ρn,R)(cid:107)L∞ (cid:54) Rdh(R), (1.7) thendimq (G,ρ) (cid:54) d. cg Iftheunimodularrandomgraphs{(G ,ρ )}haveuniformgaugedd-dimensionalgrowth,then(G,ρ)has n n gaugedd-dimensionalgrowth. Theprecedingtheoremisestablishedbythenexttwolemmas. Lemma1.10. Considerasequence{(G ,ω ,ρ )}ofunimodularrandomconformalgraphssatisfyingthe n n n followingconditions: 1. Foreveryn (cid:62) 1,E(cid:2)ω (ρ )(cid:3) (cid:54) 1. n n 2. Thereisasequence{bk : k ∈ N}suchthatforeveryk (cid:62) 1,limsupn→∞(cid:107)#BGn(ρn,k)(cid:107)L∞ (cid:54) bk. Then{(G ,ω ,ρ )}hasasubsequentialweaklimit. n n n Proof. Letusfirstpasstoasubsequence{(Gn,ωn,ρn)}satisfying(cid:107)#BGn(ρn,k)(cid:107)L∞ (cid:54) bk fork (cid:54) n. Fork (cid:62) 1andaconformalgraph(G,ω)andx,y ∈ V(G),definetheflow Fk(G,ω,x,y) = ω(x)1{distG(x,y)(cid:54)k}. EmployingtheMass-TransportPrinciple,fork (cid:54) nwehave     E (cid:88) ωn(x) = E (cid:88) Fk(Gn,ωn,x,ρn) x∈BGn(ρn,k) x∈V(Gn)   = E (cid:88) Fk(Gn,ωn,ρn,x) x∈V(Gn) (cid:54) b E(cid:2)ω (ρ )(cid:3) = b . k n n k λ > Inparticular,forany 0, (cid:34) (cid:35) 1 P max ω(x) > λk2b (cid:54) . x∈BGn(ρn,k) k λk2bk Denotetheevent (cid:40) (cid:41) E (λ) := (G ,ω ,ρ ) : max ω(x) (cid:54) λk2b ∀k = 1,2,...,n . n n n n k x∈BGn(ρn,k) Aunionboundyields P[E (λ)] (cid:62) 1−O(1/λ). (1.8) n 8 Letµ (λ)denotethelawof(G ,ω ,ρ )conditionedonE (λ). Then{µ (λ)}admitsasubsequential n n n n n n weaklimitbecausethespaceofboundedweightsonballsofradiuskiscompact(recallingthatsuch ballsalmostsurelyhavesizeatmostb byassumption). Thereforebydiagonalization,thesequence k {µ (n)} admits a subsequential weak limit µ. Let {n } be a subsequence for which {µ (2nj)} ⇒ µ. n j nj Then(G ,ω ,ρ ) ⇒ µaswellsinceP[E (n )] → 1by(1.8). (cid:3) nj nj nj nj j Theorem 1.9 now follows from the following lemma by taking {ω } to be the Lq-normalized n conformalweightsthatverify(1.7)for{(G ,ρ )}. n n Lemma1.11. Suppose{(G ,ρ )}isasequenceoffiniteunimodularrandomgraphssuchthat{(G ,ρ )} ⇒ n n n n (G,ρ). Thenanysequenceofunimodularrandomconformalgraphs{(G ,ω ,ρ )}satisfyingE[ω (ρ)] (cid:54) 1, n n n n ∗ hasasubsequentialweaklimitinthemetric . loc Proof. Sincethereareonlycountablymanyrootedisomorphismclassesofrootedballsofradiusr, wehave lim P[#B (ρ,r) > b] = 0. (1.9) G b→∞ Inparticular,thereexistsasequence{bj,(cid:96)}suchthat lim P[#BG(ρ,j) (cid:54) bj,(cid:96) ∀j (cid:62) 1] = 1. (1.10) (cid:96)→∞ (cid:110) (cid:111) Let(G(cid:96)n,ω(cid:96)n,ρ(cid:96)n)havethelawof(Gn,ωn,ρn)conditionedontheevent #BGn(ρn,j) (cid:54) bj,(cid:96) ∀j (cid:62) 1 (for (cid:96) ffi ffi su cientlylargethatthiseventhasnon-zeroprobability). From(1.10),itsu cestoprovethat {(G(cid:96),ω(cid:96),ρ(cid:96))} has a weak subsequential limit for all (cid:96) sufficiently large, and this is precisely the n n n (cid:3) contentofLemma1.10. 1.7 Systemsofdyadiccubes Considerapseudo-metricspace(X,d)(i.e.,weallowforthepossibilitythatd(x,y) = 0whenx (cid:44) y). Throughout the paper, we will deal only with complete, separable, pseudo-metric spaces. For x ∈ XandtwosubsetsS,T ⊆ X,weusethenotationsd(S,T) = infx∈S,y∈Td(x,y)andd(x,S) = d({x},S). Definediam(S,d) = sup d(x,y)andforR (cid:62) 0,definetheclosedballs x,y∈S B(X,d)(x,R) = {y ∈ X : d(x,y) (cid:54) R}. Weomitthesubscript(X,d)iftheunderlyingmetricspaceisclearfromcontext. Wesaythat(X,d) isdoublingifthereisaconstantDsuchthateveryclosedballinXcanbecoveredbyDclosedballs D D ofhalftheradius,andwelet (X,d) denotetheinfimal forwhichthisholds. IfµisameasureontheBorelσ-algebraofX,wereferto(X,d,µ)asametricmeasurespace. Sucha spaceissaidtobeAhlforsβ-regularifthereareconstantsc ,c > 0suchthat 1 2 c Rβ (cid:54) µ(B(x,R)) (cid:54) c Rβ ∀x ∈ X,R ∈ [0,diam(X)]. 1 2 Itwilloccasionallybeconvenienttorecordtheconstantsc ,c ,inwhichcasewesaythat(X,d,µ)is 1 2 (c ,c ,β)-regular. Werecallthefollowingelementaryfact: 1 2 Fact1.12. If(X,d,µ)isAhlforsβ-regularforsomeβ > 0,then(X,d)isdoubling,andD(X,d) (cid:54) Cforsome constantC = C(c ,c ,β)dependingonlyonc ,c ,β. 1 2 1 2 9 Wewillemployanappropriatesystemofhierarchicaldyadicpartitionsofadoublingmetric space(X,d)alongthelinesof[Chr90]and[Dav91]. Deterministicandrandomizedconstructionsof thistypeareabasictoolinharmonicanalysisandmetricgeometry(see,e.g.,[LN05]and[HK12]). Forourpurposes,itwillbeeasiesttouseaconstructionfrom[HK12]whichwesummarizehere. Considerametricspace(X,d). Abi-infinitesequenceP = {P : n ∈ Z}ofpartitionsofXissaidtobe n ahierarchicalsystemifPn isarefinementofPn+1 foralln ∈ Z. WesaythatPis∆-adicif S ∈ Pn =⇒ diam(X,d)(S) (cid:54) ∆n ∀n ∈ Z. Theorem 1.13 ([HK12]). Suppose (X,d) is a doubling metric space. Then there are numbers k,(cid:96),∆ (cid:62) 2 that depend only on D(X,d) such that the following holds. There is a collection {P(1),...,P(k)} of ∆-adic hierarchicalsystemssuchthatforeverysubsetS ⊆ Xwithdiam(X,d)(S) (cid:54) ∆m,thereisaset (cid:91)k Q ∈ P(i) m+(cid:96) i=1 suchthatS ⊆ Q. 2 Discrete conformal metrics on d-dimensional graphs Wefirstintroduceamoregeneralsettingforgraphs“packed”ind-dimensionalspaces. QSpackings. Considera(complete,separable)metricmeasurespace(X,dist,µ). ABorelsetS ⊆ X issaidtobeγ-roundifthefollowingholds: ForeveryballBinXwhosecenterliesinS¯ (theclosure ofS)andforwhichS (cid:42) B,wehaveµ(S∩B) (cid:62) γ·µ(B). Forinstance,ballsinRd are2−d-round. Consider additionally a collection F of Borel sets in X. For ε > 0, and an at most countable 0 subcollectionF ⊆ F0 ofpairwise-disjointsets,definetheε-QStangencygraphGε[F]asthegraph withvertexsetF andwithanedgebetweendistinctsetsS,T ∈ F whenever dist(S,T) (cid:54) ε·min{diam(S),diam(T)}. Say that a locally-finite graph G is ε-packable in (X,dist,µ) by F0 if Gε[F] is isomorphic to G for somesubsetF ⊆ F . SaythatGis(ε,γ)-packablein(X,dist,µ)ifitisε-packablebyγ-roundsubsets 0 of X. Say that G is QS-packable in (X,dist,µ) if it is (ε,γ)-packable for some ε (cid:62) 0,γ > 0. For instance,thetangencygraphofasphere-packinginRd is0-packablebyopenEuclideanballs,and (0,2−d)-packableinRd. ε Wenowpresentthemaintheoremofthissection. Despitetheuseofthesymbol ,oneshould ε observeitholdsevenfor large. Fortheremainderofthissection,weusethedefinition d∗ := max(d,2). Theorem2.1. Foreveryd (cid:62) 1,c ,c > 0,ε (cid:62) 0,γ > 0,thereisaconstantCsuchthatthefollowingholds. 1 2 SupposeG = (V,E)isafinitegraphthatis(ε,γ)-packedina(c ,c ,d)-regularspace(X,dist,µ). Thenfor 1 2 everyR (cid:62) 0,thereisaconformalweightω : V → R+ thatsatisfies 1 (cid:88) ω(x)d∗ = 1, (2.1) |V| x∈V andsuchthat max |Bω(x,R)| (cid:54) CRd∗. (2.2) x∈V(G) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.