ebook img

Discrete Time Series, Processes, and Applications in Finance PDF

325 Pages·2012·23.619 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discrete Time Series, Processes, and Applications in Finance

Springer Finance EditorialBoard M.Avellaneda G.Barone-Adesi M.Broadie M.H.A.Davis E.Derman C.Klüppelberg W.Schachermayer Springer Finance SpringerFinanceisaprogrammeofbooksaddressingstudents,academicsandprac- titioners working on increasingly technical approaches to the analysis of financial markets. It aims to cover a variety of topics, not only mathematical finance but foreignexchanges,termstructure,riskmanagement,portfoliotheory,equityderiva- tives,andfinancialeconomics. Forfurthervolumes: http://www.springer.com/series/3674 Gilles Zumbach Discrete Time Series, Processes, and Applications in Finance GillesZumbach ConsultinginFinancialResearch Saconnexd’Arve,Switzerland ISBN978-3-642-31741-5 ISBN978-3-642-31742-2(eBook) DOI10.1007/978-3-642-31742-2 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012948091 MathematicsSubjectClassification: 91B84,91B70,91G70,62P20,91G20,91B30 JELClassification: C22,G10,G17,G13,C23 ©Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To themenandwomenwhohaveshowed me variouspathsinlife –Yvette,withoutwhommuchwouldnot haveexisted –André,whoshowed metheexigenceand difficultyofcreating,and forsharing the pleasure and diversityofmusic –Hervé,who taughtmetherigorand beautyofmathematicsand physics,andfor hiscuriosityinscienceandliterature –Jean-Jacques,who introducedmeto soaring above theAlpsand forsharing uniquemomentsglidingbetweenglaciers and clouds.Andforteachingmeloudthe differencebetweenbigbandswestcoastand eastcoast... –Anne,forthemanyprojectsundertaken together Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Notation,Naming,andGeneralDefinitions . . . . . . . . . . . . . . 7 2.1 Time,TimeInterval,andTimeScale . . . . . . . . . . . . . . . . 7 2.2 TimeSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Historical,CenteredandRealizedQuantities . . . . . . . 9 2.2.2 Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Volatilities . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 VolatilityIncrements . . . . . . . . . . . . . . . . . . . . 12 2.3 Average,Expectation . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Scaling,Annualization,andReferenceTimeInterval . . . . . . . 13 2.5 EMA,MA,andOperatorsonTimeSeries . . . . . . . . . . . . . 14 2.6 ComputationoftheHistogramsandPdf . . . . . . . . . . . . . . 16 3 StylizedFacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 ProbabilityDensityFunction . . . . . . . . . . . . . . . . . . . . 18 3.2.1 PdffortheReturn . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 PdffortheVolatility . . . . . . . . . . . . . . . . . . . . 20 3.2.3 PdffortheVolatilityIncrement . . . . . . . . . . . . . . 22 3.3 ScalingfortheMoments:TheWidthofthePdf . . . . . . . . . . 23 3.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 ScalingfortheReturn . . . . . . . . . . . . . . . . . . . 23 3.3.3 ScalingfortheVolatility . . . . . . . . . . . . . . . . . . 25 3.4 RelativeExcessKurtosis:TheShapeofthePdf . . . . . . . . . . 26 3.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.2 RelativeExcessKurtosisfortheReturn . . . . . . . . . . 27 3.4.3 RelativeExcessKurtosisfortheVolatility . . . . . . . . . 27 3.4.4 RelativeExcessKurtosisfortheVolatilityIncrement . . . 27 vii viii Contents 3.5 LaggedCorrelations . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5.2 LaggedCorrelationsfortheAbsoluteReturn . . . . . . . 29 3.5.3 LaggedCorrelationsfortheVolatility . . . . . . . . . . . 31 3.6 CorrelationwiththeRealizedVolatility . . . . . . . . . . . . . . 34 3.6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6.2 AutocorrelationfortheVolatility. . . . . . . . . . . . . . 35 3.6.3 Correlations Between the Historical and Realized Volatilities . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.6.4 CorrelationsBetweentheRealizedVolatilityand theHistoricalVolatilityIncrement . . . . . . . . . . . . . 37 3.6.5 CorrelationsoftheRealizedVolatilitieswiththeCentered VolatilityIncrement . . . . . . . . . . . . . . . . . . . . 38 3.7 CorrelationfortheVolatilityIncrement . . . . . . . . . . . . . . 38 3.8 VolatilityGraining . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.9 TrendandLeverageEffects . . . . . . . . . . . . . . . . . . . . 44 3.9.1 HistoricalReturnVersusRealizedVolatilityCorrelation . 44 3.9.2 Trend/DriftVersusRealizedVolatilityCorrelation . . . . 45 3.10 TimeReversalInvariance . . . . . . . . . . . . . . . . . . . . . . 46 4 EmpiricalMugShots . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5 ProcessOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1 WhyUsingaFiniteTimeIncrementfortheProcesses? . . . . . . 57 5.2 TheDefinitionoftheReturns . . . . . . . . . . . . . . . . . . . 59 5.3 TheMostImportantStylizedFacts . . . . . . . . . . . . . . . . . 60 5.4 ARCHProcesses . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.5 StochasticVolatilityProcesses . . . . . . . . . . . . . . . . . . . 66 5.6 Regime-SwitchingProcesses . . . . . . . . . . . . . . . . . . . . 66 5.7 ThePlanfortheForthcomingChapters . . . . . . . . . . . . . . 67 6 LogarithmicVersusRelativeRandomWalks. . . . . . . . . . . . . . 69 6.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 TheDefinitionsoftheReturn . . . . . . . . . . . . . . . . . . . 70 6.3 LogarithmicProcess:OneAsset,ConstantVolatility . . . . . . . 72 6.4 GeometricProcess:OneAsset,ConstantVolatility . . . . . . . . 73 6.5 LongTimePropertiesofthe(ConstantVolatility)RandomWalk Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.6 GeometricProcess:ManyAssets,ConstantVolatility . . . . . . . 76 6.6.1 OneTime-Step . . . . . . . . . . . . . . . . . . . . . . . 77 6.6.2 ManyTimeSteps . . . . . . . . . . . . . . . . . . . . . . 77 6.7 EnforcingtheConditionr >−1orr ≥−1 . . . . . . . . . . 79 rel rel 6.8 Skewness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.9 TheBroaderPerspectiveSoFar... . . . . . . . . . . . . . . . . 83 Contents ix 7 ARCHProcesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.1 GARCH(1,1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 ∗ 7.1.1 VolatilityForecastfortheGARCH(1,1)Process . . . . 92 ∗ 7.1.2 ComputationfortheLaggedCorrelation . . . . . . . . . 93 7.2 I-GARCH(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3 EGARCH(1,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.4 LinearVersusAffineProcesses . . . . . . . . . . . . . . . . . . . 96 7.5 MulticomponentARCHProcesses . . . . . . . . . . . . . . . . . 99 7.6 GeneralConsiderationsonVolatilityForecast . . . . . . . . . . . 101 7.7 VolatilityForecastfortheMicroscopicARCHProcesses . . . . . 102 ∗ 7.7.1 ExplicitEquationsfortheVolatilityForecasts . . . . . . 102 7.8 GeometricARCHProcesses . . . . . . . . . . . . . . . . . . . . 105 7.9 Long-MemoryARCHProcesses . . . . . . . . . . . . . . . . . . 106 7.10 TheLong-MemoryAffinePure-AggregatedARCHProcess . . . 107 7.11 TheMarket-ARCHProcesses . . . . . . . . . . . . . . . . . . . 110 7.12 FIGARCH(p,d,m) . . . . . . . . . . . . . . . . . . . . . . . . 113 ∗ 7.13 TheGARCHProcesseswithTrends:GARTCH . . . . . . . . . 118 7.14 SensitivitywithRespecttotheEstimatedParameters . . . . . . . 121 ∗ 7.15 Long-TermDynamicsfortheMeanVolatility . . . . . . . . . . 122 7.16 TheInducedDynamicsfortheVolatility . . . . . . . . . . . . . . 123 7.17 SomeThoughtsontheSmallValuesofw∞ . . . . . . . . . . . . 126 7.18 WhichSimpleARCHProcessandParameterValuestoUse Overall? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8 StochasticVolatilityProcesses . . . . . . . . . . . . . . . . . . . . . . 129 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.1.1 StochasticTimeProcesses . . . . . . . . . . . . . . . . . 131 8.2 ExponentialStochasticVolatilityProcess . . . . . . . . . . . . . 132 8.2.1 One-ComponentExponentialStochasticVolatilityProcess 132 8.2.2 Long-MemoryExponentialStochasticVolatilityProcess . 134 8.3 HestonStochasticVolatilityProcess . . . . . . . . . . . . . . . . 135 8.3.1 One-ComponentHestonStochasticVolatilityProcess . . . 135 8.3.2 Long-MemoryHestonStochasticVolatilityProcess . . . . 140 9 Regime-SwitchingProcess . . . . . . . . . . . . . . . . . . . . . . . . 143 10 PriceandVolatilityUsingHigh-FrequencyData. . . . . . . . . . . . 147 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10.2 TheShort-TermModelsforthePrices . . . . . . . . . . . . . . . 149 10.2.1 PriceswithFiniteGranularity . . . . . . . . . . . . . . . 149 10.2.2 TheIncoherentPrices . . . . . . . . . . . . . . . . . . . 150 10.3 ModelsfortheUnderlyingPrice . . . . . . . . . . . . . . . . . . 152 10.4 ContinuousPricePathsandtheRealizedVariance. . . . . . . . . 152 10.5 CorrectionwithMultipleTime-ScaleEstimation . . . . . . . . . 155 10.6 CorrectionwithLaggedVariance . . . . . . . . . . . . . . . . . 156 10.7 AR(1)FilteronthePrices . . . . . . . . . . . . . . . . . . . . . 158 10.8 TickTimeSamplingandtheVolatilityperTick . . . . . . . . . . 160 x Contents 11 Time-ReversalAsymmetry. . . . . . . . . . . . . . . . . . . . . . . . 163 11.1 StatementoftheProblem . . . . . . . . . . . . . . . . . . . . . . 163 11.2 EmpiricalTimeReversalStatistics . . . . . . . . . . . . . . . . . 166 11.3 TRIinTheoreticalProcesses . . . . . . . . . . . . . . . . . . . . 169 11.4 TestStatistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 11.5 PossibleOriginsofTimeIrreversibility . . . . . . . . . . . . . . 174 11.6 TheAnalogywithHydrodynamicTurbulence . . . . . . . . . . . 176 11.7 FurtherThoughtsonTime-ReversalInvariance . . . . . . . . . . 177 12 CharacterizingHeteroscedasticity . . . . . . . . . . . . . . . . . . . 181 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 12.2 VolatilityandCorrelationEstimators. . . . . . . . . . . . . . . . 183 12.2.1 TheVolatilityEstimator . . . . . . . . . . . . . . . . . . 183 12.2.2 TheLaggedCorrelationEstimators . . . . . . . . . . . . 183 12.3 LaggedCorrelationShapes . . . . . . . . . . . . . . . . . . . . . 185 12.3.1 ExponentialDecay . . . . . . . . . . . . . . . . . . . . . 185 12.3.2 TwoExponentialswithFixedRanges . . . . . . . . . . . 186 12.3.3 PowerLawDecay . . . . . . . . . . . . . . . . . . . . . 186 12.3.4 LogarithmicDecay . . . . . . . . . . . . . . . . . . . . . 186 12.4 TheCostFunctionandParameterEstimation . . . . . . . . . . . 187 12.5 MonteCarloSimulations . . . . . . . . . . . . . . . . . . . . . . 188 12.6 LaggedCorrelationsforEmpiricalTimeSeries . . . . . . . . . . 190 12.7 TheDJIAoverOneCentury . . . . . . . . . . . . . . . . . . . . 194 12.8 SummarizingtheFindingsAbouttheHeteroscedasticity . . . . . 195 13 TheInnovationDistributions . . . . . . . . . . . . . . . . . . . . . . 197 13.1 EmpiricalProbabilityDistributionfortheReturns. . . . . . . . . 197 13.2 TheMappingBetweenReturnsandInnovations . . . . . . . . . . 198 13.3 EmpiricalProbabilityDistributionsfortheInnovations . . . . . . 201 14 LeverageEffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 14.2 EmpiricalStatistics . . . . . . . . . . . . . . . . . . . . . . . . . 205 14.3 ProcesseswithLeverageandMonteCarloSimulations . . . . . . 207 15 ProcessesandMarketRiskEvaluation . . . . . . . . . . . . . . . . . 211 15.1 BackgroundonRiskEvaluation . . . . . . . . . . . . . . . . . . 211 15.2 “Return-Based”Versus“Innovation-Based”RiskMethodologies . 214 15.3 GeneralConsiderationsonInnovation-BasedRiskMethodologies 216 15.4 TheMainInnovation-BasedRiskMethodologies . . . . . . . . . 218 15.4.1 TheRM1994RiskMethodology . . . . . . . . . . . . . . 218 15.4.2 TheRM2006RiskMethodology . . . . . . . . . . . . . . 219 15.5 MarketRiskEvaluationsinPractice . . . . . . . . . . . . . . . . 220 15.6 Backtesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 15.6.1 StatingtheProblem. . . . . . . . . . . . . . . . . . . . . 222 15.6.2 MappingtotheProbtiles . . . . . . . . . . . . . . . . . . 222 15.6.3 AnExample:BacktestingtheDJIAoverOneCentury . . 224 Contents xi 15.7 MeasuringAccuratelyShocks . . . . . . . . . . . . . . . . . . . 227 15.7.1 DefiningtheScaleofMarketShocks . . . . . . . . . . . 228 15.7.2 EmpiricalPropertiesoftheScaleofMarketShocks . . . . 229 16 OptionPricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 16.1 ProcessesandthePriceofOptions . . . . . . . . . . . . . . . . . 233 16.2 TheStockProcess . . . . . . . . . . . . . . . . . . . . . . . . . 236 16.3 TheEquivalentMartingaleMeasure . . . . . . . . . . . . . . . . 237 16.4 TheValuationofEuropeanStyleContingentClaims . . . . . . . 239 16.5 MinimalVarianceHedging . . . . . . . . . . . . . . . . . . . . . 242 16.6 Smallδt Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 243 16.7 MoneynessandImpliedVolatility . . . . . . . . . . . . . . . . . 248 16.8 ApplicationforARCHProcesses . . . . . . . . . . . . . . . . . 249 16.9 Cross-ProductApproximationoftheIVSurface. . . . . . . . . . 251 17 TheEmpiricalPropertiesofLargeCovarianceMatrices . . . . . . . 257 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 17.2 TheoreticalFramework . . . . . . . . . . . . . . . . . . . . . . . 259 17.3 TheDatasetsfortheEmpiricalStudies. . . . . . . . . . . . . . . 261 17.4 TheDynamicsoftheCovarianceSpectrum . . . . . . . . . . . . 262 17.5 TheDynamicsoftheCorrelationSpectrum . . . . . . . . . . . . 263 17.6 SpectralDensityoftheCorrelationMatrix. . . . . . . . . . . . . 264 17.7 SpectrumandSpectralDensityoftheCovariance . . . . . . . . . 266 17.8 MeanProjector . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 17.9 ProjectorDynamics. . . . . . . . . . . . . . . . . . . . . . . . . 269 17.10 PuttingAllthePiecesTogether. . . . . . . . . . . . . . . . . . . 271 18 MultivariateARCHProcesses . . . . . . . . . . . . . . . . . . . . . . 273 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 18.2 GeneralSetupforMultivariateProcesses . . . . . . . . . . . . . 274 18.3 MultivariateLinearARCHProcesses . . . . . . . . . . . . . . . 275 18.3.1 TheLinearCovarianceMatrix . . . . . . . . . . . . . . . 275 18.3.2 TheInverseCovarianceMatrix. . . . . . . . . . . . . . . 277 18.3.3 QuantifyingthePropertiesoftheReturnsand theInnovations . . . . . . . . . . . . . . . . . . . . . . . 279 18.3.4 TheSampleCorrelationsfortheReturns . . . . . . . . . 279 18.3.5 TheSampleCorrelationsfortheResiduals . . . . . . . . 281 18.3.6 WhiteningoftheResiduals. . . . . . . . . . . . . . . . . 282 18.3.7 ComparingDifferentCovarianceKernels . . . . . . . . . 285 18.3.8 “Projected”and“FullRank”Regularizations . . . . . . . 286 18.3.9 SummarizingtheSituations . . . . . . . . . . . . . . . . 288 18.4 MultivariateAffineARCHProcesses . . . . . . . . . . . . . . . 289 18.5 MoreGeneralExtensionsfortheMultivariateGARCH Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.