ebook img

Discrete structures for computer science. Counting, recursion, and probability PDF

284 Pages·2016·0.965 MB·English
by  Smid M
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discrete structures for computer science. Counting, recursion, and probability

Discrete Structures for Computer Science: Counting, Recursion, and Probability Michiel Smid School of Computer Science Carleton University Ottawa Canada [email protected] September 2, 2016 ii Contents Contents Preface vi 1 Introduction 1 1.1 Ramsey Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Sperner’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 The Quick-Sort Algorithm . . . . . . . . . . . . . . . . . . . . 5 2 Mathematical Preliminaries 9 2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Proof Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Direct proofs . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Constructive proofs . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Nonconstructive proofs . . . . . . . . . . . . . . . . . . 14 2.2.4 Proofs by contradiction . . . . . . . . . . . . . . . . . . 15 2.2.5 Proofs by induction . . . . . . . . . . . . . . . . . . . . 16 2.2.6 More examples of proofs . . . . . . . . . . . . . . . . . 18 2.3 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Counting 25 3.1 The Product Rule . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Counting Bitstrings of Length n . . . . . . . . . . . . . 26 3.1.2 Counting Functions . . . . . . . . . . . . . . . . . . . . 26 3.1.3 Placing Books on Shelves . . . . . . . . . . . . . . . . . 29 3.2 The Bijection Rule . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 The Complement Rule . . . . . . . . . . . . . . . . . . . . . . 32 3.4 The Sum Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 iv Contents 3.5 The Principle of Inclusion and Exclusion . . . . . . . . . . . . 34 3.6 Permutations and Binomial Coefficients . . . . . . . . . . . . . 36 3.6.1 Some Examples . . . . . . . . . . . . . . . . . . . . . . 38 3.6.2 Newton’s Binomial Theorem . . . . . . . . . . . . . . . 39 3.7 Combinatorial Proofs . . . . . . . . . . . . . . . . . . . . . . . 41 3.8 Pascal’s Triangle . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.9 More Counting Problems . . . . . . . . . . . . . . . . . . . . . 48 3.9.1 Reordering the Letters of a Word . . . . . . . . . . . . 48 3.9.2 Counting Solutions of Linear Equations . . . . . . . . . 49 3.10 The Pigeonhole Principle . . . . . . . . . . . . . . . . . . . . . 53 3.10.1 India Pale Ale . . . . . . . . . . . . . . . . . . . . . . . 53 3.10.2 Sequences Containing Divisible Numbers . . . . . . . . 54 3.10.3 Long Sequences Contain Long Monotone Subsequences 55 3.10.4 There are Infinitely Many Primes . . . . . . . . . . . . 56 3.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 Recursion 69 4.1 Recursive Functions . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 Fibonacci Numbers . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.1 Counting 00-Free Bitstrings . . . . . . . . . . . . . . . 73 4.3 A Recursively Defined Set . . . . . . . . . . . . . . . . . . . . 74 4.4 A Gossip Problem . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.5 The Merge-Sort Algorithm . . . . . . . . . . . . . . . . . . . . 80 MergeSort 4.5.1 Correctness of Algorithm . . . . . . . . . 81 MergeSort 4.5.2 Running Time of Algorithm . . . . . . . 82 4.6 Counting Regions when Cutting a Circle . . . . . . . . . . . . 85 4.6.1 A Polynomial Upper Bound on R . . . . . . . . . . . 86 n 4.6.2 A Recurrence Relation for R . . . . . . . . . . . . . . 89 n 4.6.3 Simplifying the Recurrence Relation . . . . . . . . . . . 94 4.6.4 Solving the Recurrence Relation . . . . . . . . . . . . . 95 4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Discrete Probability 115 5.1 Anonymous Broadcasting . . . . . . . . . . . . . . . . . . . . 115 5.2 Probability Spaces . . . . . . . . . . . . . . . . . . . . . . . . 120 5.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.3 Basic Rules of Probability . . . . . . . . . . . . . . . . . . . . 124 5.4 Uniform Probability Spaces . . . . . . . . . . . . . . . . . . . 129 Contents v 5.4.1 The Probability of Getting a Full House . . . . . . . . 130 5.5 The Birthday Paradox . . . . . . . . . . . . . . . . . . . . . . 131 5.5.1 Throwing Balls into Boxes . . . . . . . . . . . . . . . . 133 5.6 The Big Box Problem . . . . . . . . . . . . . . . . . . . . . . . 135 5.6.1 The Probability of Finding the Big Box . . . . . . . . . 136 5.7 The Monty Hall Problem . . . . . . . . . . . . . . . . . . . . . 138 5.8 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . 139 5.8.1 Anil’s Children . . . . . . . . . . . . . . . . . . . . . . 141 5.8.2 Rolling a Die . . . . . . . . . . . . . . . . . . . . . . . 141 5.9 The Law of Total Probability . . . . . . . . . . . . . . . . . . 143 5.9.1 Flipping a Coin and Rolling Dice . . . . . . . . . . . . 145 5.10 Independent Events . . . . . . . . . . . . . . . . . . . . . . . . 147 5.10.1 Rolling Two Dice . . . . . . . . . . . . . . . . . . . . . 147 5.10.2 A Basic Property of Independent Events . . . . . . . . 148 5.10.3 Pairwise and Mutually Independent Events . . . . . . . 149 5.11 Describing Events by Logical Propositions . . . . . . . . . . . 151 5.11.1 Flipping a Coin and Rolling a Die . . . . . . . . . . . . 151 5.11.2 Flipping Coins . . . . . . . . . . . . . . . . . . . . . . 152 5.11.3 The Probability of a Circuit Failing . . . . . . . . . . . 153 5.12 Choosing a Random Element in a Linked List . . . . . . . . . 154 5.13 Long Runs in Random Bitstrings . . . . . . . . . . . . . . . . 156 5.14 Infinite Probability Spaces . . . . . . . . . . . . . . . . . . . . 161 5.14.1 Infinite Series . . . . . . . . . . . . . . . . . . . . . . . 162 5.14.2 Who Flips the First Heads . . . . . . . . . . . . . . . . 164 5.14.3 Who Flips the Second Heads . . . . . . . . . . . . . . . 166 5.15 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6 Random Variables and Expectation 189 6.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 189 6.1.1 Flipping Three Coins . . . . . . . . . . . . . . . . . . . 190 6.1.2 Random Variables and Events . . . . . . . . . . . . . . 191 6.2 Independent Random Variables . . . . . . . . . . . . . . . . . 193 6.3 Distribution Functions . . . . . . . . . . . . . . . . . . . . . . 195 6.4 Expected Values . . . . . . . . . . . . . . . . . . . . . . . . . 197 6.4.1 Some Examples . . . . . . . . . . . . . . . . . . . . . . 198 6.4.2 Comparing the Expected Values of Comparable Ran- dom Variables . . . . . . . . . . . . . . . . . . . . . . . 200 6.4.3 An Alternative Formula for the Expected Value . . . . 201 vi Contents 6.5 Linearity of Expectation . . . . . . . . . . . . . . . . . . . . . 203 6.6 The Geometric Distribution . . . . . . . . . . . . . . . . . . . 206 6.6.1 Determining the Expected Value . . . . . . . . . . . . 207 6.7 The Binomial Distribution . . . . . . . . . . . . . . . . . . . . 208 6.7.1 Determining the Expected Value . . . . . . . . . . . . 209 6.7.2 Using the Linearity of Expectation . . . . . . . . . . . 211 6.8 Indicator Random Variables . . . . . . . . . . . . . . . . . . . 213 6.8.1 Runs in Random Bitstrings . . . . . . . . . . . . . . . 214 6.8.2 Largest Elements in Prefixes of Random Permutations 215 6.8.3 Estimating the Harmonic Number . . . . . . . . . . . . 218 6.9 The Insertion-Sort Algorithm . . . . . . . . . . . . . . . . . . 220 6.10 The Quick-Sort Algorithm . . . . . . . . . . . . . . . . . . . . 222 6.11 Skip Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Search 6.11.1 Algorithm . . . . . . . . . . . . . . . . . . . . 228 Insert Delete 6.11.2 Algorithms and . . . . . . . . . . . . 229 6.11.3 Analysis of Skip Lists . . . . . . . . . . . . . . . . . . . 231 6.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 7 The Probabilistic Method 257 7.1 Large Bipartite Subgraphs . . . . . . . . . . . . . . . . . . . . 257 7.2 Ramsey Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 259 7.3 Sperner’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 262 7.4 Planar Graphs and the Crossing Lemma . . . . . . . . . . . . 265 7.4.1 Planar Graphs . . . . . . . . . . . . . . . . . . . . . . 265 7.4.2 The Crossing Number of a Graph . . . . . . . . . . . . 269 7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 Preface This is a free textbook for an undergraduate course on Discrete Structures for Computer Science students, which I have been teaching at Carleton Uni- versity since the fall term of 2013. The material is offered as the second-year course COMP 2804 (Discrete Structures II). Students are assumed to have taken COMP 1805 (Discrete Structures I), which covers mathematical rea- soning, basic proof techniques, sets, functions, relations, basic graph theory, asymptotic notation, and countability. During a 12-week term with three hours of classes per week, I cover most of the material in this book, except for Chapter 2, which has been included so that students can review the material from COMP 1805. Chapter 2 is largely taken from the free textbook Introduction to Theory of Computation by Anil Maheshwari and Michiel Smid, which is available at http://cg.scs.carleton.ca/~michiel/TheoryOfComputation/ Please let me know if you find errors, typos, simpler proofs, comments, omissions, or if you think that some parts of the book “need improvement”. viii Chapter 1 Introduction In this chapter, we introduce some problems that will be solved later in this book. Along the way, we recall some notions from discrete mathematics that you are assumed to be familiar with. These notions are reviewed in more detail in Chapter 2. 1.1 Ramsey Theory Ramsey Theory studies problems of the following form: How many elements of a given type must there be so that we can guarantee that some property holds? In this section, we consider the case when the elements are people and the property is “there is a large group of friends or there is a large group of strangers”. Theorem 1.1.1 In any group of six people, there are three friends, i.e., three people who know each other, • or three strangers, i.e., three people, none of which knows the other two. • In order to prove this theorem, we denote the six people by P ,P ,...,P . 1 2 6 Any two people P and P are either friends or strangers. We define the i j complete graph G = (V,E) with vertex set V = P : 1 i 6 i { ≤ ≤ } and edge set E = P P : 1 i < j 6 . i j { ≤ ≤ } 2 Chapter 1. Introduction Observethat V = 6and E = 15. WedraweachedgeP P asastraight-line i j | | | | segment according to the following rule: If P and P are friends, then the edge P P is drawn as a solid segment. i j i j • If P and P are strangers, then the edge P P is drawn as a dashed i j i j • segment. Intheexamplebelow, P andP arefriends, whereasP andP arestrangers. 3 5 1 3 P P 2 3 P P 1 4 P P 6 5 Observe that a group of three friends corresponds to a solid triangle in the graph G, whereas a group of three strangers corresponds to a dashed triangle. In the example above, there is no solid triangle and, thus, there is no group of three friends. Since the triangle P P P is dashed, there is a 2 4 5 group of three strangers. Using this terminology, Theorem 1.1.1 is equivalent to the following: Theorem 1.1.2 Consider a complete graph on six vertices, in which each edge is either solid or dashed. Then there is a solid triangle or a dashed triangle. Proof. As before, we denote the vertices by P ,...,P . Consider the five 1 6 edges that are incident on P . Using a proof by contradiction, it can easily 1 be shown that one of the following two claims must hold: At least three of these five edges are solid. • At least three of these five edges are dashed. •

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.