ebook img

Discrete Stochastic Processes and Optimal Filtering PDF

301 Pages·2007·1.78 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discrete Stochastic Processes and Optimal Filtering

Discrete Stochastic Processes and Optimal Filtering Discrete Stochastic Processes and Optimal Filtering Jean-Claude Bertein Roger Ceschi First published in France in 2005 by Hermes Science/Lavoisier entitled “Processus stochastiques discrets et filtrages optimaux” First published in Great Britain and the United States in 2007 by ISTE Ltd Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd ISTE USA 6 Fitzroy Square 4308 Patrice Road London W1T 5DX Newport Beach, CA 92663 UK USA www.iste.co.uk © ISTE Ltd, 2007 © LAVOISIER, 2005 The rights of Jean-Claude Bertein and Roger Ceschi to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Cataloging-in-Publication Data Bertein, Jean-Claude. [Processus stochastiques discrets et filtrages optimaux. English] Discrete stochastic processes and optimal filtering/Jean-Claude Bertein, Roger Ceschi. p. cm. Includes index. "First published in France in 2005 by Hermes Science/Lavoisier entitled "Processus stochastiques discrets et filtrages optimaux"." ISBN 978-1-905209-74-3 1. Signal processing--Mathematics. 2. Digital filters (Mathematics) 3. Stochastic processes. I. Ceschi, Roger. II. Title. TK5102.9.B465 2007 621.382'2--dc22 2007009433 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 13: 978-1-905209-74-3 Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire. To our families We wish to thank Mme Florence François for having typed the manuscript, and M. Stephen Hazlewood who assured the translation of the book Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Chapter 1. Random Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Definitions and general properties . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Spaces L1(dP) and L2(dP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.2.1. Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.2.2. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3. Mathematical expectation and applications. . . . . . . . . . . . . . . . . 23 1.3.1. Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.3.2. Characteristic functions of a random vector . . . . . . . . . . . . . . 34 1.4. Second order random variables and vectors. . . . . . . . . . . . . . . . . 39 1.5. Linear independence of vectors of L2(dP). . . . . . . . . . . . . . . . . . 47 1.6. Conditional expectation (concerning random vectors with density function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.7. Exercises for Chapter 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 2. Gaussian Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.1. Some reminders regarding random Gaussian vectors . . . . . . . . . . . 63 2.2. Definition and characterization of Gaussian vectors. . . . . . . . . . . . 66 2.3. Results relative to independence . . . . . . . . . . . . . . . . . . . . . . . 68 2.4. Affine transformation of a Gaussian vector. . . . . . . . . . . . . . . . . 72 2.5. The existence of Gaussian vectors . . . . . . . . . . . . . . . . . . . . . . 74 2.6. Exercises for Chapter 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 viii Discrete Stochastic Processes and Optimal Filtering Chapter 3. Introduction to Discrete Time Processes. . . . . . . . . . . . . . . 93 3.1. Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.2. WSS processes and spectral measure. . . . . . . . . . . . . . . . . . . . . 105 3.2.1. Spectral density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.3. Spectral representation of a WSS process. . . . . . . . . . . . . . . . . . 110 3.3.1. Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.3.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.3.2.1. Process with orthogonal increments and associated measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.3.2.2. Wiener stochastic integral. . . . . . . . . . . . . . . . . . . . . . . 113 3.3.2.3. Spectral representation. . . . . . . . . . . . . . . . . . . . . . . . . 114 3.4. Introduction to digital filtering . . . . . . . . . . . . . . . . . . . . . . . . 115 3.5. Important example: autoregressive process. . . . . . . . . . . . . . . . . 128 3.6. Exercises for Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Chapter 4. Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.1. Position of the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.2. Linear estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.3. Best estimate – conditional expectation . . . . . . . . . . . . . . . . . . . 156 4.4. Example: prediction of an autoregressive process AR (1) . . . . . . . . 165 4.5. Multivariate processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 4.6. Exercises for Chapter 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Chapter 5. The Wiener Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 5.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 5.1.1. Problem position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 5.2. Resolution and calculation of the FIR filter. . . . . . . . . . . . . . . . . 183 5.3. Evaluation of the least error . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5.4. Resolution and calculation of the IIR filter . . . . . . . . . . . . . . . . . 186 5.5. Evaluation of least mean square error . . . . . . . . . . . . . . . . . . . . 190 5.6. Exercises for Chapter 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Chapter 6. Adaptive Filtering: Algorithm of the Gradient and the LMS. . 197 6.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 6.2. Position of problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.3. Data representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.4. Minimization of the cost function. . . . . . . . . . . . . . . . . . . . . . . 204 6.4.1. Calculation of the cost function . . . . . . . . . . . . . . . . . . . . . 208 6.5. Gradient algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Table of Contents ix 6.6. Geometric interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 6.7. Stability and convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 6.8. Estimation of gradient and LMS algorithm . . . . . . . . . . . . . . . . . 222 6.8.1. Convergence of the algorithm of the LMS . . . . . . . . . . . . . . . 225 6.9. Example of the application of the LMS algorithm. . . . . . . . . . . . . 225 6.10. Exercises for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Chapter 7. The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.1. Position of problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.2. Approach to estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 7.2.1. Scalar case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 7.2.2. Multivariate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 7.3. Kalman filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.3.1. State equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.3.2. Observation equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 7.3.3. Innovation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7.3.4. Covariance matrix of the innovation process. . . . . . . . . . . . . . 248 7.3.5. Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 7.3.6. Riccati’s equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 7.3.7. Algorithm and summary. . . . . . . . . . . . . . . . . . . . . . . . . . 260 7.4. Exercises for Chapter 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 Table of Symbols and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.