ebook img

Discrete Mathematics PDF

784 Pages·2007·4.499 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discrete Mathematics

Discrete Mathematics Seventh Edition Richard Johnsonbaugh DePaul University, Chicago Upper Saddle River, New Jersey 07458 LibraryofCongressCataloging-in-PublicationDataonFile. ©2009byPearsonEducation,Inc. PearsonPrenticeHall PearsonEducation,Inc. UpperSaddleRiver,NJ07458 PrintedintheUnitedStatesofAmerica ISBN 0-13-159318-8 ISBN 978-0-13-159318-3 Contents Preface XI 1 ➜ Sets and Logic 1 1.1 Sets 2 1.2 Propositions 14 1.3 ConditionalPropositionsandLogicalEquivalence 21 1.4 ArgumentsandRulesofInference 31 1.5 Quantifiers 36 1.6 NestedQuantifiers 51 Problem-Solving Corner:Quantifiers 60 Notes 62 ChapterReview 62 ChapterSelf-Test 63 ComputerExercises 64 2 ➜ Proofs 66 2.1 MathematicalSystems,DirectProofs,andCounterexamples 67 2.2 MoreMethodsofProof 76 Problem-Solving Corner:ProvingSomeProperties ofRealNumbers 87 † 2.3 ResolutionProofs 90 2.4 MathematicalInduction 93 Problem-Solving Corner:MathematicalInduction 106 2.5 StrongFormofInductionandtheWell-OrderingProperty 108 Notes 115 ChapterReview 115 ChapterSelf-Test 116 ComputerExercises 116 †Thissectioncanbeomittedwithoutlossofcontinuity. v vi Contents 3 ➜ Functions, Sequences, and Relations 117 3.1 Functions 117 Problem-Solving Corner:Functions 135 3.2 SequencesandStrings 136 3.3 Relations 148 3.4 EquivalenceRelations 159 Problem-Solving Corner:EquivalenceRelations 166 3.5 MatricesofRelations 168 † 3.6 RelationalDatabases 173 Notes 178 ChapterReview 178 ChapterSelf-Test 179 ComputerExercises 180 4 ➜ Algorithms 181 4.1 Introduction 181 4.2 ExamplesofAlgorithms 186 4.3 AnalysisofAlgorithms 193 Problem-Solving Corner:DesignandAnalysisofanAlgorithm 211 4.4 RecursiveAlgorithms 213 Notes 220 ChapterReview 221 ChapterSelf-Test 221 ComputerExercises 222 5 ➜ Introduction to Number Theory 223 5.1 Divisors 223 5.2 RepresentationsofIntegersandIntegerAlgorithms 234 5.3 TheEuclideanAlgorithm 248 Problem-Solving Corner:MakingPostage 259 5.4 TheRSAPublic-KeyCryptosystem 260 Notes 263 ChapterReview 263 ChapterSelf-Test 263 ComputerExercises 264 6 ➜ Counting Methods and the Pigeonhole Principle 265 6.1 BasicPrinciples 265 Problem-Solving Corner:Counting 277 †Thissectioncanbeomittedwithoutlossofcontinuity. Contents vii 6.2 PermutationsandCombinations 278 Problem-Solving Corner:Combinations 291 6.3 GeneralizedPermutationsandCombinations 293 6.4 AlgorithmsforGeneratingPermutationsandCombinations 299 † 6.5 IntroductiontoDiscreteProbability 305 † 6.6 DiscreteProbabilityTheory 309 6.7 BinomialCoefficientsandCombinatorialIdentities 320 6.8 ThePigeonholePrinciple 325 Notes 330 ChapterReview 330 ChapterSelf-Test 330 ComputerExercises 332 7 ➜ Recurrence Relations 333 7.1 Introduction 333 7.2 SolvingRecurrenceRelations 345 Problem-Solving Corner:RecurrenceRelations 358 7.3 ApplicationstotheAnalysisofAlgorithms 361 Notes 373 ChapterReview 373 ChapterSelf-Test 374 ComputerExercises 374 8 ➜ Graph Theory 376 8.1 Introduction 377 8.2 PathsandCycles 388 Problem-Solving Corner:Graphs 399 8.3 HamiltonianCyclesandtheTravelingSalespersonProblem 400 8.4 AShortest-PathAlgorithm 407 8.5 RepresentationsofGraphs 412 8.6 IsomorphismsofGraphs 417 8.7 PlanarGraphs 425 † 8.8 InstantInsanity 431 Notes 435 ChapterReview 436 ChapterSelf-Test 437 ComputerExercises 438 9 ➜ Trees 440 9.1 Introduction 440 9.2 TerminologyandCharacterizationsofTrees 448 Problem-Solving Corner:Trees 453 †Thissectioncanbeomittedwithoutlossofcontinuity. viii Contents 9.3 SpanningTrees 454 9.4 MinimalSpanningTrees 461 9.5 BinaryTrees 467 9.6 TreeTraversals 474 9.7 DecisionTreesandtheMinimumTimeforSorting 480 9.8 IsomorphismsofTrees 486 † 9.9 GameTrees 496 Notes 505 ChapterReview 505 ChapterSelf-Test 506 ComputerExercises 508 10 ➜ Network Models 510 10.1 Introduction 510 10.2 AMaximalFlowAlgorithm 516 10.3 TheMaxFlow,MinCutTheorem 524 10.4 Matching 528 Problem-Solving Corner:Matching 533 Notes 534 ChapterReview 535 ChapterSelf-Test 536 ComputerExercises 536 11 ➜ Boolean Algebras and Combinatorial Circuits 537 11.1 CombinatorialCircuits 537 11.2 PropertiesofCombinatorialCircuits 544 11.3 BooleanAlgebras 549 Problem-Solving Corner:BooleanAlgebras 554 11.4 BooleanFunctionsandSynthesisofCircuits 556 11.5 Applications 561 Notes 570 ChapterReview 570 ChapterSelf-Test 571 ComputerExercises 572 12 ➜ Automata, Grammars, and Languages 573 12.1 SequentialCircuitsandFinite-StateMachines 573 12.2 Finite-StateAutomata 579 12.3 LanguagesandGrammars 585 †Thissectioncanbeomittedwithoutlossofcontinuity. Contents ix 12.4 NondeterministicFinite-StateAutomata 595 12.5 RelationshipsBetweenLanguagesandAutomata 602 Notes 608 ChapterReview 609 ChapterSelf-Test 609 ComputerExercises 611 13 ➜ Computational Geometry 612 13.1 TheClosest-PairProblem 612 13.2 AnAlgorithmtoComputetheConvexHull 617 Notes 625 ChapterReview 625 ChapterSelf-Test 625 ComputerExercises 626 Appendix 627 A ➜ Matrices 627 B ➜ Algebra Review 631 C ➜ Pseudocode 644 References 650 Hints and Solutions to Selected Exercises 655 Index 754 Symbols LOGIC p∨q porq;page15 P ≡ Q P and Q arelogicallyequivalent;page26 p∧q pandq;page15 ∀ forall;page38 ¬p not p;page17 ∃ thereexists;page41 p →q if p,thenq;page21 ∴ therefore;page32 p ↔q pifandonlyifq;page25 SETNOTATION {x ,...,x } setconsistingoftheelementsx ,...,x ;page2 1 n 1 n {x | p(x)} setconsistingofthoseelementsx satisfyingproperty p(x);page2 Z,Z−,Z+,Znonneg setsofintegers,negativeintegers,positiveintegers,nonnegativeintegers;pages2–3 Q,Q−,Q+,Qnonneg setsofrationalnumbers,negativerationalnumbers,positiverationalnumbers, nonnegativerationalnumbers;pages2–3 R,R−,R+,Rnonneg setsofrealnumbers,negativerealnumbers,positiverealnumbers, nonnegativerealnumbers;pages2–3 x ∈ X x isanelementof X;page3 x ∈/ X x isnotanelementof X;page3 X =Y setequality(X andY havethesameelements);page3 |X| cardinalityof X (numberofelementsin X);page3 ∅ emptyset;pages3 X ⊆Y X isasubsetofY;page4 X ⊂Y X isapropersubsetofY;page5 P(X) powersetof X (allsubsetsof X);page5 X ∪Y X unionY (allelementsin X orY);page6 (cid:2)n X unionof X ,..., X (allelementsthatbelongtoatleastoneof X , X ,..., X );page9 i 1 n 1 2 n i=1 (cid:2)∞ X unionof X , X ,...(allelementsthatbelongtoatleastoneof X , X ,...);page9 i 1 2 1 2 i=1 ∪S unionofS (allelementsthatbelongtoatleastonesetinS);page9 X ∩Y X intersectY (allelementsin X andY);page6 (cid:3)n X intersectionof X ,..., X (allelementsthatbelongtoeveryoneof X , X ,..., X );page9 i 1 n 1 2 n i=1 (cid:3)∞ X intersectionof X , X ,...(allelementsthatbelongtoeveryoneof X , X ,...);page9 i 1 2 1 2 i=1 ∩S intersectionofS (allelementsthatbelongtoeverysetinS);page9 X −Y setdifference(allelementsin X butnotinY);page6 X complementof X (allelementsnotin X);page7 (x, y) orderedpair;page10 (x ,...,x ) n-tuple;page10 1 n X ×Y Cartesianproductof X andY [pairs(x, y)withx in X and y inY];page10 X ×X ×···×X Cartesianproductof X , X ,..., X (n-tupleswithx ∈ X );page11 1 2 n 1 2 n i i X(cid:15)Y symmetricdifferenceof X andY;page13 RELATIONS xRy (x, y)isin R(x isrelatedto y bytherelation R);page148 [x] equivalenceclasscontainingx;page161 R−1 inverserelation[all(y,x)with(x, y)in R];page155 R ◦ R compositionofrelations;page155 2 1 x (cid:17) y xRy;page154 FUNCTIONS f(x) valueassignedtox;page119 f:X →Y functionfrom X toY;page118 f ◦g compositionof f andg;page129 f−1 inversefunction[all(y,x)with(x, y)in f];pages127–128 f(n) = O(g(n)) |f(n)|≤C|g(n)|fornsufficientlylarge;page195 f(n) =(cid:2)(g(n)) c|g(n)|≤|f(n)|fornsufficientlylarge;page195 f(n) =(cid:3)(g(n)) c|g(n)|≤|f(n)|≤C|g(n)|fornsufficientlylarge;page195 COUNTING C(n,r) numberofr-combinationsofann-elementset(n!/[(n−r)!r!]);page282 P(n,r) numberofr-permutationsofann-elementset[n(n−1)···(n−r +1)];page280 GRAPHS G =(V, E) graphG withvertexsetV andedgeset E;page378 (v,w) edge;page378 δ(v) degreeofvertexv;page392 (v ,...,v ) pathfromv tov ;page388 1 n 1 n (v ,...,v ),v =v cycle;page391 1 n 1 n K completegraphonnvertices;page382 n K completebipartitegraphonm andnvertices;page384 m,n w(i, j) weightofedge(i, j);page407 F flowinedge(i, j);page511 ij C capacityofedge(i, j);page511 ij (P, P) cutinanetwork;page524 PROBABILITY P(x) probabilityofoutcomex;page309 P(E) probabilityofevent E;page310 P(E|F) conditionalprobabilityof E given F [P(E ∩F)/P(F)];page314 BOOLEANALGEBRASANDCIRCUITS x ∨y x or y (1ifx or y is1,0otherwise);page538 x ∧y x and y (1ifx and y are1,0otherwise);page538 x ⊕y exclusive-ORofx and y (0ifx = y,1otherwise);page556 x notx (0ifx is1,1ifx is0);page538 x ↓ y x NOR y (0ifx or y is1,1otherwise);page569 x ↑ y x NAND y (0ifx and y are1,1otherwise);page563 ORgate;page538 ANDgate;page538 NOTgate(inverter);page538 NORgate;page569 NANDgate;page563 STRINGS,GRAMMARS,ANDLANGUAGES λ nullstring;page142 |s| lengthofthestrings;page143 st concatenationofstringss andt (s followedbyt);page143 an aa···a(na’s);page142 X∗ setofallstringsover X;page142 X+ setofallnonnullstringsover X;page142 α →β productioninagrammar;page585 α ⇒β β isderivablefromα;page586 α ⇒α ⇒···⇒α derivationofα fromα ;page586 1 2 n n 1 L(G) languagegeneratedbythegrammarG;page586 S ::=T Backusnormalform(BNF);page587 S ::=T |T S ::=T ,S ::=T ;page587 1 2 1 2 Ac(A) setofstringsacceptedby A;page581 MATRICES (a ) matrixwithentriesa ;page627 ij ij A= B matrices Aand B areequal(Aand B arethesamesizeandtheircorrespondingentriesareequal);page627 A+B matrixsum;page628 cA scalarproduct;page628 −A (−1)A;page628 A−B A+(−B);page628 AB matrixproduct;page628 An matrixproduct AA···A(n A’s);page629

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.