ebook img

Discrete Mathematics PDF

41 Pages·1995·0.205 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discrete Mathematics

Discrete Mathematics Dr. J. Saxl Michælmas1995 ThesenotesaremaintainedbyPaulMetcalfe. [email protected]. Revision: 2.3 Date: 1999/10/21 11:21:05 Thefollowingpeoplehavemaintainedthesenotes. –date PaulMetcalfe Contents Introduction v 1 Integers 1 1.1 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thedivisionalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 TheEuclideanalgorithm . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 ApplicationsoftheEuclideanalgorithm . . . . . . . . . . . . . . . . 4 1.4.1 ContinuedFractions . . . . . . . . . . . . . . . . . . . . . . 5 1.5 ComplexityofEuclideanAlgorithm . . . . . . . . . . . . . . . . . . 6 1.6 PrimeNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6.1 Uniquenessofprimefactorisation . . . . . . . . . . . . . . . 7 1.7 Applicationsofprimefactorisation . . . . . . . . . . . . . . . . . . . 7 1.8 ModularArithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.9 SolvingCongruences . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.9.1 Systemsofcongruences . . . . . . . . . . . . . . . . . . . . 9 1.10 Euler’sPhiFunction . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.10.1 PublicKeyCryptography. . . . . . . . . . . . . . . . . . . . 10 2 InductionandCounting 11 2.1 ThePigeonholePrinciple . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 StrongPrincipleofMathematicalInduction . . . . . . . . . . . . . . 12 2.4 RecursiveDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 SelectionandBinomialCoefficients . . . . . . . . . . . . . . . . . . 13 2.5.1 Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.2 Somemoreidentities . . . . . . . . . . . . . . . . . . . . . . 14 2.6 SpecialSequencesofIntegers . . . . . . . . . . . . . . . . . . . . . 16 2.6.1 Stirlingnumbersofthesecondkind . . . . . . . . . . . . . . 16 2.6.2 GeneratingFunctions . . . . . . . . . . . . . . . . . . . . . . 16 2.6.3 Catalannumbers . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6.4 Bellnumbers . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6.5 PartitionsofnumbersandYoungdiagrams . . . . . . . . . . 18 2.6.6 Generatingfunctionforself-conjugatepartitions . . . . . . . 20 3 Sets,FunctionsandRelations 23 3.1 Setsandindicatorfunctions . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.1 DeMorgan’sLaws . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.2 Inclusion-ExclusionPrinciple . . . . . . . . . . . . . . . . . 24 iii iv CONTENTS 3.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.1 Stirlingnumbersofthefirstkind . . . . . . . . . . . . . . . . 27 3.3.2 Transpositionsandshuffles . . . . . . . . . . . . . . . . . . . 27 3.3.3 Orderofapermutation . . . . . . . . . . . . . . . . . . . . . 28 3.3.4 ConjugacyclassesinS . . . . . . . . . . . . . . . . . . . . 28 n 3.3.5 Determinantsofann×nmatrix. . . . . . . . . . . . . . . . 28 3.4 BinaryRelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5.1 Productsofposets . . . . . . . . . . . . . . . . . . . . . . . 30 3.5.2 EulerianDigraphs . . . . . . . . . . . . . . . . . . . . . . . 30 3.6 Countability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.7 Biggersets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Introduction These notes are based on the course “Discrete Mathematics” given by Dr. J. Saxl in CambridgeintheMichælmasTerm1995. Thesetypesetnotesaretotallyunconnected withDr.Saxl. Othersetsofnotesareavailablefordifferentcourses. Atthetimeoftypingthese courseswere: Probability DiscreteMathematics Analysis FurtherAnalysis Methods QuantumMechanics FluidDynamics1 QuadraticMathematics Geometry DynamicsofD.E.’s FoundationsofQM Electrodynamics MethodsofMath.Phys FluidDynamics2 Waves(etc.) StatisticalPhysics GeneralRelativity DynamicalSystems PhysiologicalFluidDynamics BifurcationsinNonlinearConvection SlowViscousFlows TurbulenceandSelf-Similarity Acoustics Non-NewtonianFluids SeismicWaves Theymaybedownloadedfrom http://www.istari.ucam.org/maths/ or http://www.cam.ac.uk/CambUniv/Societies/archim/notes.htm [email protected] setsyourequire. v Copyright(c)TheArchimedeans,CambridgeUniversity. Allrightsreserved. Redistributionanduseofthesenotesinelectronicorprintedform,withorwithout modification,arepermittedprovidedthatthefollowingconditionsaremet: 1. Redistributionsoftheelectronicfilesmustretaintheabovecopyrightnotice,this listofconditionsandthefollowingdisclaimer. 2. Redistributionsinprintedformmustreproducetheabovecopyrightnotice,this listofconditionsandthefollowingdisclaimer. 3. Allmaterialsderivedfromthesenotesmustdisplaythefollowingacknowledge- ment: ThisproductincludesnotesdevelopedbyTheArchimedeans,Cambridge Universityandtheircontributors. 4. NeitherthenameofTheArchimedeansnorthenamesoftheircontributorsmay beusedtoendorseorpromoteproductsderivedfromthesenotes. 5. Neither these notes nor any derived products may be sold on a for-profit basis, althoughafeemayberequiredforthephysicalactofcopying. 6. Youmustcauseanyeditedversionstocarryprominentnoticesstatingthatyou editedthemandthedateofanychange. THESENOTESAREPROVIDEDBYTHEARCHIMEDEANSANDCONTRIB- UTORS“ASIS”ANDANYEXPRESSORIMPLIEDWARRANTIES,INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL- ITYANDFITNESSFORAPARTICULARPURPOSEAREDISCLAIMED.INNO EVENTSHALLTHEARCHIMEDEANSORCONTRIBUTORSBELIABLEFOR ANYDIRECT,INDIRECT,INCIDENTAL,SPECIAL,EXEMPLARY,ORCONSE- QUENTIAL DAMAGES HOWEVER CAUSED AND ON ANY THEORY OF LI- ABILITY,WHETHERINCONTRACT,STRICTLIABILITY,ORTORT(INCLUD- INGNEGLIGENCEOROTHERWISE)ARISINGINANYWAYOUTOFTHEUSE OFTHESENOTES,EVENIFADVISEDOFTHEPOSSIBILITYOFSUCHDAM- AGE. Chapter 1 Integers Notation. The“naturalnumbers”,whichwewilldenotebyN,are {1,2,3,...}. TheintegersZare {...,−2,−1,0,1,2,...}. Wewillalsousethenon-negativeintegers,denotedeitherbyN orZ ,whichisN∪ 0 + {0}. TherearealsotherationalnumbersQandtherealnumbersR. GivenasetS,wewritex∈S ifxbelongstoS,andx∈/ S otherwise. Thereareoperations+and·onZ. Theyhavecertain“nice”propertieswhichwe willtakeforgranted. Thereisalso“ordering”. Nissaidtobe“well-ordered”,which meansthateverynon-emptysubsetofNhasaleastelement.Theprincipleofinduction followsfromwell-ordering. Proposition(PrincipleofInduction). LetP(n)beastatementaboutnforeachn∈ N. SupposeP(1)istrueandP(k)trueimpliesthatP(k+1)istrueforeachk ∈ N. ThenP istrueforalln. Proof. SupposeP isnottrueforalln. ThenconsiderthesubsetSofNofallnumbers k for which P is false. Then S has a least element l. We know that P(l−1) is true (sincel>1),sothatP(l)mustalsobetrue. ThisisacontradictionandP holdsforall n. 1.1 Division Given two integers a, b ∈ Z, we say that a divides b (and write a | b) if a (cid:54)= 0 and b = a·q forsomeq ∈ Z(aisadivisorofb). aisaproperdivisorofbifaisnot±1 or±b. Note. If a | b and b | c then a | c, for if b = q a and c = q b for q , q ∈ Z then 1 2 1 2 c=(q ·q )a.Ifd|aandd|bthend|ax+by.Theproofofthisisleftasanexercise. 1 2 1 2 CHAPTER1. INTEGERS 1.2 The division algorithm Lemma1.1. Given a, b ∈ N there exist unique integers q, r ∈ N with a = qb+r, 0≤r <b. Proof. Takeqthelargestpossiblesuchthatqb≤aandputr =a−qb.Then0≤r <b sincea−qb≥0but(q+1)b≥a. Nowsupposethata=q b+rwithq ,r ∈Nand 1 1 1 0 ≤ r < b. Then0 = (q−q )b+(r−r )andb | r−r . But−b < r−r < bso 1 1 1 1 1 thatr =r andhenceq =q . 1 1 Itisclearthatb|aiffr =0intheabove. Definition. Givena,b∈Nthend∈Nisthehighestcommonfactor(greatestcommon divisor)ofaandbif: 1. d|aandd|b, 2. ifd(cid:48) |aandd(cid:48) |bthend(cid:48) |d(d(cid:48) ∈N). Thehighestcommonfactor(henceforthhcf)ofaandbiswritten(a,b)orhcf(a,b). Thehcfisobviouslyunique—ifcandc(cid:48)arebothhcf’sthentheybothdivideeach otherandarethereforeequal. Theorem1.1(Existanceofhcf). Fora, b ∈ Nhcf(a,b)exists. Moreoverthereexist integersxandysuchthat(a,b)=ax+by. Proof. ConsiderthesetI ={ax+by :x,y ∈Zandax+by >0}. ThenI (cid:54)=∅solet dbetheleastmemberofI. Now∃x ,y suchthatd=ax +by ,sothatifd(cid:48) |aand 0 0 0 0 d(cid:48) |bthend(cid:48) |d. Now write a = qd+r with q, r ∈ N , 0 ≤ r < d. We have r = a−qd = 0 a(1−qx )+b(−qy ).Sor =0,asotherwiser ∈I:contrarytodminimal.Similiarly, 0 0 d|bandthusdisthehcfofaandb. Lemma1.2. If a, b ∈ N and a = qb + r with q, r ∈ N and 0 ≤ r < b then 0 (a,b)=(b,r). Proof. Ifc|aandc|bthenc|randthusc|(b,r). Inparticular,(a,b)|(b,r). Now notethatifc | bandc | r thenc | aandthusc | (a,b). Therefore(b,r) | (a,b)and hence(b,r)=(a,b). 1.3 The Euclidean algorithm Supposewewanttofind(525,231). Weuselemmas(1.1)and(1.2)toobtain: 525=2×231+63 231=3×63+42 63=1×42+21 42=2×21+0 So(525,231)=(231,63)=(63,42)=(42,21)=21. Ingeneral,tofind(a,b): 1.3. THEEUCLIDEANALGORITHM 3 a=q b+r with0<r <b 1 1 1 b=q r +r with0<r <r 2 1 2 2 1 r =q r +r with0<r <r 1 3 2 3 3 2 . . . r =q r +r with0<r <r i−2 i i−1 i i i−1 . . . r =q r +r with0<r <r n−3 n−1 n−2 n−1 n n−1 r =q r +0. n−2 n n−1 This process must terminate as b > r > r > ··· > r > 0. Using Lemma 1 2 n−1 (1.2), (a,b) = (b,r ) = ··· = (r ,r ) = r . So (a,b) is the last non-zero 1 n−2 n−1 n−1 remainderinthisprocess. Wenowwishtofindx andy ∈ Zwith(a,b) = ax +by . Wecandothisby 0 0 0 0 backsubstitution. 21=63−1×42 =63−(231−3×63) =4×63−231 =4×(525−2×231)−231 =4×525−9×231. This works in general but can be confusing and wasteful. These numbers can be calculatedatthesametimeas(a,b)ifweknowweshallneedthem. We introduce A and B . We put A = B = 0 and A = B = 1. We i i −1 0 0 −1 iterativelydefine A =q A +A i i i−1 i−2 B =q B +B . i i i−1 i−2 NowconsideraB −bA . j j Lemma1.3. aB −bA =(−1)j+1r . j j j Proof. Weshalldothisusingstronginduction. Wecaneasilyseethat(1.3)holdsfor j = 1 and j = 2. Now assume we are at i ≥ 2 and we have already checked that r =(−1)i−1(aB −bA )andr =(−1)i(aB −bA ). Now i−2 i−2 i−2 i−i i−1 i−1 r =r −q r i i−2 i i−1 =(−1)i−1(aB −bA )−q (−1)i(aB −bA ) i−2 i−2 i i−1 i−1 =(−1)i+1(aB −bA ),usingthedefinitionofA andB . i i i i 4 CHAPTER1. INTEGERS Lemma1.4. A B −A B =(−1)i i i+1 i+1 i Proof. ThisisdonebybacksubstitutionandusingthedefinitionofA andB . i i Animmediatecorollaryofthisisthat(A ,B )=1. i i Lemma1.5. a b A = B = . n (a,b) n (a,b) Proof. (1.3)fori = ngivesaB = bA . Therefore a B = b A . Now a n n (a,b) n (a,b) n (a,b) and b are coprime. A and B are coprime and thus this lemma is therefore an (a,b) n n immediateconsequenceofthefollowingtheorem. Theorem1.2. Ifd|ceand(c,d)=1thend|e. Proof. Since (c,d) = 1 we can write 1 = cx+dy for some x, y ∈ Z. Then e = ecx+edyandd|e. Definition. Theleastcommonmultiple(lcm)ofaandb(written[a,b])istheintegerl suchthat 1. a|landb|l, 2. ifa|l(cid:48)andb|l(cid:48)thenl|l(cid:48). Itiseasytoshowthat[a,b]= ab . (a,b) 1.4 Applications of the Euclidean algorithm Takea,bandc∈Z.Supposewewanttofindallthesolutionsx,y ∈Zofax+by =c. Anecessaryconditionforasolutiontoexististhat(a,b)|c,soassumethis. Lemma1.6. If(a,b)|cthenax+by =chassolutionsinZ. Proof. Take x(cid:48) and y(cid:48) ∈ Z such that ax(cid:48) +by(cid:48) = (a,b). Then if c = q(a,b) then if x =qx(cid:48)andy =qy(cid:48),ax +by =c. 0 0 0 0 Lemma1.7. Any other solution is of the form x = x + bk , y = y − ak for 0 (a,b) 0 (a,b) k ∈Z. Proof. These certainly work as solutions. Now suppose x and y is also a solution. 1 1 Then a (x −x ) = − b (y −y ). Since a and b are coprime we have (a,b) 0 1 (a,b) 0 1 (a,b) (a,b) a | (y − y ) and b | (x − x ). Say that y = y − ak , k ∈ Z. Then (a,b) 0 1 (a,b) 0 1 1 0 (a,b) x =x + bk . 1 0 (a,b)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.