ebook img

Discrete Mathematics PDF

773 Pages·2017·23.04 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discrete Mathematics

(cid:2) Discrete Mathematics (cid:2) (cid:2) (cid:2) (cid:2) This page intentionally left blank (cid:2) (cid:2) (cid:2) (cid:2) Discrete Mathematics Eighth Edition Richard Johnsonbaugh DePaul University, Chicago (cid:2) (cid:2) 330HudsonStreet,NY,NY10013 (cid:2) (cid:2) Director,PortfolioManagementDeirdreLynch MarketingAssistantJenniferMyers ExecutiveEditorJeffWeidenaar SeniorAuthorSupport/TechnologySpecialistJoeVetere EditorialAssistantJenniferSnyder RightsandPermissionsProjectManagerGinaCheselka ContentProducerLaurenMorse ManufacturingBuyerCarolMelville,LSCCommunications ManagingProducerScottDisanno AssociateDirectorofDesignBlairBrown MediaProducerNicholasSweeney TextDesign,ProductionCoordination,andCompositionSPiGlobal ProductMarketingManagerYvonneVannatta CoverDesignLaurieEntringer FieldMarketingManagerEvanSt.Cyr CoverandChapterOpenerHelenecanada/iStock/GettyImages Copyright(cid:2)c 2018,2009,2005byPearsonEducation,Inc.AllRightsReserved.PrintedintheUnited StatesofAmerica.Thispublicationisprotectedbycopyright,andpermissionshouldbeobtainedfrom thepublisherpriortoanyprohibitedreproduction,storageinaretrievalsystem,ortransmissioninany formorbyanymeans,electronic,mechanical,photocopying,recording,orotherwise.Forinformation regardingpermissions,requestformsandtheappropriatecontactswithinthePearsonEducationGlobal Rights&Permissionsdepartment,pleasevisitwww.pearsoned.com/permissions/. PEARSONandALWAYSLEARNINGareexclusivetrademarksownedbyPearsonEducation,Inc.or itsaffiliatesintheU.S.and/orothercountries. Unlessotherwiseindicatedherein,anythird-partytrademarksthatmayappearinthisworkarethe propertyoftheirrespectiveownersandanyreferencestothird-partytrademarks,logosorothertrade dressarefordemonstrativeordescriptivepurposesonly.Suchreferencesarenotintendedtoimply anysponsorship,endorsement,authorization,orpromotionofPearson’sproductsbytheownersof suchmarks,oranyrelationshipbetweentheownerandPearsonEducation,Inc.oritsaffiliates, authors,licenseesordistributors. Microsoftand/oritsrespectivesuppliersmakenorepresentationsaboutthesuitabilityoftheinformation containedinthedocumentsandrelatedgraphicspublishedaspartoftheservicesforanypurpose.Allsuch (cid:2) (cid:2) documentsandrelatedgraphicsareprovided"asis"withoutwarrantyofanykind.Microsoftand/orits respectivesuppliersherebydisclaimallwarrantiesandconditionswithregardtothisinformation,including allwarrantiesandconditionsofmerchantability,whetherexpress,impliedorstatutory,fitnessfora particularpurpose,titleandnon-infringement.Innoeventshallmicrosoftand/oritsrespectivesuppliers beliableforanyspecial,indirectorconsequentialdamagesoranydamageswhatsoeverresultingfromlossof use,dataorprofits,whetherinanactionofcontract,negligenceorothertortiousaction,arisingoutofor inconnectionwiththeuseorperformanceofinformationavailablefromtheservices. Thedocumentsandrelatedgraphicscontainedhereincouldincludetechnicalinaccuraciesortypographical errors.Changesareperiodicallyaddedtotheinformationherein.Microsoftand/oritsrespectivesuppliers maymakeimprovementsand/orchangesintheproduct(s)and/ortheprogram(s)describedhereinatanytime. (cid:2) (cid:2) Partialscreenshotsmaybeviewedinfullwithinthesoftwareversionspecified.Microsoft WindowsExplorer , andMicrosoftExcel®areregisteredtrademarksofthemicrosoftcorporationintheU.S.A. andothercountries.Thisbookisnotsponsoredorendorsedbyoraffiliatedwiththemicrosoftcorporation. Johnsonbaugh,Richard,1941- Discretemathematics/RichardJohnsonbaugh,DePaulUniversity,Chicago.–Eighthedition. pagescm Includesbibliographicalreferencesandindex. ISBN978-0-321-96468-7–ISBN0-321-96468-3 1. Mathematics.2. Computerscience–Mathematics. I.Title. QA39.2.J652015 510–dc23 2014006017 1 17 ISBN13:978-0-321-96468-7 ISBN10:0-321-96468-3 (cid:2) (cid:2) Contents Preface XIII 1 Sets and Logic 1 1.1 Sets 2 1.2 Propositions 14 1.3 ConditionalPropositionsandLogicalEquivalence 20 (cid:2) 1.4 ArgumentsandRulesofInference 31 (cid:2) 1.5 Quantifiers 36 1.6 NestedQuantifiers 49 Problem-Solving Corner:Quantifiers 57 Chapter1Notes 58 Chapter1Review 58 Chapter1Self-Test 60 Chapter1ComputerExercises 60 2 Proofs 62 2.1 MathematicalSystems,DirectProofs, andCounterexamples 63 2.2 MoreMethodsofProof 72 Problem-Solving Corner:ProvingSomeProperties ofRealNumbers 83 † 2.3 ResolutionProofs 85 2.4 MathematicalInduction 88 Problem-Solving Corner:MathematicalInduction 100 2.5 StrongFormofInductionandtheWell-OrderingProperty 102 Chapter2Notes 109 Chapter2Review 109 †Thissectioncanbeomittedwithoutlossofcontinuity. v (cid:2) (cid:2) vi Contents Chapter2Self-Test 109 Chapter2ComputerExercises 110 3 Functions, Sequences, and Relations 111 3.1 Functions 111 Problem-Solving Corner:Functions 128 3.2 SequencesandStrings 129 3.3 Relations 141 3.4 EquivalenceRelations 151 Problem-Solving Corner:EquivalenceRelations 158 3.5 MatricesofRelations 160 † 3.6 RelationalDatabases 165 Chapter3Notes 170 Chapter3Review 170 Chapter3Self-Test 171 Chapter3ComputerExercises 172 4 Algorithms 173 4.1 Introduction 173 (cid:2) 4.2 ExamplesofAlgorithms 177 (cid:2) 4.3 AnalysisofAlgorithms 184 Problem-Solving Corner:DesignandAnalysis ofanAlgorithm 202 4.4 RecursiveAlgorithms 204 Chapter4Notes 211 Chapter4Review 211 Chapter4Self-Test 212 Chapter4ComputerExercises 212 5 Introduction to Number Theory 214 5.1 Divisors 214 5.2 RepresentationsofIntegersandIntegerAlgorithms 224 5.3 TheEuclideanAlgorithm 238 Problem-Solving Corner:MakingPostage 249 5.4 TheRSAPublic-KeyCryptosystem 250 Chapter5Notes 252 Chapter5Review 253 Chapter5Self-Test 253 Chapter5ComputerExercises 254 †Thissectioncanbeomittedwithoutlossofcontinuity. (cid:2) (cid:2) Contents vii 6 Counting Methods and the Pigeonhole Principle 255 6.1 BasicPrinciples 255 Problem-Solving Corner:Counting 267 6.2 PermutationsandCombinations 269 Problem-Solving Corner:Combinations 281 6.3 GeneralizedPermutationsandCombinations 283 6.4 AlgorithmsforGeneratingPermutationsand Combinations 289 † 6.5 IntroductiontoDiscreteProbability 297 † 6.6 DiscreteProbabilityTheory 301 6.7 BinomialCoefficientsandCombinatorialIdentities 313 6.8 ThePigeonholePrinciple 319 Chapter6Notes 324 Chapter6Review 324 Chapter6Self-Test 325 Chapter6ComputerExercises 326 7 Recurrence Relations 327 7.1 Introduction 327 (cid:2) (cid:2) 7.2 SolvingRecurrenceRelations 338 Problem-Solving Corner:RecurrenceRelations 350 7.3 ApplicationstotheAnalysisofAlgorithms 353 † 7.4 TheClosest-PairProblem 365 Chapter7Notes 370 Chapter7Review 371 Chapter7Self-Test 371 Chapter7ComputerExercises 372 8 Graph Theory 373 8.1 Introduction 373 8.2 PathsandCycles 384 Problem-Solving Corner:Graphs 395 8.3 HamiltonianCyclesandtheTravelingSalesperson Problem 396 8.4 AShortest-PathAlgorithm 405 8.5 RepresentationsofGraphs 410 8.6 IsomorphismsofGraphs 415 8.7 PlanarGraphs 422 † 8.8 InstantInsanity 429 †Thissectioncanbeomittedwithoutlossofcontinuity. (cid:2) (cid:2) viii Contents Chapter8Notes 433 Chapter8Review 434 Chapter8Self-Test 435 Chapter8ComputerExercises 436 9 Trees 438 9.1 Introduction 438 9.2 TerminologyandCharacterizationsofTrees 445 Problem-Solving Corner:Trees 450 9.3 SpanningTrees 452 9.4 MinimalSpanningTrees 459 9.5 BinaryTrees 465 9.6 TreeTraversals 471 9.7 DecisionTreesandtheMinimumTimeforSorting 477 9.8 IsomorphismsofTrees 483 † 9.9 GameTrees 493 Chapter9Notes 502 Chapter9Review 502 Chapter9Self-Test 503 Chapter9ComputerExercises 505 (cid:2) 10 (cid:2) Network Models 506 10.1 Introduction 506 10.2 AMaximalFlowAlgorithm 511 10.3 TheMaxFlow,MinCutTheorem 519 10.4 Matching 523 Problem-Solving Corner:Matching 528 Chapter10Notes 529 Chapter10Review 530 Chapter10Self-Test 530 Chapter10ComputerExercises 531 11 Boolean Algebras and Combinatorial Circuits 532 11.1 CombinatorialCircuits 532 11.2 PropertiesofCombinatorialCircuits 539 11.3 BooleanAlgebras 544 Problem-Solving Corner:BooleanAlgebras 549 11.4 BooleanFunctionsandSynthesisofCircuits 551 11.5 Applications 556 †Thissectioncanbeomittedwithoutlossofcontinuity. (cid:2) (cid:2) Contents ix Chapter11Notes 564 Chapter11Review 565 Chapter11Self-Test 565 Chapter11ComputerExercises 567 12 Automata, Grammars, and Languages 568 12.1 SequentialCircuitsandFinite-StateMachines 568 12.2 Finite-StateAutomata 574 12.3 LanguagesandGrammars 579 12.4 NondeterministicFinite-StateAutomata 589 12.5 RelationshipsBetweenLanguagesandAutomata 595 Chapter12Notes 601 Chapter12Review 602 Chapter12Self-Test 602 Chapter12ComputerExercises 603 Appendix 605 A Matrices 605 (cid:2) (cid:2) B Algebra Review 609 C Pseudocode 620 References 627 Hints and Solutions to Selected Exercises 633 Index 735 (cid:2)

Description:
For one- or two-term introductory courses in discrete mathematics. An accessible introduction to the topics of discrete math, this best-selling text also works to expand students’ mathematical maturity. With nearly 4,500 exercises, Discrete Mathematics provides ample opportunities for students to
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.