B. Grammaticos Y. Kosmann-Schwarzbach T. Tamizhmani (Eds.) Discrete Integrable Systems 1 3 Editors BasilGrammaticos ThamizharasiTamizhmani GMPIB,Universite´ParisVII DepartmentofMathematics e Tour24-14,5 étage,case7021 KanchiMamunivarCentre 2placeJussieu forPostgraduateStudies 75251ParisCedex05,France Pondicherry,India YvetteKosmann-Schwarzbach CentredeMathématiques ÉcolePolytechnique 91128Palaiseau,France B.Grammaticos,Y.Kosmann-Schwarzbach,T.Tamizhmani(Eds.),DiscreteIntegrableSys- tems,Lect.NotesPhys.644(Springer,BerlinHeidelberg2004),DOI10.1007/b94662 LibraryofCongressControlNumber:2004102969 Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Biblio- thekliststhispublicationintheDeutscheNationalbibliografie;detailedbibliographicdata isavailableintheInternetat<http://dnb.ddb.de> ISSN0075-8450 ISBN3-540-Springer-VerlagBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustra- tions, recitation, broadcasting, reproduction on microfilm or in any other way, and storageindatabanks.Duplicationofthispublicationorpartsthereofispermittedonly undertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrent version,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violations areliableforprosecutionundertheGermanCopyrightLaw. Springer-VerlagisapartofSpringerScience+BusinessMedia springeronline.com ©Springer-VerlagBerlinHeidelberg2004 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Dataconversion:PTP-BerlinProtago-TeX-ProductionGmbH Coverdesign:design&production,Heidelberg Printedonacid-freepaper 54/3141/ts-543210 Lecture Notes in Physics EditorialBoard R.Beig,Wien,Austria W.Domcke,Garching,Germany B.-G.Englert,Singapore U.Frisch,Nice,France P.Ha¨nggi,Augsburg,Germany G.Hasinger,Garching,Germany K.Hepp,Zu¨rich,Switzerland W.Hillebrandt,Garching,Germany D.Imboden,Zu¨rich,Switzerland R.L.Jaffe,Cambridge,MA,USA R.Lipowsky,Golm,Germany H.v.Lo¨hneysen,Karlsruhe,Germany I.Ojima,Kyoto,Japan D.Sornette,Nice,France,andLosAngeles,CA,USA S.Theisen,Golm,Germany W.Weise,Trento,Italy,andGarching,Germany J.Wess,Mu¨nchen,Germany J.Zittartz,Ko¨ln,Germany 3 Berlin Heidelberg NewYork HongKong London Milan Paris Tokyo TheEditorialPolicyforEditedVolumes The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments inphysicsresearchandteaching-quickly,informallybutwithahighdegreeofquality. Manuscriptstobeconsideredforpublicationaretopicalvolumesconsistingofalimited numberofcontributions,carefullyeditedandcloselyrelatedtoeachother.Eachcontri- bution should contain at least partly original and previously unpublished material, be writteninaclear,pedagogicalstyleandaimedatabroaderreadership,especiallygrad- uate students and nonspecialist researchers wishing to familiarize themselves with the topic concerned. For this reason, traditional proceedings cannot be considered for this series though volumes to appear in this series are often based on material presented at conferences,workshopsandschools. Acceptance A project can only be accepted tentatively for publication, by both the editorial board andthepublisher,followingthoroughexaminationofthematerialsubmitted.Thebook proposal sent to the publisher should consist at least of a preliminary table of contents outliningthestructureofthebooktogetherwithabstractsofallcontributionstobein- cluded.Finalacceptanceisissuedbytheserieseditorincharge,inconsultationwiththe publisher,onlyafterreceivingthecompletemanuscript.Finalacceptance,possiblyrequir- ingminorcorrections,usuallyfollowsthetentativeacceptanceunlessthefinalmanuscript differssignificantlyfromexpectations(projectoutline).Inparticular,theserieseditorsare entitledtorejectindividualcontributionsiftheydonotmeetthehighqualitystandards ofthisseries.Thefinalmanuscriptmustbereadytoprint,andshouldincludebothan informativeintroductionandasufficientlydetailedsubjectindex. ContractualAspects PublicationinLNPisfreeofcharge.Thereisnoformalcontract,noroyaltiesarepaid, andnobulkordersarerequired,althoughspecialdiscountsareofferedinthiscase.The volume editors receive jointly 30 free copies for their personal use and are entitled, as arethecontributingauthors,topurchaseSpringerbooksatareducedrate.Thepublisher securesthecopyrightforeachvolume.Asarule,noreprintsofindividualcontributions canbesupplied. ManuscriptSubmission Themanuscriptinitsfinalandapprovedversionmustbesubmittedinreadytoprintform. Thecorrespondingelectronicsourcefilesarealsorequiredfortheproductionprocess,in particulartheonlineversion.Technicalassistanceincompilingthefinalmanuscriptcanbe providedbythepublisher‘sproductioneditor(s),especiallywithregardtothepublisher’s ownLATEXmacropackagewhichhasbeenspeciallydesignedforthisseries. LNPHomepage(springerlink.com) OntheLNPhomepageyouwillfind: −TheLNPonlinearchive.Itcontainsthefulltexts(PDF)ofallvolumespublishedsince 2000.Abstracts,tableofcontentsandprefacesareaccessiblefreeofchargetoeveryone. Informationabouttheavailabilityofprintedvolumescanbeobtained. −Thesubscriptioninformation.Theonlinearchiveisfreeofchargetoallsubscribersof theprintedvolumes. −Theeditorialcontacts,withrespecttobothscientificandtechnicalmatters. −Theauthor’s/editor’sinstructions. Table of Contents Three Lessons on the Painlev´e Property and the Painlev´e Equations M.D. Kruskal, B. Grammaticos, T. Tamizhmani................... 1 1 Introduction .............................................. 1 2 The Painlev´e Property and the Naive Painlev´e Test............ 2 3 From the Naive to the Poly-Painlev´e Test .................... 7 4 The Painlev´e Property for the Painlev´e Equations ............. 11 Sato Theory and Transformation Groups. A Unified Approach to Integrable Systems R. Willox, J. Satsuma .......................................... 17 1 The Universal Grassmann Manifold.......................... 17 1.1 The KP Equation .................................... 18 1.2 Plu¨cker Relations..................................... 20 1.3 The KP Equation as a Dynamical System on a Grassmannian ................................... 22 1.4 Generalization to the KP Hierarchy..................... 23 2 Wave Functions, τ-Functions and the Bilinear Identity ......... 24 2.1 Pseudo-differential Operators .......................... 24 2.2 The Sato Equation and the Bilinear Identity............. 25 2.3 τ-Functions and the Bilinear Identity ................... 28 3 Transformation Groups .................................... 31 3.1 The Boson-Fermion Correspondence .................... 31 3.2 Transformation Groups and τ-Functions................. 34 3.3 B¨acklund Transformations for the KP Hierarchy.......... 36 4 Extensions and Reductions ................................. 41 4.1 Extensions of the KP Hierarchy ........................ 42 4.2 Reductions of the KP Hierarchy........................ 46 Special Solutions of Discrete Integrable Systems Y. Ohta ...................................................... 57 1 Introduction .............................................. 57 2 Determinant and Pfaffian................................... 58 2.1 Definition ........................................... 58 2.2 Linearity and Alternativity ............................ 62 XII Table of Contents 2.3 Cofactor and Expansion Formula....................... 71 2.4 Algebraic Identities................................... 72 2.5 Golden Theorem ..................................... 74 2.6 Differential Formula .................................. 76 3 Difference Formulas........................................ 77 3.1 Discrete Wronski Pfaffians............................. 77 3.2 Discrete Gram Pfaffians ............................... 78 4 Discrete Bilinear Equations................................. 80 4.1 Discrete Wronski Pfaffian.............................. 80 4.2 Discrete Gram Pfaffian................................ 80 5 Concluding Remarks....................................... 81 Discrete Differential Geometry. Integrability as Consistency A.I. Bobenko.................................................. 85 1 Introduction .............................................. 85 2 Origin and Motivation: Differential Geometry ................. 85 3 Equations on Quad-Graphs. Integrability as Consistency ....... 88 3.1 Discrete Flat Connections on Graphs ................... 89 3.2 Quad-Graphs ........................................ 90 3.3 3D-Consistency ...................................... 92 3.4 Zero-Curvature Representation from the 3D-Consistency .. 94 4 Classification ............................................. 96 5 Generalizations: Multidimensional and Non-commutative (Quantum) Cases ..................... 100 5.1 Yang-Baxter Maps ................................... 100 5.2 Four-Dimensional Consistency of Three-Dimensional Systems ......................... 101 5.3 Noncommutative (Quantum) Cases ..................... 103 6 Smooth Theory from the Discrete One ....................... 105 Discrete Lagrangian Models Yu.B. Suris ................................................... 111 1 Introduction .............................................. 111 2 Poisson Brackets and Hamiltonian Flows ..................... 112 3 Symplectic Manifolds ...................................... 115 4 Poisson Reduction......................................... 118 5 Complete Integrability ..................................... 118 6 Lax Representations ....................................... 119 7 Lagrangian Mechanics on RN ............................... 121 8 Lagrangian Mechanics on TP and on P ×P .................. 123 9 Lagrangian Mechanics on Lie Groups ........................ 125 10 Invariant Lagrangians and the Lie–Poisson Bracket ............ 128 10.1 Continuous–Time Case................................ 129 10.2 Discrete–Time Case .................................. 131 Table of Contents XIII 11 Lagrangian Reduction and Euler–Poincar´e Equations on Semidirect Products ........................... 134 11.1 Continuous–Time Case................................ 135 11.2 Discrete–Time Case .................................. 138 12 Neumann System.......................................... 141 12.1 Continuous–Time Dynamics ........................... 141 12.2 B¨acklund Transformation for the Neumann System ....... 144 12.3 Ragnisco’s Discretization of the Neumann System ........ 147 12.4 Adler’s Discretization of the Neumann System ........... 149 13 Garnier System ........................................... 150 13.1 Continuous–Time Dynamics ........................... 150 13.2 B¨acklund Transformation for the Garnier System......... 151 13.3 Explicit Discretization of the Garnier System ............ 152 14 Multi–dimensional Euler Top ............................... 153 14.1 Continuous–Time Dynamics ........................... 153 14.2 Discrete–Time Euler Top.............................. 156 15 Rigid Body in a Quadratic Potential......................... 159 15.1 Continuous–Time Dynamics ........................... 159 15.2 Discrete–Time Top in a Quadratic Potential ............. 161 16 Multi–dimensional Lagrange Top ............................ 164 16.1 Body Frame Formulation.............................. 164 16.2 Rest Frame Formulation............................... 166 16.3 Discrete–Time Analogue of the Lagrange Top: Rest Frame Formulation............................... 168 16.4 Discrete–Time Analogue of the Lagrange Top: Moving Frame Formulation ............................ 169 17 Rigid Body Motion in an Ideal Fluid: The Clebsch Case ......................................... 171 17.1 Continuous–Time Dynamics ........................... 171 17.2 Discretization of the Clebsch Problem, Case A=B2 ...... 173 17.3 Discretization of the Clebsch Problem, Case A=B ....... 174 18 Systems of the Toda Type.................................. 175 18.1 Toda Type System ................................... 175 18.2 Relativistic Toda Type System......................... 177 19 Bibliographical Remarks ................................... 179 Symmetries of Discrete Systems P. Winternitz ................................................. 185 1 Introduction .............................................. 185 1.1 Symmetries of Differential Equations.................... 185 1.2 Comments on Symmetries of Difference Equations ........ 191 2 Ordinary Difference Schemes and Their Point Symmetries ...... 192 2.1 Ordinary Difference Schemes........................... 192 2.2 Point Symmetries of Ordinary Difference Schemes ........ 194 2.3 Examples of Symmetry Algebras of O∆S ................ 199 XIV Table of Contents 3 Lie Point Symmetries of Partial Difference Schemes............ 203 3.1 Partial Difference Schemes............................. 203 3.2 Symmetries of Partial Difference Schemes ............... 206 3.3 The Discrete Heat Equation ........................... 208 3.4 Lorentz Invariant Difference Schemes ................... 211 4 Symmetries of Discrete Dynamical Systems ................... 213 4.1 General Formalism ................................... 213 4.2 One-Dimensional Symmetry Algebras ................... 217 4.3 Abelian Lie Algebras of Dimension N ≥2 ............... 218 4.4 Some Results on the Structure of Lie Algebras ........... 220 4.5 Nilpotent Non-Abelian Symmetry Algebras .............. 222 4.6 Solvable Symmetry Algebras with Non-Abelian Nilradicals .......................... 222 4.7 Solvable Symmetry Algebras with Abelian Nilradicals..... 224 4.8 Nonsolvable Symmetry Algebras ....................... 224 4.9 Final Comments on the Classification ................... 225 5 Generalized Point Symmetries of Linear and Linearizable Systems .......................... 225 5.1 Umbral Calculus ..................................... 225 5.2 Umbral Calculus and Linear Difference Equations ........ 227 5.3 Symmetries of Linear Umbral Equations................. 232 5.4 The Discrete Heat Equation ........................... 234 5.5 The Discrete Burgers Equation and Its Symmetries ....... 235 Discrete Painlev´e Equations: A Review B. Grammaticos, A. Ramani .................................... 245 1 The (Incomplete) History of Discrete Painlev´e Equations ....... 247 2 Detectors, Predictors, and Prognosticators (of Integrability) .... 253 3 Discrete P’s Galore ........................................ 262 4 Introducing Some Order into the d-P Chaos .................. 268 5 What Makes Discrete Painlev´e Equations Special? ............ 274 6 Putting Some Real Order to the d-P Chaos ................... 282 7 More Nice Results on d-P’s ................................. 300 8 Epilogue ................................................. 317 Special Solutions for Discrete Painlev´e Equations K.M. Tamizhmani, T. Tamizhmani, B. Grammaticos, A. Ramani.... 323 1 What Is a Discrete Painlev´e Equation?....................... 324 2 Finding Special-Function Solutions .......................... 328 2.1 The Continuous Painlev´e Equations and Their Special Solutions............................ 328 2.2 Special Function Solutions for Symmetric Discrete Painlev´e Equations .............. 332 2.3 The Case of Asymmetric Discrete Painlev´e Equations ..... 338 Table of Contents XV 3 Solutions by Direct Linearisation ............................ 345 3.1 Continuous Painlev´e Equations......................... 346 3.2 Symmetric Discrete Painlev´e Equations ................. 349 3.3 Asymmetric Discrete Painlev´e Equations ................ 356 3.4 Other Types of Solutions for d-P’s...................... 365 4 From Elementary to Higher-Order Solutions .................. 366 4.1 Auto-Ba¨cklund and Schlesinger Transformations.......... 366 4.2 The Bilinear Formalism for d-Ps........................ 368 4.3 The Casorati Determinant Solutions .................... 370 5 Bonus Track: Special Solutions of Ultra-discrete Painlev´e Equations ......................... 377 Ultradiscrete Systems (Cellular Automata) T. Tokihiro.................................................... 383 1 Introduction .............................................. 383 2 Box-Ball System .......................................... 385 3 Ultradiscretization......................................... 386 3.1 BBS as an Ultradiscrete Limit of the Discrete KP Equation........................... 386 3.2 BBS as Ultradiscrete Limit of the Discrete Toda Equation ......................... 391 4 Generalization of BBS ..................................... 395 4.1 BBS Scattering Rule and Yang-Baxter Relation .......... 395 4.2 Extensions of BBSs and Non-autonomous Discrete KP Equation ............. 399 5 From Integrable Lattice Model to BBS ....................... 405 5.1 Two-Dimensional Integrable Lattice Models and R-Matrices ...................................... 405 5.2 Crystallization and BBS............................... 408 6 Periodic BBS (PBBS)...................................... 412 6.1 Boolean Formulae for PBBS ........................... 414 6.2 PBBS and Numerical Algorithm ....................... 415 6.3 PBBS as Periodic A(1) Crystal Lattice .................. 417 M 6.4 PBBS as A(1) Crystal Chains......................... 419 N−1 6.5 Fundamental Cycle of PBBS........................... 421 7 Concluding Remarks....................................... 423 Time in Science: Reversibility vs. Irreversibility Y. Pomeau.................................................... 425 1 Introduction .............................................. 425 2 On the Phenomenon of Irreversibility in Physical Systems ...... 426 3 Reversibility of Random Signals............................. 429 4 Conclusion and Perspectives ................................ 435 Index........................................................ 437 Three Lessons on the Painlev´e Property and the Painlev´e Equations M.D. Kruskal1, B. Grammaticos2, and T. Tamizhmani3 1 Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA, [email protected] 2 GMPIB, Universit´e Paris VII, Tour 24-14, 5e´etage, case 7021, 75251 Paris, France, [email protected] 3 Department of Mathematics, Kanchi Mamunivar Centre for Postgraduate Studies, Pondicherry 605008, India, [email protected] Abstract. While this school focuses on discrete integrable systems we feel it nec- essary,ifonlyforreasonsofcomparison,togobacktofundamentalsandintroduce the basic notion of the Painlev´e property for continuous systems together with a critical analysis of what is called the Painlev´e test. The extension of the latter to what is called the poly-Painlev´e test is also introduced. Finally we devote a lesson to the proof that the Painlev´e equations do have the Painlev´e property. 1 Introduction A course on integrability often starts with introducing the notion of soliton and how the latter emerges in integrable partial differential equations. Here wewillfocusonsimplersystemsandconsideronlyordinarydifferentialequa- tions. Six such equations play a fundamental role in integrability theory, the six Painlev´e equations [1]: x(cid:1)(cid:1) =6x2+t P I x(cid:1)(cid:1) =2x3+tx+a P II x(cid:1)2 x(cid:1) 1 d x(cid:1)(cid:1) = − + (ax2+b)+cx3+ P x t t x III x(cid:1)2 3x3 b2 x(cid:1)(cid:1) = + +4tx2+2(t2−a)x− P 2x 2 2x IV (cid:1) (cid:2) (cid:1) (cid:2) x(cid:1)(cid:1) =x(cid:1)2 1 + 1 − x(cid:1) + (x−1)2 ax+ b +cx + dx(x+1) P x(cid:1)2(cid:1)1 2x 1x−1 1 t(cid:2) (cid:1)t12 1 x 1 (cid:2)t x−1 V x(cid:1)(cid:1) = + + −x(cid:1) + + 2 x x−1 x−t t t−1 x−t (cid:3) (cid:4) x(x−1)(x−t) bt t−1 (d−1)t(t−1) + a− +c + P 2t2(t−1)2 x2 (x−1)2 (x−t)2 VI Here the dependent variable x is a function of the independent variable t, whilea,b,c,anddareparameters(constants).Thesearesecondorderequa- tions in normal form (solved for x(cid:1)(cid:1)), rational in x(cid:1) and x. M.D. Kruskal, B. Grammaticos, and T. Tamizhmani, Three Lessons on the Painlev´e Property andthePainlev´eEquations,Lect.NotesPhys.644,1–15(2004) http://www.springerlink.com/ (cid:2)c Springer-VerlagBerlinHeidelberg2004