ebook img

Discrete Fracture Network Modeling of Hydraulic Stimulation: Coupling Flow and Geomechanics PDF

96 Pages·2013·3.807 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discrete Fracture Network Modeling of Hydraulic Stimulation: Coupling Flow and Geomechanics

SPRINGER BRIEFS IN EARTH SCIENCES Mark W. McClure · Roland N. Horne Discrete Fracture Network Modeling of Hydraulic Stimulation Coupling Flow and Geomechanics SpringerBriefs in Earth Sciences For furthervolumes: http://www.springer.com/series/8897 Mark W. McClure Roland N. Horne • Discrete Fracture Network Modeling of Hydraulic Stimulation Coupling Flow and Geomechanics 123 MarkW.McClure Roland N.Horne Petroleum and Geosystems Engineering Energy Resources Engineering Universityof Texasat Austin Stanford University Austin, TX Stanford,CA USA USA ISSN 2191-5369 ISSN 2191-5377 (electronic) ISBN 978-3-319-00382-5 ISBN 978-3-319-00383-2 (eBook) DOI 10.1007/978-3-319-00383-2 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013938759 (cid:2)TheAuthor(s)2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Inthepastdecade,developmentofunconventionaloilandgasresourceshasbeen perhaps the biggest new trend in the energy sector. It has become possible to produce huge new resources that were previously considered uneconomic. Key enabling technologies have been long horizontal wells and multiple fracturing stages (King 2010). Hydraulic fracturing in geothermal energy is typically referred to as Enhanced Geothermal Systems, or EGS (Tester 2007). EGS researchers hope that improve- mentsinstimulationdesignwillenablegeothermaltoonedayexperiencethesame growth inproductionthat is now being seen inunconventional oil and gas. Despite years of research and field experience, fundamental questions remain unanswered. What is the relative importance of new and preexisting fractures in stimulation?Whydothefracturenetworksgeneratedinunconventionaloilandgas frequently appear to be so complex? What does a stimulated, unconventional reservoir ‘‘look like?’’ Computational modeling has the potential to be very useful for stimulation design,helpingengineersmakeroutinedesigndecisions,testnovelideas,perform formation evaluation, and make decisions about data collection. A remarkable diversity of models and modeling approaches exists. Unfortunately, progress is hamperedbythenonuniquenesscausedbylimitedandincompletedata,resultingin difficultyinconfirmingmodelassumptions.Therefore,whilestimulationmodeling holdstremendouspromise,itremainsaworkinprogress.Atremendousamountof work is beingdone inthis area, and progress is expected in the years ahead. This book summarizes a hydraulic stimulation model developed especially for unconventional applications in oil, natural gas, and geothermal. The model described in this book remains incomplete. Several important physical processes remainneglectedorincompletelydescribed.However,thestrengthofthismodelis that it fully, efficiently, couples fluid flow and the stresses caused by deformation in large, complex discrete fracture networks. We believe that realistically cap- turing induced stresses will lead to better insight into stimulation processes. Fur- thermore, we believe that the complexities of the reservoir—spatially variable fracture density, orientation, stresses, and so on—have profound effects on the stimulation process that cannot easily be simplified out of a numerical model without obscuring important details. v vi Preface Several novel techniques were developed for this work, and existing methods were combined in novel ways. We hope that this work provides a useful contri- bution to the field of stimulation modeling and lays the groundwork for future research. References King, G.: Thirty years of gas shale fracturing: what have we learned? SPE 133456, paper presented at the SPE annual technical conference and exhibition. Florence (2010). doi: 10.2118/133456-MS Tester, J. (ed.): The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS)ontheUnitedStatesinthe21stCentury.MassachusettsInstituteofTechnology(2007). http://geothermal.inel.gov/publications/future_of_geothermal_energy.pdf Acknowledgments This work was supported financially by the Precourt Institute for Energy at StanfordUniversity.ThereweremanypeopleatStanfordandelsewherewhowere very kind to share their expertise as this work was performed. We want to espe- cially thank Drs. David Pollard and Andrew Bradley. Dr. Pollard provided the code COMP2DD that was used to verify the accuracy of the model. Dr. Bradley sharedhiscodeHmmvpthatisusedbyCFRACforefficientmatrixmultiplication. Thank you to Jakob Alejandre, a Stanford undergraduate who helped with code development as part of a summer research project. vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Discrete Fracture Network Modeling. . . . . . . . . . . . . . . . . . . . 3 1.2 Review of Stimulation Models . . . . . . . . . . . . . . . . . . . . . . . . 4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Governing and Constitutive Equations . . . . . . . . . . . . . . . . . . . 13 2.2 Initial Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Methods of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Iterative Coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Fracture Deformation: Displacement Discontinuity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3 Stresses Induced by Normal Displacements of Closed Fractures. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.4 Solution to the Fluid Flow and Normal Stress Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.5 Solution to the Shear Stress Equations. . . . . . . . . . . . . . 24 2.3.6 Inequality Constraints on Fracture Deformations. . . . . . . 25 2.3.7 Changing Mechanical Boundary Conditions. . . . . . . . . . 27 2.3.8 Formation of New Tensile Fractures. . . . . . . . . . . . . . . 28 2.3.9 Adaptive Time Stepping . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.10 Wellbore Boundary Conditions. . . . . . . . . . . . . . . . . . . 30 2.4 Spatial Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.1 Generation of the Discrete Fracture Network . . . . . . . . . 31 2.4.2 Spatial Discretization. . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Special Simulation Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5.1 Efficient Matrix Multiplication. . . . . . . . . . . . . . . . . . . 34 2.5.2 Crack Tip Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5.3 Dynamic Friction Weakening. . . . . . . . . . . . . . . . . . . . 36 2.5.4 Alternative Method for Modeling Friction . . . . . . . . . . . 38 2.5.5 Adaptive Domain Adjustment. . . . . . . . . . . . . . . . . . . . 41 ix x Contents 2.5.6 Strain Penalty Method. . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.7 Neglecting Stresses Induced by Deformation . . . . . . . . . 44 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1 Simulation and Discretization Details. . . . . . . . . . . . . . . . . . . . 49 3.2 Model A: Small Test Problem. . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.1 Solving Directly for the Final Deformations. . . . . . . . . . 57 3.2.2 Testing the Effect of cstress. . . . . . . . . . . . . . . . . . . . . 57 3.3 Models B and C: Large Test Problems. . . . . . . . . . . . . . . . . . . 58 3.3.1 Model B: Large Test Problem of Shear Stimulation . . . . 59 3.3.2 Model C: Large Test Problem of Mixed-Mode Stimulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4 Model D: Testing the Strain Penalty Method . . . . . . . . . . . . . . 67 3.5 Hierarchical Matrix Decomposition. . . . . . . . . . . . . . . . . . . . . 69 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1 Model A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1.1 General Description of Results. . . . . . . . . . . . . . . . . . . 73 4.1.2 Effect of Spatial and Temporal Discretization . . . . . . . . 74 4.1.3 Solving Directly for Final Deformations . . . . . . . . . . . . 75 4.1.4 Effect of cstress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2 Model B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.1 General Description of Results. . . . . . . . . . . . . . . . . . . 77 4.2.2 Effect of Temporal Discretization Refinement . . . . . . . . 79 4.2.3 Effect of cstress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.4 Effect of Adaptive Domain Adjustment. . . . . . . . . . . . . 80 4.2.5 Dynamic Friction Weakening. . . . . . . . . . . . . . . . . . . . 81 4.2.6 Neglecting Stress Interaction . . . . . . . . . . . . . . . . . . . . 82 4.3 Model C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4 Model D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.5 Hierarchical Matrix Decomposition. . . . . . . . . . . . . . . . . . . . . 83 4.6 Extension of the Model to Three Dimensions. . . . . . . . . . . . . . 84 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 List of Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Chapter 1 Introduction Computational modeling of hydraulic fracturing can be used for stimulation optimization, long term production forecasting, basic research into fundamental mechanisms, and investigation of novel techniques. However, modelers face daunting challenges: a variety of complex physical processes, limited and imperfect information, and a heterogeneous and discontinuous spatial domain. Becauseofthesedifficulties,itisnecessarytomaketrade-offsbetweenefficiency, spatial resolution, and inclusion of physical processes. Theclassicalconceptualmodelofhydraulicfracturingisthatasingleopening- mode fracture propagates away from the wellbore (Khristianovich and Zheltov 1959;PerkinsandKern1961;GeertsmaanddeKlerk1969;Nordgren1972).This conceptual model is still used in hydraulic fracturing design and modeling in conventional settings (Economides and Nolte 2000; Meyer and Associates 2011; Adachietal.2007).However,insettingswithcomplexfracturenetworks,classical hydraulic fracturing models may be overly simplified. This book describes the development and testing of a two-dimensional hydraulic stimulation model that has been developed specifically for simulating hydraulic fracturing in settings with very low matrix permeability and where preexisting fractures play an important role, such as Enhanced Geothermal Sys- tems (EGS) or gas shale. The model simulates fluid flow in a discrete fracture network (DFN), directly discretizing individual fractures (e.g., Karimi-Fard et al. 2004; Golder Associates 2009). The DFN approach is distinct from effective continuum modeling, which averages fracture properties into effective properties over volumetric grid blocks (Warren and Root 1963; Kazemi et al. 1976; Lem- onnierandBourbiaux2010).Themodelcalculatesthestressesinducedbyopening and sliding along individual fractures and couples opening and slip to fracture transmissivity. The model couples deformation with flow using iterative coupling (Kimetal.2011)andisefficientenoughtosimulateproblemsinvolvingthousands of individual fractures in a few hours or days on a single processor. The model assumesflowissingle-phaseandisothermal,matrixpermeabilityisnegligible,and deformation issmall strain inan infinite, linearlyelastic medium. The model was written using C++. M.W.McClureandR.N.Horne,DiscreteFractureNetworkModeling 1 ofHydraulicStimulation,SpringerBriefsinEarthSciences, DOI:10.1007/978-3-319-00383-2_1,(cid:2)TheAuthor(s)2013

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.