ebook img

Discovery of strong Iron Kα emitting Compton thick quasars at z=2.5 and 2.9 PDF

0.34 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discovery of strong Iron Kα emitting Compton thick quasars at z=2.5 and 2.9

TOAPPEARINAPJLETTERS PreprinttypesetusingLATEXstyleemulateapjv.11/10/09 DISCOVERYOFSTRONGIRONKαEMITTINGCOMPTONTHICKQUASARSATZ=2.5AND2.9 C.FERUGLIO1,E.DADDI1,F.FIORE2,D.M.ALEXANDER3,E.PICONCELLI2,C.MALACARIA4 ToappearinApJLetters ABSTRACT Wereportthedetectionofthe6.4keVIronKαemissionlineintwoinfrared-luminous,massive,star-forming BzK galaxiesatz=2.578andz=2.90in the CDF-S. TheChandra4 Msspectraof BzK4892andBzK8608 1 showareflectiondominatedcontinuumwithstrongIronlines,withrest-frameequivalentwidthsEW∼2.3keV 1 and 1.2 keV, respectively, demonstrating Compton thick obscuration of the central AGN. For BzK8608 the 0 lineidentificationcloselymatchestheexistingphotometricredshiftderivedfromthestellaremission. Weuse 2 theobservedluminositiesofthe IronKα line, of therest-framemid-IRcontinuumandofthe UV rest-frame n narrowemissionlinestoinferintrinsicL2- 10keV&1044ergs- 1,about1.0–2.5dexlargerthantheobservedones, a henceconfirmingthepresenceofanabsorberwithN >1024cm- 2. ThetwoBzK galaxieshavestellarmasses J H 8 of 5×1010 M⊙ and, based on VLA 1.4GHz and submm870µmobservations,they appearto hostvigorous starburstactivitywithSFR∼300-700M yr- 1thatisalsoopticallythick.WeestimatethattheAGNmightalso 1 ⊙ conceivablyaccountforanimportantfractionofthebolometricfar-IRemissionofthegalaxies. Theimplied ] volume density of Compton thick (CT) AGN with L2- 10keV >1044 erg s- 1 is in agreementwith predictions O fromX-raybackgroundsynthesismodels. Thesesourcesprovideoneofthefirstclearcutobservationsofthe C long-soughtphaseofsimultaneous,heavilyobscuredquasarandstar formationactivity,predictedbymodels ofmassivegalaxyevolutionathighredshifts. . h Subjectheadings:galaxies:general—galaxies: active p - ro 1. INTRODUCTION inferred (L2- 10keV >1044erg s- 1; Braito et al. 2004, Picon- t celli et al. 2010). Their X-ray spectra are characterized by s Highlyobscured,deeplyembeddedAGNmightcontribute the presence of a strong Iron Kα 6.4 keV fluorescent emis- a significantlytothetotalaccretionpowerintheUniverse(Mar- [ conietal. 2004)andarerequiredtoaccountforthespectrum sionline, with largeequivalentwidthEW &1 keV, on a flat reflection-dominatedcontinuum(Mattetal.2000).Notmuch oftheX-raybackground(XRB, Gillietal. 2007). Inpartic- 1 evidence currently exists in the distant Universe of AGNs ular, AGN obscured in the X-ray band by column densities 8v largerthanNH =1024 cm- 2 (Comptonthick AGN) represent shhyopwerilnugmpirnoomusingeanlta,xhyigahtEzW=0I.r9o3n(KIwαalsianwe:aaentIaRl.A2S0s0e5le)catnedd 7 20–25%oftheAGNdetectedbyIntegralandSWIFT/BATin two possible detections in the CDFS reportedby Norman et 4 thelocaluniverse(Maliziaetal. 2009;Burlonetal. 2010). al.(2002;atype2QSOatz=3.7)andbyTozzietal.(2006;a 3 The identification of highly obscured AGN is particularly galaxyatz=1.53);bothconfirmedbyComastrietal. (2011). . challengingsince, because of the high columndensities, the 1 In the following we present the significant Chandra de- vastmajorityoftheirX-rayemissionbelowrestframe10keV 0 tection of the Iron Kα emission line in two massive BzK isabsorbed,sothattheyarelargelymissedeveninthedeep- 1 galaxiesatredshiftz=2.578andz=2.90±0.10inGOODS- est hard X-ray surveys available today. At high redshift the 1 South, using the recently acquired 4 Ms dataset. We used v: qbuyessetlfeocrtisnugchgaolbajxeicetsswisimthahiniglyhpruatrisousedofbmyiindd-iinrefrcatreevdidtoenocpe-, for this purpose the entire set of 52 observations for a to- Xi tical, or mid-infrared to X-ray fluxes, and by deriving aver- tAalrcehxivpeo(shutrtep:t/i/mcxec.ohfar4vaMrds.e,dauv/cadilaa/bCleonitnribth/CeDCFhSa.nhdtmral)D.Watea ageX-raypropertiesbystackingtechniques(e.g.,Daddietal. r adoptaΛCDMcosmology(H =70kms- 1 Mpc- 1;Ω =0.3; a 2al0.0270b0;5D;0270h0e8r;eTafrteeirs;teFrioerteale.ta2l0.1200,0G8e,o2r0g0a9n;toApoleuxlaonsdeetraelt. ΩΛ=0.7)andaChabrierstella0rinitialmassfunction(IMMF). 2009,Eckartetal. 2010,Donleyetal. 2010). Thesestudies 2. X-RAYPHOTOMETRICANDSPECTRALANALYSIS havesuggestedthatasubstantialfractionofmassivegalaxies atz>1hosthighlyobscured,intrinsicallyluminousAGN. We havebeeninvestigatingthe propertiesof BzK-selected Onlya fewtensofsecureComptonthickAGNareknown (Daddi et al. 2004), massive galaxies at redshift 1<z<3 sofarinthelocalUniverse(Comastrieta. 2004,DallaCeca withfaintornoX-rayemission,withtheaimofconstraining etal. 2008andreferencestherein),andonlyforahandfulof their obscured AGN activity. We have focused in particular them a quasar-like intrinsic hard X-ray luminosity has been on objects showing also a power-law emission in the near- IRrestframe,anindependentindicationforthepresenceofa luminous,obscuredAGN.Alargestatisticalsampleof750X- [email protected] 1Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot, rayundetectedgalaxieshasbeenassembledintheCOSMOS Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, 91191 field,andtheirX-raypropertiesinvestigatedthroughstacking. Gif-sur-YvetteCedex,France Asacontrolsample,wealsostudiedindetailasmallersam- 2INAF -Osservatorio Astronomico di Roma, via Frascati 33, 00040 ple of 26 similarly selected galaxiesin GOODS-South, with MonteporzioCatone,Italy 3Department ofPhysics, DurhamUniversity, SouthRoad, DH13LE, less than 200 net countsin the 0.5-7keV band in the CDFS UK 4Msdatathatwouldremainthusundetectedintheshallower 4Universita’LaSapienza,PiazzaleAldoMoro5,00185Roma,Italy COSMOS Chandra observations. While the general results 2 Feruglioetal. BzK4892 z=2.578 BzK4892 z=2.578 0−6 1 nts s keV−1−1 10−5 m s keV)−2−1−1 10−7 normalized cou 0−6 keV (Photons c2 10−8 1 0.5 1 2 5 1 2 5 Energy (keV) Energy (keV) BzK8608 z=2.9 BzK8608 z=2.9 0−6 1 nts s keV−1−1 10−5 m s keV)−2−1−1 10−7 normalized cou 10−6 keV (Photons c2 10−8 1 2 5 1 2 5 Energy (keV) Energy (keV) FIG.1.—ThespectraofBzK4892(upperpanels)andBzK8608(lowerpanels),fittedwithapurereflectionmodelplusanIronKα6.4keVline. Thespectra areshownbothinobservedcountsunits(leftpanels)andinphysicalunits(keV2;rightpanels). Eachbincorrespondstoa2σmeasurement. Thereddottedline representstheaveragebackgroundextractedfromthewholefield,excludingsources(Fioreetal.2011,inpreparation). of these studies will be reported elsewhere (Feruglio et al. (Luo et al. 2010), likely because of the presence of another 2011, in preparation), we concentrate here on two remark- nearbyX-ray source(#193). In the 4 Ms data BzK8608has ablesourcesinourGOODS-Scontrolsample, forwhichthe 92countsinthetotalband.Itisnotdetectedthe0.3-1.5band, available Chandra data allow the unambiguous detection of anditshardnessratioisHR>0.54(3σ). theIronKαemission. We extracted the Chandra spectra using a circular region Both of the BzK galaxies under exam were selected from of 1.5′′ and 3′′ radius for BzK4892 and BzK8608 (off-axis theD07sample.BzK4892isasourcewithspectroscopicred- ∼7.4′),respectively,estimatingthebackgroundinanannulus shiftz=2.578(Szokolyetal.2004,Vanzellaetal. 2006;based aroundthe source position. We experimentedwith different onmultiplenarrowemissionlines),detectedintheX-raysal- extractionradii, centering,andbackgroundestimates, taking ready in the 1 Ms Chandra data (Giacconi et al. 2001) as careinallcasesofexcludingnearbydetectedsources(partic- well as in the 2 Ms data (Luo et al. 2010). In the 4 Ms ularlyimportantforBzK8608),findingthatthefeaturesfound dataset it has 75 net countsin the 0.5-7keV band and hard- inthespectrawererobusttothedetailextractionmethod.The nessratioof0.58(thehardnessratioisdefinedasHR=hard- spectra for both galaxies show a flat continuum and promi- soft/hard+soft,whereSandHarethesoftandhardbandnet nentemissionlinespeakingat∼1.78keV forBzK4892and counts detected by Chandra). BzK8608 has a photometric ∼1.64keVforBzK8608(Fig. 1). redshift z =2.94 (from D07; consistent with z =2.88 WeconsidertwospectralmodelstofitthedatainXSPEC: phot phot fromSantinietal. 2009).VLT+VIMOSspectroscopicobser- i) a reflection-dominated model, pexrav + zgauss, and ii) vations(Popessoetal. 2009)showthatthereisnocontinuum a transmission (power-law) model, wabs*(pow+zgauss). A emissionintheblue,consistentwithz∼3,butfailedtoyield narrow gaussian component is used to model the emission areliableredshiftestimate. WetentativelydetectedintheVI- lines. Given the limited photon statistic, the slope of the MOSspectrumalowsignaltonoisefeatureat6027Å(are- primarycontinuumhasbeenfixedtoΓ=1.8inbothscenar- gionclearfromOHlines)that, ifidentifiedwithCIV,would ios. Based onC-statistics, the emissionline isdetectedwith give z= 2.88. We notice that the photometric redshift for a significance of &4σ (∆C =17.5) for BzK4892 and &3σ BzK8608isreliableasthegalaxyfulfillstheU-banddropout (∆C=7.5) for BzK8608 (see also Fig. 2) for the reflection- criteria, corresponding to a Lyman continuum break (being dominatedmodel.Inthecaseofatransmissionmodelthesig- undetectedinthedeepU-bandimagingofNoninoetal.2010; nificanceoftheline remainsabove4σ forBzK4892andjust Fig.3). ThissourceisnotlistedintheChandra2Mscatalog below 3σ for BzK8608. To further evaluate the significance Ironemittingquasarsatz=2.5- 3 3 FIG.2.—Upperpanels: ChandraimagesofBzK4892andBzK8608inthreeenergybands. ThemiddleimagesarecenteredattheenergyoftheIronKline. Thecirclesshowtheextractionregions. Lowerpanels: confidencelevels(1,2and3σ)obtainedfromthefitoftheIronline. Theverticalbluelinesshowthe opticalspectroscopic/photometricredshiftconstraints. of the observed lines we also performed 105 simulations of 3.1. Intrinsicluminositiesandobscuration thesourcecontinuumandbackgroundforbothsources. The The observed (obscured) hard X-ray luminosities are parreob3a×bi1li0t-y5thaantdth2e×l1in0e- s4,mreigshptecbteivdeulye.toTchheanspceecfltruacltufiatstioanres L2- 10keV = 1042.5 and 1042.8 erg s- 1 for BzK4892 and BzK8608, respectively. Given the large N implied by the summarizedinTable1. H detection of high EW Iron Kα lines, the X-ray emission is Based on the spectroscopic and photometric redshifts, we optically thick and we cannot directly estimate the intrinsic identifythe lines as Iron Kα for both sources. In particular, we derivea spectroscopicredshiftfor BzK8608from the X- L2- 10keV using the X-ray data (e.g., La Massa et al. 2011). InordertoestimatetheintrinsicluminositiesoftheAGNwe ray spectrum, obtainingz=2.88±0.10. Figure 2 shows the usedavarietyofindependentmethods. 1-2-3σconfidencelevelcontours,showingtheredshiftfitand Following Iwasawa et al. (2005), a lower limit to the X- thesignificanceoftheIronlinedetection. ray luminosity can be obtained in the expectation that in The rest frame equivalent widths of the Iron lines are typical conditions the luminosity of the Iron Kα line is at EW=2.3+- 10..06 keV for BzK4892 and EW=1.2±0.4 keV for most 3% of the 2-10 keV luminosity. For BzK4892 LKα = BzK8608(for a reflection model, see Table 1), implyingab- 1.25×1042 erg s- 1 would imply a intrinsic 2-10 keV lumi- sraeodsrdpbioitninogdnactloollotuhwme-nsesingeenrxigficyeceaodnficnIergoen1x0cKe24βsscaamtt-z12.=.82kB.e9zVK, i8tfh6ra0et8awl.sohTuolhwdescdoaern-- ne1no0ss4o4it.n8yeeotrfga4ls.×- (112.004A036ne)ragimltsep-r1lni.easTtivhaneerheesilgtaihmtieoarntleuLmiKsiαno/obLst2ai-tiy1n0,ekLde2Vf- r1oo0fmkeLVethv∼e- tectionofIronKαat6.4keVexcludesthatthehighhardness 6.0µm luminosity. The 24µm flux of 591µJy implies ratios in these sources might be due to high mass X-ray bi- naries, as suggestedby Donleyetal. (2008),dueto spectral L6.0µm =1045.5 erg s- 1(the mid-IR SED of Mrk 231 is used forthe small K-correction). While 24µmat z=2.578might incompatibility(Persic&Raphaeli2002). be contaminated by PAH features, we find similar results if ThefitwiththetransmissionmodelgivesN =7±2×1023 H we use the 16µm flux of 209µJy (Teplitz et al. 2010) for cm- 2 for BzK4892 and 7+3×1023 cm- 2 for BzK8608, and - 2 whichnocontaminationisexpected(4.5µmrest-frame).This imsosdtaetli.stiHcaolwlyevinedr,istthiensgeuiNshabvlaeluferosmarteheinficotnwsiitshteantrewfliethctitohne wouldsuggestL2- 10keV=1045±0.5ergs- 1usingtheLutzetal. measured EW&1 keV. IndHeed, for N ∼ 6×1023 cm- 2, a (2004) correlation and a lower L2- 10keV =1044.4±0.5 erg s- 1 EW∼300 eV is predicted(Ikeda et al.H2009)and confirmed usingLanzuisietal. (2009). Athirdestimatecanbederived from the luminosity of the UV-optical emission lines. The byobservations(Guainazzietal.2005,Fukazawaetal.2010). VLT/FORS1-2 optical spectrum of BzK4892 shows promi- EW&1keVarethehallmarkofcolumndensitieslargerthan 1024cm-- .Therefore,inthefollowing,weadoptasbestfitthe nentLyα,CIV,HeIIandCIII]narrowemissionlines(Szokoly etal. 2004,Vanzellaetal. 2006). Usingtheobservedratios resultsfromthereflectiondominatedmodelforbothsources between the line and the intrinsic 2-10 keV emission from (TaFbig.u2r)e. 2 shows the Chandra images of BzK4892 and Mulchaeyetal. (1994),weinferL2- 10keV=1044.5±0.5ergs- 1. UsingtheNetzeretal. (2006)conversionforUV-opticalline BzK8608 in three energy bands, including one centered on luminosities would give larger X-ray luminosities by ∼0.5 the Iron lines. We note that BzK8608 is not detected in the softband. dex, or L2- 10keV = 1045±0.5 erg s- 1. All in all, it appears that the 2-10 keV luminosity of BzK4892 is in the QSO range, well in excess of 1044 erg s- 1, and more likely of 3. DISCUSSION 4 Feruglioetal. TABLE1 SPECTRALFITPARAMETERS SourceID Model FeKαflux N EW Cstat/d.o.f. H 10- 17erg/cm2s 1023cm- 2 keV BzK4892 Abs 1.6±0.5 7.0+- 22..00 2.1±0.5 307/441 BzK4892 Refl 2.0±0.6 - 2.3+- 10..06 297/442 BzK8608 Abs 3.6±0.5 7.0+- 32..00 1.0±0.3 411/440 BzK8608 Refl 3.4±0.8 - 1.2±0.4 418/442 1044.5- 45ergs- 1. Theimpliedcolumndensityisatthelevelof larluminositiesrequirestarformationrates(SFR)inthehost N ∼1024.5- 25cm- 2. galaxies at the level of 100-1000 M yr- 1. It is interesting H ⊙ ForBzK8608,wemeasureL(Kα)=2.5×1042ergs- 1. This thus to compare these estimates to the inferred SFR for the convertstoL2- 10keV∼1043.9ergs- 1(Iwasawaetal.2005),or twoBzK galaxies,inordertocomparetherelativeAGNand ∼1045 ergs- 1 adoptingLevensonetal. (2006). Thisgalaxy SFRcontributions. isabout10timesfainterinthemid-IRthanBzK4892,which FromthestellarSED(UVtothenear-IRrestframe;Fig.3), implies a lower L6.0µm. Using the Lutz et al. (2004) rela- we estimate SFR∼70 M⊙ yr- 1 for BzK4892, corrected for tion,thisinturnsuggestsL2- 10keV=1044 ergs- 1. Wecannot dustreddeningbasedontheobservedUVslope(seeD07for obtainanindependentestimatefromtheUV-opticalemission moredetails). Itis quitepossiblethoughthatalso thestellar lines given that no lines were detected in the VIMOS spec- UVemissionmightbeopticallythick.Ifweinterpretitsmid- trum.Theintrinsic2-10keVluminosityofBzK8608islikely IRemission(591µJy at24µm)asduetostar formationthis ≈1044 erg s- 1. The implied column density is likely in the wouldimplyawhoppingSFR∼104 M⊙ yr- 1,demonstrating rangeN ∼1–5×1024cm- 2,hencethisobjectmightbeabor- that the mid-IR is likely completely dominated by the AGN H (thisobjectisamongthemostextrememid-IRexcessgalax- derlineCTAGN.Wenoticethatbothsourceshaveestimated ies in the sample of D07). The SED fit with a star forming intrinsic2-10keVluminositiesintheQSOregime. galaxy template (Fig. 3) shows an excess emission already at 5.8 µm (observed frame) probably due to the AGN con- tribution. The SED in the IRAC bands is indeed showing a 3.2. Bolometricluminositiesandstarformationrates steeppowerlaw, extendingallthewayto 24µm. Duetoits The ratio of the bolometric to the 2-10 keV luminosity, faintopticalcounterpart(i∼25AB),BzK4892hashighmid- Lbol/L2- 10keV, is typically of the order 30-50 for quasars infraredtoopticalfluxratio,F(24)/F(R)∼2000andtherefore (Marconiet al. 2004). Assuming such a bolometric correc- isalsoclassifiedasadust-obscuredgalaxy(DOG,Deyetal. tion,weestimateL ∼1046±0.5 ergs- 1 forBzK4892and∼ 2008). Itis an extremeobjectalso in the Fioreet al. (2008) bol 1045.5±0.5ergs- 1forBzK8608.Theseveryhighluminosities, sample. Alonso-Herreroet al. (2006)reportsa 70 µm flux ifexpressedinsolarunits,correspondtoL ∼1012.4±0.5L of3.3±1.8mJyforthisgalaxy,whichisalsolikelyaffected bol ⊙ and∼1011.9±0.5L . Whenpoweredbystarformation,simi- bytheAGNemission. Ontheotherhand,thegalaxyisseen ⊙ at1.4GHzwithafluxof80µJyintheVLAdataofMilleret al. (2008). Ifduetostarformation,usingtheradio-IRcorre- TABLE2 lation,thiswouldimplySFR∼1100M yr- 1. Inspectingthe GALAXYPROPERTIES ⊙ publiclyavailableApex+LABOCA870µm mapofGOODS- BzK4892 BzK8608 S (Weiss et al. 2009), we find a 3σ signal at the position of Ra 3:32:35.71 3:32:20.95 BzK4892of3.3mJy,whichwouldalsoconvertintoasimilar Dec -27:49:16.1 -27:55:46.3 SFR,∼500M yr- 1. ⊙ Redshift 2.578 2.90±0.10 Even for the most luminous quasars it is generally found HR 0.58 >0.54(3σ) that the far-IR emission in the sub-mm bands is due to star SFRUV[M⊙yr- 1] 70 70 formation. If this is the case also for BzK4892, our results SFRRadio[M⊙yr- 1] 1100 300 suggestthat the galaxyis witnessing also very powerfulstar L(Kα)[ergs- 1] 1042.1 1042.4 formationactivityatthelevelof500-1000M⊙ yr- 1. Only5- L2- 10keV,abs[ergs- 1] 1042.5 1042.8 10%ofthisisseendirectlyintheUV,implyingthatalsothe L2- 10keV,Kα[ergs- 1] 1043.6- 44.8 1043.9- 45 UV-emission from stars is optically thick, similarly to local LL22-- 1100kkeeVV,,U6µVmlin[eesrg[esrg- 1s]- 1] 11004444-.44-54.55 10-44 UaevnLedIr,RtowGwesnh(oaett.igics.e,eGtxhopaltedctahtedederratodetiboaeal.fnod2u08n07d20i;µndmmadaCejourirnvhmeadeerSgtFeaRrls.s.w2H0oo1uw0ld-) i[ABmag] 24.75 24.72 formally imply L ∼1046- 46.5 erg s- 1, comparable to what IRAC3.6µm[ABmag] 20.81 21.29 bol inferredfortheobscuredAGN.Hence,theAGNislikelycon- IRAC4.5µm[ABmag] 20.54 21.16 tributinganimportantfractionofthetotalL . bol IRAC5.8µm[ABmag] 20.1 20.84 ThemorphologyofthegalaxyfromHST+ACSimagingis IRAC8.0µm[ABmag] 19.64 20.65 suggestive of a merger, showing two distinct clumps in the MIPS24µm [mJy] 0.591±0.07 0.045±0.003 UV in the rest frame. When smoothing, after excludingthe MIPS70µm [mJy] 3.3±1.8 - two bright knots, we detect significant faint low-level emis- 850µm [mJy] 3.3±1.1 - sion in the summed i+z band, extended over a diameter of 1.4GHz[µJy] 80±14 17.5±6.5 about0.75′′(6kpc).Overall,thisisconsistentwiththesizeof Ironemittingquasarsatz=2.5- 3 5 BzK4892 z=2.578 BzK8608 z=2.9 FIG.3.—Opticaltomid-infraredSEDsofBzK4892(leftpanel,blacksymbols)andBzK8608(rightpanel). Thebluecontinuouslineshowsthefittedmodel SEDofapurestarforminggalaxy.ThephotometryfromtheGOODSdatasetsistakenfromD07.HST+ACScolorimagesarealsoshownasthumbnails. amassivegalaxyatz∼2,andwecannotexcludethatthetwo ComptonthickAGNwithL2- 10keV >1044 ergs- 1. However, UVknotsmightbejustluminousHIIregionsinsideabigdisk wenoticethatoursamplingofL2- 10keV >1044 ergs- 1 AGN galaxy. withComptonthickabsorptionat1.4<z<3 mightbesub- The photometric information is of lower quality for stantially incomplete due to selection effects, and the lumi- BzK8608duetoitsoverallfaintness. TheSFRinferredfrom nosityofatleastoneoftheBzK galaxiesinthispapermight the UV is also 70 M⊙/yr. This object is also a mid-IR ex- besubstantiallyhigherthantheadopted1044ergs- 1limit. cess source in D07 sample (by a less extreme factor of 6), We emphasize that the sources presented here have X-ray with S24 =45µJy ( ∼1/10ofBzK4892), althoughit is nota spectrathatarethehigh-luminosityanalogousofthoseoflo- DOG. The SED (Fig. 3) might also be consistent with pure calprototypeComptonthickAGN.Thisdiscoveryrepresents stellaremission,butadeviationfromthestarformationtem- one of the first clear-cutevidencefor this class of objects at plateisobservedatthe8µmband.Thisgalaxyisnotdetected highredshift. Ourresultsconfirmthatindeedthereisapop- at 70 µm and 870µm, suggestinga lower AGN luminosity ulationofComptonthickQSOamongmassive,star-forming, and/orSFR. Inspectingthe VLA 1.4 GHz data (Miller et al. dustobscuredgalaxies,assuggestedbyseveralstudies(D07, 2008) we detect a faint 3σ source at its position with a flux Fioreetal. 2008,2009,Treisteretal. 2010,Alexanderetal. of17.5±6.5µJy. Thiscorrespondstoaluminosity3×1012 2008, Lanzuisi et al. 2009), and as predicted by models of L and SFR∼300 M yr- 1. If the radio signal is real and merger-drivenAGN/galaxyco-evolution(Silk & Rees 1998, ⊙ ⊙ notduetoAGN,alsointhiscasethestellaremissionappears Fabian 1999, Di Matteo et al. 2005). Indeed, these lumi- to be heavilyobscured, i.e. opticallythick in the UV, as ex- nousComptonthickquasarsappeartobehostedbygalaxies pectedforveryactivestarburstsandmergers.TheHST+ACS with opticallythickUV emission, whichare a relativesmall imagingofthisgalaxy(Fig.3)isnotparticularlytelling. minority among BzKs (Daddi et al 2007a), and imply the Forbothgalaxieswederivesimilarestimatesofthestellar presence of a dense starburst usually connected with merg- masses, atthelevelof5×1010M . Ourresultsthussupport ers. This seems to agree with evolutionaryscenarios, where ⊙ the picture that the luminous, Compton thick AGN that we mergersinducebothrapidaccretionontoSMBHandintense discoveredarehostedbyfairlymassivegalaxiesatz∼2.5-3, star-formationactivity. thatatthesametimealsohostvigorousstarformationactiv- The two sources presented here have high intrinsic X-ray ityheavilyobscuredbydust.ThisisrelevantintheAGN-host andbolometricluminosity,andbrightIronKαline,allowing galaxyco-evolutionscenario,inwhichaphaseofrapid,heav- their identification. They might represent just the tip of the ily obscured BH growth accompanied by intense obscured icebergofamuchlargerpopulationofhighlyobscuredAGN star-formationis predicted (Silk & Rees 1998, Fabian 1999, with somewhat lower intrinsic luminosity, whose Iron lines Granatoetal. 2004). arestillremaininghardlydetectableeveninthedeepesthard X-ray surveys. For example, the Gilli et al. model predicts a∼10×higherspacedensityofComptonthicksourceswith 3.3. ImplicationsforComptonthicknuclearactivityathigh redshift L2- 10keV>1043ergs- 1. DetectingIronlinesingalaxieswith suchluminositiesmightbechallengingwithcurrentfacilities, WederiveacrudevalueofthevolumedensityofCompton eveniftheyhavesimilarEWasinBzK4892andBzK8608. thickAGN withhighEWIronKαemission, based onour2 detections. We conservativelyuse the fullredshiftrangeex- ploredbytheBzK selection(z=1.4-3),findingaspacedensity We thank the anonymous referee for useful comments. of3×10- 6 Mpc- 3. Thisisconsistentwiththepredictionsof Thisresearchwas supportedbythe ERC-StG grantUPGAL theGillietal. (2007)X-raybackgroundsynthesismodel,for 240039 and by the French ANR under contract ANR-08- 6 Feruglioetal. JCJC-0008. EP acknowledges financial support from ASI (grantI/088/06/0). DMAthankstheScienceandTechnology ResearchCouncilforsupport. REFERENCES Alexander,D.M.,Bauer,F.E.,Chapman,S.C.etal.2005,ApJ,632,736 Ikeda,S.etal.2009,ApJ,691,608 Alexander,D.M.,Chary,R.R.,Pope,A.,2008 Iwasawa,K.,Crawford,C.S.,Fabian,A.C.etal.2005,MNRAS,362,20 Alonso-Herrero,A.,Perez-Gonzalez,P.G.,Alexander,D.M.etal.2006, Guainazzi,M.,Matt,G.andPerola,G.C.2005,A&A,444,119 ApJ,640,167 Lanzuisi,G.,Piconcelli,E.,Fiore,F.etal.2009,A&A,498,67 BraitoV.,etal.,2004,A&A,420,79 Levenson,N.A.,Heckman,T.M.,Krolik,J.H.etal.2006,ApJ,648,111 Burlon,D.etal.2010,ApJinpress,arXiv:1012.0302 Luo,B.etal.2010,ApJS,187,560 ComastriA.,BrusaM.,CivanoF.,2004,MNRAS,351,L9 LutzD.etal.2004,A&A.418,465 Comastri,A.etal.2011,A&A,inpress Malizia,A.etal.2009,MNRAS,399,944 DaCunha,E.etal.A&A,inpress,arXiv:1008.2000 Marconi,A.etal.2004,MNRAS,351,169 Daddi,E.etal.2007a,ApJ,670,156 Matt,G.etal.2000,MNRAS,318,173 Daddi,E.etal.2007b,ApJ,670,173 Miller,N.A.,Fomalont,E.B.,Kellerman,K.I.etal.2008,ApJS179,114 DellaCecaR.,etal.,2008,A&A,487,119 Mulchaey,J.S.etal.1994,ApJ436,586 Dey,A.etal.2008,ApJ,667,943 Netzer,H.,Mainieri,V.,Rosati,P.etal2006,ApJ,652,117 DiMatteo,T.,Springel,V.,Hernquist,L.2005,Nature,433,604 Nonino,M.etal.ApJS,183,244 Donley,J.L.,Rieke,G.H.,Perez-Gonzalez,P.G.,Barro,G.,2008,ApJ,687, Piconcelli,E.etal.2010,ApJ,722,147 111 Persic,M.&Raphaeli,Y.2002,A&A,382,843 Donley,J.L.,Rieke,G.H.,Alexander,D.M.etal.2010,ApJ,719,1393 Popesso,P.,Dickinson,M.,Nonino,M.etal.2009,A&A,494,443 Fabian,A.C.1999,MNRAS,308,L39 Santini,P.etal.2009,A&A,504,751 Fiore,F.,Grazian,A.,Santini,P.etal.2008,ApJ,672,94 Silk,J.&Rees,M.J.1998,A&A,331,L1 Fiore,F.etal.2011,inpreparation Szokoly,G.P.,Bergeron,J.,Hasinger,G.etal.2004,ApJS,155,271S Fukazawaetal.2010,inpress(arxiv1011.1750) Teplitz,H.,Chary,R.,Elbaz,D.,etal.,2010,AJinpress(arXiv:1010.1797) Georgantopoulos,I.etal.2008,A&A,484,671 Tozzi,P.,Gilli,R.,Mainieri,V.etal.2006,A&A,451,457 Georgantopoulos,I.etal.2009,A&A,507,747 Treister,E.etal.2010,ApJ,722,238 Giacconi,R.etal.2001,ApJ,551,624 Vanzella,E.,Cristiani,S.,Dickinson,M.etal.,2006,A&A,454,423 GilliR.,ComastriA.,HasingerG.2007,A&A,463,79 Weiss,A.etal.2009,ApJ,707,1201 Goldader,J.D.etal.2002,ApJ,568,651 Granato,G.L.,DeZotti,G.,Silva,L.,etal.2004,ApJ,600,580

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.