molecules Article Searching for Multi-Targeting Neurotherapeutics against Alzheimer’s: Discovery of Potent AChE-MAO B Inhibitors through the Decoration of the 2H-Chromen-2-one Structural Motif LeonardoPisani1,RobertaFarina1,RamonSoto-Otero2,NunzioDenora1, GiuseppeFeliceMangiatordi1,OrazioNicolotti1,EstefaniaMendez-Alvarez2, CosimoDamianoAltomare1,MarcoCatto1,*andAngeloCarotti1,* 1 DipartimentodiFarmacia—ScienzedelFarmaco,UniversitàdegliStudidiBari“AldoMoro”, viaE.Orabona,4,I-70125Bari,Italy;[email protected](L.P.);[email protected](R.F.); [email protected](N.D.);[email protected](G.F.M.);[email protected](O.N.); [email protected](C.D.A.) 2 GrupodeNeuroquimica,DepartamentodeBioquimicayBiologiaMolecular,FacultaddeMedicina, UniversidaddeSantiagodeCompostela,SanFranciscoI,E-15782SantiagodeCompostela,Spain; [email protected](R.S.-O.);[email protected](E.M.-A.) * Correspondence:[email protected](M.C.);[email protected](A.C.); Tel.:+39-080-544-2780(M.C.);+39-080-544-2782(A.C.);Fax:+39-080-544-2230(M.C.&A.C.) AcademicEditors:MichaelDeckerandDiegoMuñoz-Torrero Received:15February2016;Accepted:10March2016;Published:17March2016 Abstract: The need for developing real disease-modifying drugs against neurodegenerative syndromes,particularlyAlzheimer’sdisease(AD),shiftedresearchtowardsreliabledrugdiscovery strategiestounveilclinicalcandidateswithhighertherapeuticefficacythansingle-targetingdrugs. By following the multi-target approach, we designed and synthesized a novel class of dual acetylcholinesterase(AChE)-monoamineoxidaseB(MAO-B)inhibitorsthroughthedecorationofthe 2H-chromen-2-oneskeleton. Compoundsbearingapropargylaminemoietyatposition3displayed thehighestinvitroinhibitoryactivitiesagainstMAO-B.Withinthisseries,derivative3hemerged as the most interesting hit compound, being a moderate AChE inhibitor (IC = 8.99 µM) and a 50 potentandselectiveMAO-Binhibitor(IC =2.8nM).Preliminarystudiesinhumanneuroblastoma 50 SH-SY5Y cell lines demonstrated its low cytotoxicity and disclosed a promising neuroprotective effectatlowdoses(0.1µM)underoxidativestressconditionspromotedbytwomitochondrialtoxins (oligomycin-Aandrotenone). InaMadin-Darbycaninekidney(MDCK)II-MDR1cell-basedtransport study,Compound3hwasabletopermeatetheBBB-mimickingmonolayeranddidnotresultina glycoprotein-p(P-gp)substrate,showinganeffluxratio=0.96,closetothatofdiazepam. Keywords: Alzheimer’s disease; cholinesterase inhibitors; coumarins; MAO inhibitors; multi-target-directedligands 1. Introduction Nowadays,agrowingshareoftheelderlypopulationexperiencestheheavyburdenofcognitive declineassociatedwithsevereneurodegenerativedisorders(NDs). Inthiscontext,acentralroleis occupiedbyAlzheimer’sdisease(AD),beingthefirstcauseofage-relateddementiawithaworrisome projectionofaround100millionpatientsworldwideby2050. InpeoplesufferingfromAD,learning deficits along with the impairment of memory and language skills result from the disruption of cholinergictransmissioninhippocampalareas[1]. Asaconsequenceoftheso-called“cholinergic hypothesis”, up to date, the pharmacological therapy of AD has been essentially based on the Molecules2016,21,362;doi:10.3390/molecules21030362 www.mdpi.com/journal/molecules Molecules2016,21,362 2of15 restoration of adequate levels of acetylcholine (ACh). Thus, the majority of registered drugs for the curing of AD belongs to the class of acetylcholinesterase (AChE) inhibitors (i.e., rivastigmine, galantamineanddonepezil)thatareabletocounteractAChdepletionbyreducingitsdegradation catalyzed by AChE [2]. Apart from AChE blockade, a drug with a different mechanism of action (memantine),whichhasantagonismtoNMDAreceptors,hasmorerecentlybeenintroducedforthe curing of moderate to severe forms of AD [3]. However, none of these medicines is able to slow downorreversetheneuronaldegeneration,andallofthemexertonlysymptomaticrelief. Despite hugeeffortsperformedbyresearchers,thecuringofADstillrepresentsachallengingtask,andareal disease-modifyingtherapyisstillneeded. AsformanyNDs,convergingandrisingevidencesshed lightonthemultifacetedetiologyofAD[4].Thismeansthatsimultaneousaberrations,includingmetal unbalance,proteinmisfolding/aggregationandproductionoftoxicradicalsamongothers,trigger and/orsustaintheneurotoxiccascadeultimatelyleadingtoneuronaldeath. Bymeansofmodulating twoormoretargetsinvolvedintheonsetand/orprogressionofthedisease,themulti-targetstrategy hasbeenregardedasaninnovativetoolfordiscoveringneurotherapeuticsagainstAD[5]. Inrecent years,programshittingbothproductionandaggregationofβ-amyloidandhyperphosphorylatedtau proteinfailedtoidentifyagentswiththerapeuticefficacy[6]. Thus,theattentionhasbeenshiftedto otherrelevantpathophysiologicalmechanisms. Inparticular,oxidativestresshasbeenconsidered adownstreameventanticipatingthedepositionofamyloidplaquesandneurofibrillarytangles[7]. Deregulation of endogenous detoxification redox systems and over-production of radical species lead to lipid peroxidation and nucleic acid mutations. In this context, a neuroprotective activity againstoxidativestresshasbeenclaimedfornewchemicalentitiesabletoinhibitmonoamineoxidases (MAOs)[8]. TheseFAD-dependentenzymescatalyzetheoxidativedeaminationofaminesderiving fromdiet(e.g.,tyramine),physiologicalneuronalpathways(e.g.,severalneurotransmitters,suchas catecholamines) or drug assumption. The catalytic cycle produces hydrogen peroxide, a harmful by-productcapableoftriggeringreactiveoxygenspecies(ROS)release. Twoisoforms(MAO-Aand-B) differinginsensitivitytosubstrateandinhibitorsareknown[9]. Inparticular,theMAO-Bisoform hasreceivedgreatattention. Infact,itpredominatesinCNS,andmanystudiesreporteditsincreased activityinbrainsaffectedbyAD[10]. Thus,thesimultaneousinhibitionofMAO-B,aswellasAChE enzymaticactivityrepresentsaninnovativetherapeuticweapon[8]andmultifunctionalmoleculesable toreduceradicals’formationandtotackleAChdecreasemaybebeneficialtohampertheneurotoxic cascadeinAD. Coumarin(2H-chromen-2-one)isanature-friendlyheterocycle,easytobefunctionalizedwitha highdegreeofpotentialchemicaldiversity[11]. Aswerecentlyreported,itsplanarbackbonecanbe efficientlylodgedintotheMAO-Bcatalyticsite[12,13]andisabletointeractwiththeperipheralanionic site(PAS)ofAChE[14]. AimingatidentifyingnovelmultipotentcompoundswithdualAChE-MAO-B inhibitoryactivity[15],herein,weinvestigatedthechemicaldecorationofthe2H-chromen-2-onecore aroundthelessexploredposition3,byintroducingvariously-substitutedprotonatablebasicmoieties. Ontheotherside,alowervariabilitywasexploredatpositions6and7bystudyingtheeffectofmethoxy groups[16]. InvitroenzymaticscreeningtowardsChEsandMAOsledustoidentifyadualinhibitor (derivative3h)endowedwithapotentandselectiveMAO-Binhibitorypotencyinthenanomolar range(IC =2.8nM)togetherwithamoderateAChEaffinity(IC =8.99µM).HitCompound3hwas 50 50 submittedtotransportstudiesinMadin-Darbycaninekidney(MDCK)-IIpermeabilitymodelinorder toevaluateitsabilitytocrossBBBandpenetrateintoCNS.Furthermore,cell-basedassayswereusedto assesstheneuroprotectiveeffectagainstdifferentoxidativeinsults(hydrogenperoxide,oligomycin-A androtenone)inhumanneuroblastomaSH-SY5Ycelllines. Therefore,coumarin-based3hemergedas apromisingneuroprotectiveagentwithamulti-targetprofile,deservingadeeperinvestigationasa potentialanti-ADtherapeuticagent. Molecules2016,21,362 3of15 Molecules 2016, 21, 362 3 of 15 Molecules 2016, 21, 362 3 of 15 22.. RReessuullttss aanndd DDiissccuussssiioonn 2. Results and Discussion 2.1. Chemistry 2.1. Chemistry 2.1. Chemistry TThhee ssyynnththeetitcicp patahthwwayayto tofi nfainlaml umltui-lttair-gtaertgceot ucmouarminasri3nas– m3a–amnd a8nids d8e pisic dteedpiincteSdch ienm Secsh1emaneds 21. The synthetic pathway to final multi-target coumarins 3a–m and 8 is depicted in Schemes 1 3a-nMd e2t.h 3y-lM-2eHth-cyhl-r2oHm-echnr-2o-monenes-2-1obn,cesw 1ber,ce woebrtea ionbetdaintherdo tuhgrhouagho an eo-npeo-tpoptr pocroedceudruerest satratrintigngw witihth aa and 2. 3-Methyl-2H-chromen-2-ones 1b,c were obtained through a one-pot procedure starting with a WWiittttiigg--ccoonnddeennssaattiioonn ffoolllloowweedd bbyy iinnttrraammoolleeccuullaarr ccyycclliizzaattiioonn iinn rreeflfluuxxiinngg NN,,NN--ddiieetthhyyllaanniilliinnee [[1177]].. Wittig-condensation followed by intramolecular cyclization in refluxing N,N-diethylaniline [17]. BBrroommiinnaattiioonn oof f1b1,bc ,pcropmroomteodt ebdy Nby-brNom-borosumcocisnuimcciidneim (NidBeS)( aNnBdS b)enanzodylb peenrzooxyidlep (eDrBoPxi)d aes t(hDeB raPd)icaasl Bromination of 1b,c promoted by N-bromosuccinimide (NBS) and benzoyl peroxide (DBP) as the radical tihneitiraatodric aaflfoirnditeidat ionrtearfmfoerddieadtesin 2tae–rcm tehdaita wteesre2 aco–ucptlheadt wwitehre thceo suupilteadblew aimthinteh etos yuiietladb Cleoammpionuendtos initiator afforded intermediates 2a–c that were coupled with the suitable amine to yield Compounds y33aiae––lmdm C((SSoccmhhepemmouee n 11d))s.. AA3ass– mddeepp(Siicccttheededm iinen 1SS)cc.hheeAmmsee d22e,, pAAicllCtCelld33--mmineeddSiicaahtteeeddm erreeg2g,iiooAsseellCleeclc3tti-ivmveee dbbiiiass-t-deddeemmreeetgthhiyoylslaaettliieoocnnti vooeff b2i,s4-,d5-etmrimetehtyhloaxtiyobnenozfa2l,d4e,5h-ytrdime efuthronxisyhbeedn zaaldldeehhyyddee 4f u[r1n8i]s,h wedhiaclhd ewhyads eh4ea[t1e8d], awt hriechfluwx aws hiteha ttehde 2,4,5-trimethoxybenzaldehyde furnished aldehyde 4 [18], which was heated at reflux with the aatprperfloupxriwatiet hphthoespahpoprruosp yrliiadtee ipnh oo-sxpyhleonreu,s thyulisd oebitnaion-ixnygle cnoeu,mthaurisno dbetraiivnaintigvec o5.u Amfaterrin pdroetreicvtaintigv eth5e. appropriate phosphorus ylide in o-xylene, thus obtaining coumarin derivative 5. After protecting the Apfhteenroplrioc tgercotiunpg, tthhee prehseunlotilnicg gbreonuzpo,atthee ersetesur l6t iunngdbeernwzeonatt ea ersatderic6alu bnrdoemrwineantitoan rwaditihca NlbBrSo amnidn aDtiBoPn. phenolic group, the resulting benzoate ester 6 underwent a radical bromination with NBS and DBP. wFiinthalN coBuSpalnindgD oBf P7. wFiintha lNc-omueptlhinyglporofp7awrgityhlaNm-imnee tihny tlhper oppraesrgenyclaem ofin aeni enxtcheessp oref speontcaessoiufman ceaxrcbeosnsaotfe Final coupling of 7 with N-methylpropargylamine in the presence of an excess of potassium carbonate paolltoawsseiudm thcea rrebmonoavtael aolfl othwee bdetnhzeoraetme gorvoaulpo fatnhde tbheen pzoreapteargartoiuonp oafn 8d. thepreparationof8. allowed the removal of the benzoate group and the preparation of 8. SScchheemmee 11.. SSyynntthheessiiss ooff ccoouummaarriinnss 33aa––mm.. RReeaaggeennttss aanndd ccoonnddiittiioonnss:: ((ii)) NN--bbrroommoossuucccciinniimmiiddee,, bbeennzzooyyll Scheme 1. Synthesis of coumarins 3a–m. Reagents and conditions: (i) N-bromosuccinimide, benzoyl pppeeerrroooxxxiiidddeee,,, CCCCCClll444,,, rrreeefflflluuuxxx,,, 222–––777 hhh;;; (((iiiiii))) sssuuuiiitttaaabbbllleee aaammmiiinnneee,,, tttrrriiieeettthhhyyylllaaammmiiinnneee (((fffooorrr 333aaa,,,bbb,,, 333ddd–––eee,,, 333ggg,,, 3 33ll–l––mmm))) o oorrr K KK22C2CCOOO333 ((ffoorr 33cc,, 33ff,, 33hh––kk)),, DDMMFF aatt 7700 ˝°CC ((ffoorr 33aa,, 33ll––mm)) oorr TTHHFF aatt rroooomm tteemmppeerraattuurree( (33bb––kk)),,3 3.5.5––2244h h.. (for 3c, 3f, 3h–k), DMF at 70 °C (for 3a, 3l–m) or THF at room temperature (3b–k), 3.5–24 h. Scheme 2. Synthesis of coumarin 8. Reagents and conditions: (i) (carbethoxyethylidene)triphenylphosphorane, SScchheemmee 22.. SSyynntthheessiiss ooff ccoouummaarriinn 88.. RReeaaggeennttss aanndd ccoonnddiittiioonnss:: ((ii)) ((ccaarrbbeetthhooxxyyeetthhyylliiddeennee))ttrriipphheennyyllpphhoosspphhoorraannee,, o-xylene, reflux, 12 h; (ii) triethylamine, benzoyl chloride, dry THF, 5 h; (iii) N-bromosuccinimide, benzoyl oo--xxyylleennee,, rreeflfluuxx, 1,21 2h;h (i;i)( itir)iettrhieytlhamylianme,i nbeen,zboeynlz cohylolrcihdleo, rdirdye ,TdHrFy, 5T hH; F(,iii5) Nh;-b(irioi)mNos-burcocimniomsuidcec,i bneimnziodyel, bppeeenrrozoxoxiyiddleep,, eCCrCoCxll4i4,d, rreee,ffClluuCxxl,,4 11,22r e hhfl;; u ((ixivv,))1 NN2-h-mm;(eeittvhh)yyNllpp-rmrooepptaahrrygglyypllraaommpiainnrege,,y KKla22mCCOiOn33e,, , ddKrry2yC TTOHH3FF,,,d oorvyveeTrrnHniigFg,hhott.v. ernight. 2.2. Biological Evaluation 22..22.. BBiioollooggiiccaall EEvvaalluuaattiioonn Limited structural modifications were investigated at positions 6 and 7 of the coumarin backbone LLiimmiitteedd ssttrruuccttuurraall mmooddiifificcaattiioonnss wweerree iinnvveessttiiggaatteedd aatt ppoossiittiioonnss 66 aanndd 77 ooff tthhee ccoouummaarriinn bbaacckkbboonnee with the introduction of methoxy groups. On the other side, a higher diversity was explored in the wwiitthh tthhee iinnttrroodduuccttiioonn ooff mmeetthhooxxyy ggrroouuppss.. OOnn tthhee ootthheerr ssiiddee,, aa hhiigghheerr ddiivveerrssiittyy wwaass eexxpplloorreedd iinn tthhee flexible basic moiety where hydrophilic hydrogen-bonding, propargyl and bulkier benzylic groups flfleexxiibbllee bbaassiicc mmooiieettyy wwhheerree hhyyddrroopphhiilliicc hhyyddrrooggeenn--bboonnddiinngg,, pprrooppaarrggyyll aanndd bbuullkkiieerr bbeennzzyylliicc ggrroouuppss were inserted. Since cation-π interactions stabilize the complexes of AChE with natural substrate wweerree iinnsseerrtteedd.. SSiinnccee ccaattiioonn--ππ iinntteerraaccttiioonnss ssttaabbiilliizzee tthhee ccoommpplleexxeess ooff AACChhEE wwiitthh nnaattuurraall ssuubbssttrraattee (ACh) and positively-charged inhibitors (e.g., quaternary ammonium salts) at the level of both binding ((AACChh)) aanndd ppoossiittiivveellyy--cchhaarrggeedd iinnhhiibbiittoorrss ((ee..gg..,, qquuaatteerrnnaarryy aammmmoonniiuumm ssaallttss)) aatt tthhee lleevveell ooff bbootthh bbiinnddiinngg sites (PAS and CAS), a methylene spacer linked the amino group to the heterocyclic scaffold in order sites (PAS and CAS), a methylene spacer linked the amino group to the heterocyclic scaffold in order to obtain a protonatable base. A ligand-based approach inspired the introduction of propargylamines, to obtain a protonatable base. A ligand-based approach inspired the introduction of propargylamines, a typical structural feature of potent and irreversible MAO-B inhibitors rasagiline [19] and selegiline. a typical structural feature of potent and irreversible MAO-B inhibitors rasagiline [19] and selegiline. Molecules2016,21,362 4of15 sites(PASandCAS),amethylenespacerlinkedtheaminogrouptotheheterocyclicscaffoldinorder toobtainaprotonatablebase. Aligand-basedapproachinspiredtheintroductionofpropargylamines, atypicalstructuralfeatureofpotentandirreversibleMAO-Binhibitorsrasagiline[19]andselegiline. Molecules 2016, 21, 362 4 of 15 2H-Chromen-2-ones 3a–m and 8 were evaluated as inhibitors of electric eel AChE (eeAChE), equin2eHs-Cerhurmombeunt-y2r-oynlcehso 3lian–emst earnadse 8( ewsBeCreh eEv)aalunadterda taMs iAnhOisbi(torMrsA oOf -eAlecatrnidc ereMl AAOC-hBE) .(eDeAatCahaEr)e, ielqluusitnrea tesderiunmT abbulety1r.yIlnchvoitlrioneesntzeyramsea ti(cesaBsCsahyEs)o annCdh rEast wMerAeOasc c(ormMpAliOsh-Aed athnrdo urMghAtOhe-Bw).e lDl-aktnao warne silpluecsttrraotpehdo itno mTaebtrleic 1.E Ilnlm viatrno’ senmzyemthaotdic a[2s0sa].ys oMnA COhEisn whiebriet oarcycoamcptilvisithieesd twhreoreugmh ethaseu wreedll-konnowrant bspraeicntrmopihtoocthoomnedtrriica lEhllommaong’se nmateethso[d21 []2.0P].r oMpAarOg yilnahmibiniteo-rbye aarcitnivgitiinehs iwbietorer sm3ec,as3uf,re3dh oann dra8t bwrearine pmriet-oicnhcounbdartieadl hwomithogtehneateens z[y21m].e Pprorpeparagryaltaiomninfeo-rbe3a0rinmgi ninhbiebfiotorers t3hce, 3afd, 3dhit aionnd o8 fwkeyren uprrae-minicnuebaatnedd dweittehr mthien aetniozynmofe MprAepOaaracttiiovnit yf.oRr e3s0u mltsina rbeerfeopreo rttheed ainddTiatbiolen 1ofa skIyCnur(aµmMin)eo ranads tdheetperemrciennattaiogne ooff 50 iMnhAibOi taioctnivaitty1.0 RµeMsu.lts are reported in Table 1 as IC50 (µM) or as the percentage of inhibition at 10 µM. TTaabbllee 11.. MMoonnooaammiinnee ooxxiiddaassee ((MMAAOO)) aanndd cchhoolliinneesstteerraassee ((AACChhEE,, BBCChhEE)) iinnhhiibbiittiioonn ddaattaa ooff CCoommppoouunnddss 33aa––mm aanndd 88.. R R 1 N 3 R 4 R O O 2 IC50(µM) or % Inhibition at 10 µM a Comp. R1 R2 R3 R4 MAO-A b IC50(µM)MorA%OI-nBh bibitionat10AµCMhEa c BChE d C3oam p. HR 1 RH2 HR 3 CH2CRO4NH2 MAO-<A5%b MAO-Bb<5% AChEc12 ± 1 B6C.2h%E d± 0.3% 3b3 ea HH HH MHe CH32′-CFOBNnH 2 <5%<5% <5% <5% 12˘61.8 ± 0.1 6.2%1˘5%0. 3±% 2% 33cb e HH HH MMee CH312-CFB≡nCH <75.%0 ± 1.4 f <05.%377 ± 0.014 f 6.8˘08.1.4 ± 0.5 15%˘<25%% 3d33d c HHH OOHMMee MMMeee CH332′1--CFF”BBnnC H 6.70.%06.˘0˘%10. 4.±8 f%0.8% 0.377<˘5%0.01<45%f 86..46˘˘006..51.6 ± 0.1 8.5%8<.5˘5%%2 .±4 %2.4% 3e3 e HH OOMMee MMee 33′1--CCNNBBnn 9.2%9.2˘%1 .±0 %1.0% <5% <5% 8.4˘08.3.4 ± 0.3 <5%<5% 3f33 gfe ee OHHM e OOOMMMeee MMMeee CCHH3122CCCl”B≡CnCHH 0.676.009.%6%6˘˘9%10. .1±0%1 00.0f10 f 0.214<˘05.%201.040 8± f0.008 f 41.44˘˘11.114 ± 1 1139%%1˘˘3%12 %%± 1% 3g3h e e OOMMee OOMMee MMee CH3′2CCl”BCnH 7<.50%%f ± 1.1% 0.0028˘0.00<054%f 9.0˘04.5.4 ± 1.1 <159%% ± 2% 3h3 ie e OOMMee OOMMee MHe CH2MCe≡CH <5%<5% f 0<.50%028 ± 0.0004 f 13˘91.0 ± 0.5 10%˘<25%% 3i3 3ekj OOOMMMeee OOOMMMeee HHH 41CMBNneB n 20%<5˘%<35%% <<55%% <5% 28..84˘˘10..1213 ± 1 1237%%10˘˘%21 %%± 2% 3j3 l OOMMee OOMMee HH CH2CBOn NH2 <5%<5% <5% <5% 8.0˘12.2.8 ± 0.2 10%27˘%1 %± 1% 3k3m OOMMee OOMMee HH CH4′2CCNOBNnH Me <250%% ± 3% <5% <5% 7.7˘08.4.4 ± 1.1 11%13˘%1 %± 2% 3l8 OOMMee OOMHe HM e CCHH22CCO”NCHH2 35%˘<25%%f 11%˘1%<f5% 9.3˘08.4.0 ± 1.2 <150%% ± 1% 3m OMe ORDMaosneae gpileiznielH CH2CONHMe 0.412+-0<.152%3 g 0.0044+-0.00<059%g 0.020˘- 07.0.70 2± 0.4 2.31˘1-%0. 1± 1% 8 aValOueMsea remOeaHn ofthMreee indepCeHn2dCe≡nCtHex perimen3t5s;%b ±fr 2o%m fr atbrainh1o1m%o ±g e1n%a tfe s;cfrom9e.3le ±c t0r.i4c eel;dfrom<5% equineserum;Deotnesetpeedzails hydrochloridesalt;fdetermin-e dafter30minpre-i-n cubation;g0d.0a2ta0 t±a k0.e0n02fr om[129.3] .± 0.1 Rasagiline 0.412 + 0.123 g 0.0044 + 0.0009 g - - a Values are mean of three independent experiments; b from rat brain homogenates; c from electric Concerning ChEs’ activities, all tested compounds showed no activity or very low inhibitory eel; d from equine serum; e tested as hydrochloride salt; f determined after 30 min pre-incubation; potencytowardsBChE,and3jwasthemostactiveinhibitor(27%inhibitionat10µM).Fortheentire g data taken from [19]. series, the affinity towards AChE was moderate, and IC values were in the range 2.78–14.4 µM, 50 clearlyindicatingthatthereportedstructuralmodificationsbothonthecoumarinskeletonandonthe Concerning ChEs’ activities, all tested compounds showed no activity or very low inhibitory basicmoietyexertedalimitedinfluenceontheactivity. Withinbothsmallseriesofunsubstitutedand potency towards BChE, and 3j was the most active inhibitor (27% inhibition at 10 µM). For the entire 7-monomethoxycompounds(3a–cand3d–f,respectively),themorehinderedandlipophilicbenzylic series, the affinity towards AChE was moderate, and IC50 values were in the range 2.78–14.4 µM, groupwastoleratedbyAChEbetterthanthepropargylandhydrophilicamidegroups(3b>3aand clearly indicating that the reported structural modifications both on the coumarin skeleton and on 3c,3d,3e>3f). Thepresenceofthehydrogenbondingbenzylaminegroupyieldedthemostpotent the basic moiety exerted a limited influence on the activity. Within both small series of unsubstituted AChEinhibitor(3j,IC =2.78µM)belongingtotheclassof6,7-dimethoxyderivatives. Regarding and 7-monomethoxy c5o0mpounds (3a–c and 3d–f, respectively), the more hindered and lipophilic MAOsaffinity,withtheexceptionofpropargylamines3c,3fand3h,theinhibitoryactivitiesdisplayed benzylic group was tolerated by AChE better than the propargyl and hydrophilic amide groups bycompoundshereinreportedweresurprisinglyverylow,irrespectiveoftheelectronicandlipophilic (3b > 3a and 3c, 3d, 3e > 3f). The presence of the hydrogen bonding benzylamine group yielded the featuresofthebasicchainandcoumarinsubstituents. Aninterestingeffectonactivityandisoform most potent AChE inhibitor (3j, IC50 = 2.78 µM) belonging to the class of 6,7-dimethoxy derivatives. selectivitycanbeobservedformethoxysubstituentsatpositions6and7,withMAO-Baffinityrising Regarding MAOs affinity, with the exception of propargylamines 3c, 3f and 3h, the inhibitory fromunsubstitutedtomono-anddi-methoxycompounds(3c<3f<3h).Interestingly,anoppositetrend activities displayed by compounds herein reported were surprisingly very low, irrespective of the wasperformedtowardsMAO-A(3h<3f<3c),wheretheaffinitydropdeterminedtheoutstanding electronic and lipophilic features of the basic chain and coumarin substituents. An interesting effect selectivitydisplayedby3h. Thedramaticlossofaffinityfor6-methoxy-7-hydroxycoumarin8might on activity and isoform selectivity can be observed for methoxy substituents at positions 6 and 7, beascribedtothepossibilityofforminganintramolecularhydrogenbondresponsibleforthelackof with MAO-B affinity rising from unsubstituted to mono- and di-methoxy compounds (3c < 3f < 3h). polarinteractions,whichnegativelyinfluencedthebindingof8withbothMAOisoforms. Interestingly, an opposite trend was performed towards MAO-A (3h < 3f < 3c), where the affinity drop determined the outstanding selectivity displayed by 3h. The dramatic loss of affinity for 6-methoxy-7-hydroxycoumarin 8 might be ascribed to the possibility of forming an intramolecular hydrogen bond responsible for the lack of polar interactions, which negatively influenced the binding of 8 with both MAO isoforms. Molecules2016,21,362 5of15 On the basis of the enzymatic screening, Compound 3h came into light as a promising dual AChE-MMoAlecOule-sB 20i1n6,h 21ib, 3i6t2o rdeservingdeeperinvestigations. Therefore,apreliminaryevalu5 aoft i1o5 nofthe cytotoxicityandneuroprotectiveefficacyofthishitcompoundwasundertakeninthehumanSH-SY5Y Molecules 2016, 21, 362 5 of 15 On the basis of the enzymatic screening, Compound 3h came into light as a promising dual neuroblastomacelllinebyfollowingthe3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide AChE-MAO-B inhibitor deserving deeper investigations. Therefore, a preliminary evaluation of the On the basis of the enzymatic screening, Compound 3h came into light as a promising dual (MTT)assay[22]. TheviabilityofSH-SY5Ycellswasmeasuredafter24hoursincubationwithdifferent cytotoxicity and neuroprotective efficacy of this hit compound was undertaken in the human SH-SY5Y AChE-MAO-B inhibitor deserving deeper investigations. Therefore, a preliminary evaluation of the concentnreautrioobnlassotofm3ah creall nlignien bgy ffroollmow0in.1g– t5h0e 3µ-(M4,5,-adnimdeuthnytltrheiaazteodl-2c-yell)l-s2,5w-deirpeheunsyel-dteatrsaztohleiucmo nbrtoromlid(Fe igure1). cytotoxicity and neuroprotective efficacy of this hit compound was undertaken in the human SH-SY5Y Thecom(MpToTu)n adsssahy o[2w2]e. dThae nvieagbliliigtyib olfe ScHy-tSoYt5oYx icceiltlsy waalss omaetastuhreedh iagfthere s2t4 dhoousress inecmubpaltoioyne dwiitnh dthifefeerexnpt eriment. neuroblastoma cell line by following the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide Inthesca(oMmncTeeTnS)t Harass-tiaSoyYn [s52 Yo2]f. c 3Thehl rela lvniingaibeni,lgit thfyr eoomfn S e0Hu.1-rS–oY50p5 Yµro Mctee,l lcasnt widva uesn amtcreetaaisvtueidrtey cdeo allffst 3ewrh e2ra4e gh uaosiuenrdss atinst chtuhrbee acetoiopnntrr owo-li at(hFp idogiupffrteeor 1eti)nc. t insults The compound showed a negligible cytotoxicity also at the highest doses employed in the experiment. (hydrogceonnpceenrtoraxtiidones, roof t3ehn roanngeinagn dfroomli g0.o1m–5y0 cµiMn-,A an)dw uanstrsetauteddi ecdellisn wseerpe aursaetde atse tshtes c(oFnigtruolr e(F2ig)u.rAe l1l).o fthese In the same SH-SY5Y cell line, the neuroprotective activity of 3h against three pro-apoptotic insults modelsTohfen ceoumrpoonuanldd sahmowaegde ai nnedgulicgeibolex ciydtaottoivxiecistytr aelssso cato tnhde ihtiigohnessta dnodseos vemerp-lporyoedd uinc tthioe nexopferriamdeincta. lswith (hydrogen peroxide, rotenone and oligomycin-A) was studied in separate tests (Figure 2). All of In the same SH-SY5Y cell line, the neuroprotective activity of 3h against three pro-apoptotic insults differenthtemsee mchoadneliss omf ns.euInrofnaacl td,aHm2aOge2 inmdauycea ocxtidaastiaver astdreicssa cloinnditiitaiotnosr ,anpdro odveurc-pinrogdoutchtieorn hofa rramdifcuallsr eactive (hydrogen peroxide, rotenone and oligomycin-A) was studied in separate tests (Figure 2). All of oxygenwtshiptehes ecd imieffsoe.rdeeOnltsn mofte hncheeuaonrotishnmaeslr .d Ihanam fnaacdgt,e, H bin2oOdtu2h cmera ooytx eaidnctao tainsv eae sr[at2rd3ei]scsaa lc noindnitdioaitltioiogrn,o spm aronyddcu oicnvine-gAr -optbrhoeedhr uhacavtriemonaf usolf m rreaaidtcoitcivcahels o ndrial toxins bowxyyitgihme dnpi fsafpeirerecininetg sm. Oaectnh dathnifiefs emortseh. neInrt hflaaecnvt,d eH,l sb2Oott2h hme raoryte easncpot inarsea at[ 2or3ar]dy aicncadhl ianoiilntiigaoatomnr,yd pcirtnoh-dAeu cAbineThgP aovtphe eraros h dmaurimctotfciuohl onrne.adcArtiiavtle a 1 µM toxins by impairing at different levels the respiratory chain and the ATP production. At a 1 µM concentroaxtyigoenn, 3sphecdieissp. Olany ethde noothienr chraenads,e boofthc erloltesnuornveiv [a23l.] Aanmd ooldigeormatyecinne-Au rboephraovtee casti omnitoacghaoinndsrtiarol tenone concentration, 3h displayed no increase of cell survival. A moderate neuroprotection against rotenone andoligtoomxinysc ibny- Aimwpaairsinogb saet rdvifefdereantta lelvoewlse trhceo rnecspeinratrtoartyio cnha(0in.1 aµndM t)h.e ATP production. At a 1 µM and oligomycin-A was observed at a lower concentration (0.1 µM). concentration, 3h displayed no increase of cell survival. A moderate neuroprotection against rotenone and oligomycin-A was observed at a lower concentration (0.1 µM). FigureF1i.guVriea 1b.i Vlitiaybioliftyh oufm huamnanne nueruorobblalassttoommaa SSHH-S-YS5YY5 cYellcse ilnlscuibnactuedb afotre 2d4 fho wri2th4 Chowmpitoh unCdo 3mh paot und3h different concentrations (range 0.1–50 µM). Untreated cells were used as the control. Results are atdifferFeingturceo 1n. cVeinabtrilaittyio onf shu(rmaanng nee0u.r1o–b5la0stµomMa) .SHU-nSYtr5eYa tceedlls cinecllusbwateedr efour s2e4d h awsitthh Ceocmopnoturonld. 3Rhe astu ltsare expressed as the percentage of viable cells observed after treatment with Compound 3h vs. untreated expresseddiffaesretnhte cponecrecnetnratatigoneso (fravnigaeb l0e.1c–e5l0ls µoMb)s.e Urvnetrdeaateftde rcetlrles awtmeree nutswedi tahs Cthoem copnoturonl.d R3ehsuvltss. aurne treated control cells (100%) and shown as the mean ± SD (n = 3). expressed as the percentage of viable cells observed after treatment with Compound 3h vs. untreated controlcells(100%)andshownasthemean˘SD(n=3). control cells (100%) and shown as the mean ± SD (n = 3). Figure 2. Neuroprotection effect of 3h on the viability of human neuroblastoma SH-SY5Y cells. VFiiagbuilriety 2 w. Nase mureoapsruorteedct iaofnte re f2f4e cht coof -i3nhc uobna ttihoen vofia SbHili-tSyY 5oYf hcuelmlsa wn itnhe uthroe bnlaesutroomtoax iScH in-SsuYl5tY ( Hc2eOlls2 . Figure219.5N µeMu,r oolpigroomteycctiino-An e3f0f eµcMt oofr 3rohteonnonteh e75v µiaMb)i laintyd oCfohmupmouannd n3heu art odbiflfaesretontm coanScHen-tSraYti5oYnsc (e1l lµsM.V iability wasmeaa1Vn9sid5au b0µri.e1lMid tµy, Mo awlfi)gta eoosrr m mi2nye4 catihnsheu-A race bo3ds-0 eia nµnftcMceeur o ob2fra4 3r tohhito e(ccnnooo-noinntferc ouS7l5bH e aµxt-MpiSoeYn)r ia5monYfde Sn cCHteso-l)mSl. sYRp5weoYsuui ntclhtdesl l3tashhr we ea etint xdhpei frutfheerseros eentndoet u xcaroisocn ttchoienexn ispctur eairlnttcisoe(unnHltsta 2((g1HOe µ 22oOMf1 2 95µM, oligomvyicaibnle-A cel3ls0, aµnMd doartar roetpernesoennet t7h5e mµMean)sa ±n SdDC (no =m 3p).o und3hatdifferentconcentrations(1µMand and 0.1 µM) or in the absence of 3h (control experiments). Results are expressed as the percentage of 0.1 µM)voirabinle tchelelsa, bansden dcaetao rfe3phres(ecnotn tthreo mleexapnse r±i mSDe n(nt s=) 3.)R. esultsareexpressedasthepercentageofviable cell s,anddatarepresentthemeans˘SD(n=3). Molecules2016,21,362 6of15 CNS-active molecules should be able to enter the brain after permeating the blood brain barrier(BBB)bypassivediffusionandshouldbedevoidofinteractionswithglycoprotein-P(P-gp), which limits brain uptake and serves as a defensive efflux mechanism of xenobiotics for the CNS. Brain permeation and P-gp interaction were estimated in a cell-based invitro method using the Madin-Darby canine kidney (MDCK) cell line [24,25]. After transfection with the human MDR1 cDNA(MDCKII-MDR1),thislineshowsahighexpressionofP-gp(MDR1)andverytightcellular junctions,thusrepresentingareliableBBBinvitromodel. Bidirectionaltransportfor3hwasevaluated inapical-to-basal(AP)andbasal-to-apical(BL)directions,andthemeasuredapparentpermeability values(P AP=2.27ˆ10´5cm/s,P BL2.18ˆ10´5cm/s)weresuperiortothoseofdiazepam app app (P AP = 1.46 ˆ 10´5 cm/s, P BL 1.23 ˆ 10´5 cm/s), used as positive CNS-permeant control app app (Table2). Aneffluxratio(ER)equalto0.96andmuchlowerthanthethresholdvalue(ER=2)indicates that 3h is not likely to be a substrate for P-gp. Taken together, these results pointed out that 3h mightbeconsideredapromising,non-cytotoxicandneuroprotectivehitcompoundendowedwitha multi-targetprofilebasedonapotentMAO-BinhibitionandamoderateAChEaffinity. Derivative3h canberegardedasaCNSactiveagentabletorapidlypermeatethetightmonolayerwithoutinteracting witheffluxsystemsanddeservesfurtherstudiesasananti-Alzheimeragentinanimalmodels. Table2. Bi-directionaltransportof3handcontrolcompoundsacrossMadin-Darbycaninekidney (MDCK)II-MDR1cells. Compd. PappAP(cm/s) PappBL(cm/s) ERaPappBL/PappAP 3h 2.27ˆ10´5 2.18ˆ10´5 0.96 diazepam 1.46ˆ10´5 1.23ˆ10´5 0.84 FD-4 1.03ˆ10´6 2.08ˆ10´7 0.20 aEffluxratio(ER)wascalculatedusingthefollowingequation:ER=PappBL/PappAP,wherePappBListhe apparentpermeabilityofbasal-to-apicaltransportandPappAPistheapparentpermeabilityofapical-to-basal transport. Aneffluxratiogreaterthan2indicatesthatatestcompoundislikelytobeasubstrateforP-gp transport.Fluoresceinisothiocyanate-dextran(FD4)anddiazepamwereusedasparacellularandtranscellular markers,respectively,ofcellmonolayers’integrityandasaninternalcontroltoverifytightjunctionintegrity duringtheassay. 3. MaterialsandMethods 3.1. Chemistry Startingmaterials,reagentsandanalytical-gradesolventswerepurchasedfromSigma-Aldrich (Milan,Italy).Thepurityofalloftheintermediates,checkedby1H-NMRandHPLC,wasalwaysbetter than95%. Allofthenewly-preparedandtestedcompoundsshowedanHPLCpurityhigherthan98%. ColumnchromatographywasperformedusingMercksilicagel60(0.063–0.200mm,70–230mesh). FlashchromatographicseparationswereperformedonaBiotageSP1purificationsystem(Biotage SwedenAB,Uppsala,Sweden)usingflashcartridgesprepackedwithKP-Sil32–63µm,60Åsilica. All reactions were routinely checked by TLC using Merck Kieselgel 60 F aluminum plates and 254 visualizedbyUVlightoriodine.Regardingthereactionrequiringtheuseofdrysolvents,theglassware wasflame-driedandthencooledunderastreamofdryargonbeforeuse. Elementalanalyseswere performedonaEuroEA3000analyzer(Eurovector,Milan,Italy)onlyonthefinalcompoundstested asMAOsandChEsinhibitors. ThemeasuredvaluesforC,HandNagreedtowithin˘0.40%ofthe theoreticalvalues. Nuclearmagneticresonance(NMR)spectrawererecordedonaVarianMercury 300instrumentat300MHz(Varian,Milan,Italy)atambienttemperatureinthespecifieddeuterated solvent. Chemicalshifts(δ)arequotedinpartspermillion(ppm)andarereferencedtotheresidual solventpeak. ThecouplingconstantsJaregiveninHertz(Hz). Thefollowingabbreviationswereused: s(singlet),d(doublet),dd(doubletofdoublet),t(triplet),q(quadruplet),m(multiplet),brs(broad signal);signalsduetoOHandNHprotonswerelocatedbydeuteriumexchangewithD O.Melting 2 pointsweredeterminedbythecapillarymethodonaStuartScientificSMP3electrothermalapparatus (BibbyScientific,Stone,UK)andareuncorrected. Molecules2016,21,362 7of15 7-Methoxy-3-methyl-2H-chromen-2-one (1b): 7-Hydroxy-3-methyl-2H-chromen-2-one [15] (3.80 g, 20.0mmol)wasdissolvedinanhydrousDMF(70mL),andpotassiumcarbonate(2.76g,20.0mmol) wasadded. Afterstirringfor1h,methyliodide(1.49mL,24.0mmol)wasdroppedviasyringe. The mixturewasstirredovernightatroomtemperatureandthenpouredontocrushedice. Afterextraction withethylacetate(3ˆ250mL),theorganicphaseswerecollectedanddriedoverNa SO . Evaporation 2 4 ofthesolventyieldedthedesiredcoumarin1,whichwasusedwithoutfurtherpurification. Yield: 61%. Spectroscopicandanalyticdataagreewiththosereportedintheliterature[26]. 2-Hydroxy-4,5-dimethoxybenzaldehyde: 2,4,5-Trimethoxybenzaldehyde(3.92g,20.0mmol)wasdissolved indryCH Cl (20mL)beforeaddingdropwiseborontribromide(1.0NinCH Cl ,20mmol,20mL) 2 2 2 2 whilecoolingat0˝C.Thereactionmixturewasslowlywarmedatroomtemperatureandleftunder vigorousmagneticstirringfor20h. Water(250mL)wascarefullyaddedwithsimultaneouscooling withanexternalice-bath. Thesuspensionwasstirredfor1handthenpartitionedwithanadditional amount of CH Cl (80 mL). After extraction with CH Cl (3 ˆ 100 mL), the organic layers were 2 2 2 2 collectedanddriedoverNa SO . Themixturewasconcentratedtodrynessandpurifiedthroughflash 2 4 chromatography(gradienteluent: ethylacetateinn-hexane10%Ñ50%),yieldingayellowsolid. Yield: 78%. 1H-NMR(DMSO-d )δ: 3.71(3H,s,OCH ),3.80(3H,s,OCH ),6.53(1H,s,H-3),7.11(s,1H,H-6), 6 3 3 10.00(s,1H,CHO),10.69(s,1H,disappearingwithD O,OH). 2 6,7-Dimethoxy-3-methyl-2H-chromen-2-one(1c): Toasolutionof2-hydroxy-4,5-dimethoxybenzaldehyde (3.29 g, 18.0 mmol) in N,N-diethylaniline (60 mL), (carbethoxyethylidene) triphenylphosphorane (7.18g,19.8mmol)wasadded. Themixturewasstirredatroomtemperaturefor2handthenrefluxed for3h. Aftercoolingatroomtemperature, HCl(4.0Ninwater, 150mL)wasslowlyaddedwhile coolingat0˝C,andtheresultingsuspensionwasextractedwithethylacetate(3ˆ80mL).Theorganic layerswerecollected,driedoverNa SO andconcentratedtodrynessunderrotaryevaporation. The 2 4 resultingcrudeoilresiduewaspurifiedthroughflashchromatography(gradienteluent: ethylacetate in n-hexane 0%Ñ60%), thus furnishing the desired coumarin 1c as an off-white solid. Yield: 80%. 1H-NMR(DMSO-d )δ: 2.04(3H,s,CH ),3.77(3H,s,OCH ),3.82(3H,s,OCH ),7.03(1H,s,H-8),7.13 6 3 3 3 (s,1H,H-5),7.74(s,1H,H-4). 3-(Bromomethyl)-2H-chromen-2-one(2a): 3-Methyl-2H-chromen-2-one[27]1a(1.60g,10.0mmol)was suspendedinCCl (10mL),andthenN-bromosuccinimide(1.78g,10.0mmol)andbenzoylperoxide 4 (0.484g,1.00mmol)wereadded. Themixturewasrefluxedfor3.5h,andthesuccinimideresidue wasfilteredoff. Thedesiredbromidecrystallizedfromthehotsolution. Anadditionalamountof2a wasobtainedasfollows. Themotherliquorwasconcentratedtodryness, thusfurnishingacrude solidthatwastreatedwithmethanolandfiltered,yielding2aasayellowsolidwithsatisfactorypurity. Yield: 76%. 1H-NMR(DMSO-d )δ: 4.55(2H,s,CH Br),7.37–7.40(1H,m,H-6),7.43–7.45(1H,m,H-8), 6 2 7.63–7.66(1H,m,H-7),7.74(1H,dd,J =7.8Hz,J =1.5Hz,H-5),8.30(1H,s,H-4). 1 2 3-(Bromomethyl)-7-methoxy-2H-chromen-2-one (2b): To a stirred suspension of 7-methoxy-3-methyl- 2H-chromen-2-one(1b,1.82g,9.60mmol)inCCl (9.6mL),N-bromosuccinimide(2.05g,11.5mmol) 4 andbenzoylperoxide(0.465g,1.92mmol)wereadded. Afterheatingatrefluxfor2h,thehotreaction mixturewasfilteredtoremovethesuccinimideby-product,andbromo-derivative2bcrystallizedfrom CCl asayellowishsolid. Yield: 62%. 1H-NMR(CDCl )δ: 3.89(3H,s,OCH ),4.43(2H,s,CH Br), 4 3 3 2 6.85(1H,d,J=1.9Hz,H-8),6.88(1H,dd,J =8.3Hz,J =2.5Hz,H-6),7.40(1H,d,J=8.8Hz,H-5), 1 2 7.80(1H,s,H-4). 3-(Bromomethyl)-6,7-dimethoxy-2H-chromen-2-one (2c): 6,7-Dimethoxy-3-methyl-2H-chromen-2-one (1c,1.98g,9.00mmol)wasdissolvedinhotCCl (9mL).N-Bromosuccinimide(1.69g,9.50mmol)was 4 addedfollowedbybenzoylperoxide(0.218g,0.90mmol),whileheating. Thereactionmixturewas refluxedfor7h. Aftercoolingatroomtemperature,thesolventwasremovedunderreducedpressure. Theresultingcrudesolidwastreatedwithmethanol,filteredandwashedwithhotethanol,yielding Molecules2016,21,362 8of15 2casayellowsolid. Yield: 77%. 1H-NMR(CDCl )δ: 3.92(3H,s, OCH ), 3.96(3H,s, OCH ), 4.44 3 3 3 (2H,s,CH Br),6.85(1H,s,H-8),6.86(1H,s,H-5),7.78(1H,s,H-4). 2 Generalprocedureforthesynthesisofamines3a,3land3m: GlyNH ¨HCl(for3a,3l,0.464g, 2 4.20 mmol) or GlyNHCH ¨HCl (for 3m, 0.523 g, 4.20 mmol) were suspended in DMF (4 mL) with 3 triethylamine(0.585mL,4.20mmol)undervigorousmagneticstirringwhileheatingat70˝C.The suitable bromide 2a (0.143 g, 0.60 mmol) or 2c (0.179 g, 0.60 mmol), previously dissolved in DMF (2mL),wasaddedportion-wisewithin3.5h(0.250mLevery30min). Themixturewasstirredat70˝C foranadditional4h. Aftercoolingatroomtemperature,brine(50mL)wasadded,andthemixture wasextractedwithethylacetate(3ˆ30mL).Theorganiclayerswerecollected,washedwithbrine (3ˆ20mL),driedoverNa SO andconcentratedunderreducedpressure. Thecrudemixtureswere 2 4 furtherpurifiedasindicatedbelow. N2-[(2-oxo-2H-Chromen-3-yl)methyl]glycinamide (3a): Purification through flash chromatography (gradienteluent: methanolinchloroform0%Ñ5%). Yield: 62%. Mp: 149(dec.),159–160˝C.1H-NMR (DMSO-d )δ: 2.62(1H,s,NH;dis. withD O),3.11(2H,s,CH CO),3.54(2H,s,CH NH),7.07(1H,s, 6 2 2 2 NH;dis. withD O),7.33–7.36(2H,m,NH,H-6;1Hdis. withD O),7.40(1H,d,J=8.3Hz,H-8),7.57 2 2 (1H,t,J=7.8Hz,H-7),7.70(1H,d,J=7.3Hz,H-5),8.00(1H,s,H-4). Anal. C62.41,H5.26,N12.00%, calcd. forC H N O ,C62.06,H5.21,N12.06%. 12 12 2 3 N2-[(6,7-Dimethoxy-2-oxo-2H-chromen-3-yl)methyl]glycinamide (3l): Purification through flash chromatography(gradienteluent: methanolinchloroform0%Ñ15%)affordedasolidthatwasfurther crystallizedfromhotethanol95˝. Yield: 57%. Mp: 176–178˝C.1H-NMR(DMSO-d )δ: 3.09(2H,s, 6 CH CO),3.49(2H,s,CH NH),3.79(3H,s,OCH ),3.84(3H,s,OCH ),7.05(1H,s,H-8),7.06(1H,s, 2 2 3 3 NH; dis. with D O), 7.23 (1H, s, H-5), 7.34 (1H, s, NH; dis. with D O), 7.90 (1H, s, H-4); NH not 2 2 detected. Anal. C57.86,H5.27,N9.24%,calcd. forC H N O ,C57.53,H5.52,N9.58%. 14 16 2 5 N2-[(6,7-Dimethoxy-2-oxo-2H-chromen-3-yl)methyl]-N1-methylglycinamide (3m): Purification through flashchromatography(gradienteluent: methanolinchloroform0%Ñ10%)affordedasolidthatwas furthercrystallizedfromhotethanol. Yield: 65%. Mp: 147–149˝C.1H-NMR(DMSO-d )δ: 2.59(3H,d, 6 J=4.7Hz,CH NH),3.10(2H,s,CH CO),3.48(2H,s,CH NH),3.79(3H,s,OCH ),3.84(3H,s,OCH ), 3 2 2 3 3 7.06(1H,s,H-8),7.21(1H,s,H-5),7.82(1H,brq,J=4.7Hz,CH NH;dis. withD O),7.89(1H,s,H-4); 3 2 NHnotdetected. Anal. C59.07,H5.65,N8.93%,calcd. forC H N O ,C58.82,H5.92,N9.15%. 15 18 2 5 General procedure for the synthesis of amines 3b, 3d, 3e and 3g: Triethylamine (0.335 mL, 2.40mmol) and suitable substituted N-benzylmethylamine hydrochlorides [15] (0.72 mmol) were addedtoasolutionoftheappropriatebromo-intermediate2a–c(0.60mmol)inTHF(5mL).After stirring at room temperature for 24 h, the inorganic residue was filtered-off, and the solvent was evaporatedundervacuum. Flashchromatographypurificationaffordedthedesiredcompoundswith differentelutingconditionsillustratedasfollows. 3-{[(3-Fluorobenzyl)(methyl)amino]methyl}-2H-chromen-2-one hydrochloride (3b): Purification through flashchromatography(gradienteluent: ethylacetateinn-hexane0%Ñ70%)affordedanoilthatwas transformed into the corresponding hydrochloride by treatment with the commercially available solutionofHCl4.0Nindioxane. Yield: 60%. Mp: 236–237˝C.1H-NMR(DMSO-d )δ: 2.71(3H,s, 6 NCH ), 4.16–4.26 (2H, m, CH ), 4.36–4.39 (1H, m, Ar-CHa), 4.51–4.54 (1H, m, Ar-CHb), 7.30–7.33 3 2 (1H, m, H-6), 7.37–7.53 (5H, m, C H , H-8), 7.71 (1H, t, J = 7.3 Hz, H-7), 7.77 (1H, d, J = 7.3 Hz, 6 4 H-5),8.33(1H,s,H-4),10.02(1H,s,NH+;dis. withD O).Anal. C65.02,H4.96,N4.00%,calcd. for 2 C H FClNO ,C64.77,H5.13,N4.20%. 18 17 2 3-{[(3-Fluorobenzyl)(methyl)amino]methyl}-7-methoxy-2H-chromen-2-one(3d): Purificationthroughflash chromatography (gradient eluent: ethyl acetate in dichloromethane 0%Ñ20%). Yield: 74%. Oil compound. 1H-NMR(DMSO-d )δ: 2.17(3H,s,NCH ),3.38(2H,s,CH ),3.61(2H,s,Ar-CH ),3.84 6 3 2 2 (3H, s, OCH ), 6.94 (1H, dd, J = 8.8 Hz, J = 2.5 Hz, H-6), 6.98 (1H, d, J = 1.9 Hz, H-8), 7.03–7.07 3 1 2 Molecules2016,21,362 9of15 (1H, m, Ar-CHa), 7.19–7.20 (2H, m, Ar-CHb, Ar-CHc), 7.33–7.37 (1H, m, Ar-CHd), 7.68 (1H, d, J = 8.8 Hz, H-5), 7.98 (1H, s, H-4). Anal. C 70.03, H 5.59, N 4.39%, calcd. for C H FNO , C 19 18 3 69.71,H5.54,N4.28%. 3-{[[(7-Methoxy-2-oxo-2H-chromen-3-yl)methyl](methyl)amino]methyl}benzonitrile (3e): Purification throughflashchromatography(gradienteluent: ethylacetateindichloromethane0%Ñ20%)afforded anoilthatwastreatedwithdiethyletherandfurnishedthedesiredproductasayellowsolid. Yield: 88%. Mp: 123–125 ˝C. 1H-NMR (DMSO-d ) δ: 2.16 (3H, s, NCH ), 3.39 (2H, s, CH ), 3.65 (2H, s, 6 3 2 Ar-CH ), 3.84 (3H, s, OCH ), 6.94 (1H, dd, J = 8.8 Hz, J = 2.4 Hz, H-6), 6.98 (1H, d, J = 2.4 Hz, 2 3 1 2 H-8), 7.53 (1H, t, J = 7.3 Hz, H-5a), 7.67 (1H, d, J = 8.8 Hz, H-5), 7.70–7.72 (2H, m, H-4a, H-6a), 7.81(1H,s,H-2a),7.98(1H,s,H-4). Anal. C72.09,H5.38,N8.15%,calcd. forC H N O ,C71.84,H 20 18 2 3 5.43,N8.38%. 3-{[(3-Chlorobenzyl)(methyl)amino]methyl}-6,7-dimethoxy-2H-chromen-2-onehydrochloride(3g): Purification throughflashchromatography(gradienteluent: ethylacetateinn-hexane0%Ñ60%)affordedanoil thatwasdissolvedindioxaneandtransformedintothecorrespondinghydrochloridebytreatment with the commercially available solution of HCl 4.0 N in dioxane. Yield: 96%. Mp: 229–230 ˝C. 1H-NMR(DMSO-d )δ: 2.65(3H,brs,NCH ),3.81(3H,s,OCH ),3.87(3H,s,OCH ),4.14–4.18(2H,m, 6 3 3 3 CH ),4.29–4.35(1H,m,Ar-CHaN),4.47–4.51(1H,m,Ar-CHbN),7.15(1H,s,H-8),7.23(1H,s,H-2a), 2 7.45–7.58(3H,m,H-4a,H-5a,H-6a),7.73(1H,s,H-5),8.24(1H,s,H-4),10.35(1H,brs,NH+;dis. with D O).Anal. C58.09,H5.08,N3.27%,calcd. forC H Cl NO ,C58.55,H5.16,N3.41%. 2 20 21 2 4 Generalprocedureforthesynthesisofamines3c,3fand3h:Appropriatebromide2a–c(0.6mmol) wasdissolvedinTHF(3mL),andK CO (0.083g,0.6mmol)andN-methylpropargylamine(0.10mL, 2 3 1.2mmol)wereadded. Afterstirringfor6hatroomtemperature,theinorganicresiduewasfiltered off,andtheresultingmixturewaspurifiedasdescribedbelow. 3-{[Methyl(prop-2-yn-1-yl)amino]methyl}-2H-chromen-2-one(3c): Purifiedthroughcrystallizationfrom ethanol/water. Yield: 46%. Mp: 77–78˝C.1H-NMR(acetone-d )δ: 2.38(3H,s,NCH ),2.75(1H,t, 6 3 J = 2.3 Hz, C”CH), 3.45 (2H, d, J = 2.3 Hz, CH -C”CH), 3.50 (2H, s, CH -N(CH )-CH -C”CH), 2 2 3 2 7.33–7.36(2H,m,H-6,H-8),7.55–7.61(1H,m,H-7),7.70(1H,dd,J =8.2Hz,J =1.8Hz,H-5),7.92 1 2 (1H,s,H-4). Anal. C74.36,H5.55,N6.01%,calcd. forC H NO ,C73.99,H5.77,N6.16%. 14 13 2 7-Methoxy-3-{[methyl(prop-2-yn-1-yl)amino]methyl}-2H-chromen-2-one hydrochloride (3f): Purification through column chromatography (gradient eluent: ethyl acetate in n-hexane 40%Ñ70%) afforded anoilthatwastransformedintothecorrespondinghydrochlorideasfollowswiththecommercially availablesolutionofHCl4.0Nindioxane. Yield: 66%. Mp: 203–205˝C(dec.). 1H-NMR(DMSO-d ) 6 δ: 2.76(3H,s,NCH ),3.86(4H,brs,C”CH,OCH ),4.11–4.14(4H,m,CH -NH+-CH ),6.99(1H,dd, 3 3 2 2 J =8.8Hz,J =2.3Hz,H-6),7.07(1H,d,J=2.3Hz,H-8),7.68(1H,d,J=8.2Hz,H-5),8.22(1H,s,H-4), 1 2 10.50(1H,brs,NH+;dis. withD O).Anal. C61.49,H5.49,N4.49%,calcd. forC H ClNO ,C61.33, 2 15 16 3 H5.49,N4.77%. 6,7-Dimethoxy-3-{[methyl(prop-2-yn-1-yl)amino]methyl}-2H-chromen-2-onehydrochloride(3h): Purification throughflashchromatography(gradienteluent:ethylacetateinn-hexane20%Ñ70%)affordedayellow solidthatwastransformedintothecorrespondinghydrochloridewiththecommerciallyavailable solutionofHCl4.0Nindioxane. Yield: 92%. Mp: 223–225˝C.1H-NMR(DMSO-d )δ: 2.76(3H,s, 6 NCH ),3.81(3H,s,OCH ),3.87(3H,s,OCH ),4.11(4H,brs,CH -NH+-CH ),7.15(1H,s,H-8),7.25 3 3 3 2 2 (1H,s,H-5),8.19(1H,s,H-4),10.52(1H,s,NH+;dis. withD O);C”CHnotdetected. Anal. C59.58,H 2 5.41,N4.26%,calcd. forC H ClNO ,C59.35,H5.60,N4.33%. 16 18 4 General procedure for the synthesis of amines 3i, 3j and 3k: The appropriate amine (for 3i: commerciallyavailablemethylamine2.0NinTHF,1.5mL,3.0mmol;for3j: benzylamine,0.328mL, 3.0mmol;for3k: 4-(aminomethyl)benzonitrilehydrochloride[15],0.506g,3.0mmol)wasdilutedor suspendedinTHF(2.2mL),andK CO (0.138g,1.0mmol)wasadded. Themixturewaskeptatroom 2 3 Molecules2016,21,362 10of15 temperatureundermagneticstirring,andbromide2c(0.155g,0.50mmol),previouslydissolvedin THF(2.8mL),wasaddedinsmallaliquotsevery30min(7portions,0.40mLeach). Themixturewas stirredforanadditional30min. Theinorganicresiduewasfiltered,andtheresultingsolutionwas concentratedundervacuumandpurifiedthroughflashchromatographyasdetailedbelow. 6,7-Dimethoxy-3-[(methylamino)methyl]-2H-chromen-2-onehydrochloride(3i): Purificationthroughflash chromatography (gradient eluent: methanol in ethyl acetate 0%Ñ5%) afforded an oil that was transformedintothecorrespondinghydrochloridewiththecommerciallyavailablesolutionofHCl 1.25Ninethanol. Yield: 92%. Mp: 215–217˝C.1H-NMR(DMSO-d )δ: 2.59(3H,s,NCH ),3.81(3H,s, 6 3 OCH ),3.87(3H,s,OCH ),3.99(2H,s,NCH ),7.15(1H,s,H-8),7.25(1H,s,H-5),8.11(1H,s,H-4), 3 3 2 8.76(2H,brs,NH +;dis. withD O).Anal. C54.90,H5.36,N4.77%,calcd. forC H ClNO ,C54.65, 2 2 13 16 4 H5.64,N4.90%. 3-[(Benzylamino)methyl]-6,7-dimethoxy-2H-chromen-2-one(3j):Purificationthroughflashchromatography (gradient eluent: methanol in ethyl acetate 0%Ñ5%). Yield: 88%. Mp: 112–114 ˝C. 1H-NMR (DMSO-d ): δ2.62(1H,brs,NH),3.49(2H,s,NCH ),3.74(2H,s,Ar-CH ),3.79(3H,s,OCH ),3.83 6 2 2 3 (3H,s,OCH ),7.05(1H,s,H-8),7.27(1H,s,H-5),7.19–7.38(5H,m,Ph),7.92(1H,s,H-4). Anal. C70.23, 3 H5.72,N4.17%,calcd. forC H NO ,C70.14,H5.89,N4.31%. 19 19 4 4-({[(6,7-Dimethoxy-2-oxo-2H-chromen-3-yl)methyl]amino}methyl)benzonitrile(3k): Purificationthrough flash chromatography (gradient eluent: methanol in ethyl acetate 0%Ñ5%). Yield: 93%. Mp: 146–148˝C. 1H-NMR(DMSO-d )δ: 3.49(2H,s,NCH ),3.79(3H,s,OCH ),3.83–3.85(5H,m,Ar-CH , 6 2 3 2 OCH ),7.06(1H,s,H-8),7.25(1H,s,H-5),7.58(2H,d,J=8.3Hz,H-3a,H-5a),7.78(2H,d,J=8.3Hz, 3 H-2a,H-6a),7.90(1H,s,H-4);NHnotdetected. Anal. C68.88,H5.06,N7.94%,calcd. forC H N O , 20 18 2 4 C68.56,H5.18,N8.00%. 2,4-Dihydroxy-5-methoxybenzaldehyde (4) [18]: In a flame-dried round-bottom flask, dry AlCl 3 (8.00 g, 60.0 mmol) was suspended in dry dichloromethane (30 mL), and a solution of 2,4,5-trimethoxybenzaldehyde(1.96g,10.0mmol)indrydichloromethane(20mL)wasaddeddropwise whilecoolingat0˝Cwithanexternalicebath. Themixturewasthenrefluxedfor4handpoured ontocrushedice(100g). ConcentratedHCl(10mL)wascarefullyadded,andtheresultingsuspension was vigorously stirred for additional 15 min. After extraction with dichloromethane (3 ˆ 50 mL), the organic layers were collected and dried over Na SO . The solvent was removed under rotary 2 4 evaporation,andtheresultingcrudewascrystallizedfromhottoluene. Yield: 75%. Spectroscopicand analyticdataagreewiththosereportedintheliterature[18]. 7-Hydroxy-6-methoxy-3-methyl-2H-chromen-2-one(5): Aldehyde4(0.841g,5.00mmol)wasdissolved indryo-xylene(25mL)beforetheadditionof(carbethoxyethylidene)triphenylphosphorane(2.72g, 7.50 mmol). After heating at reflux for 12 h, the solvent was evaporated under vacuum. Column chromatography purification (eluent: ethyl acetate in n-hexane 40%, v/v) afforded the desired coumarin. Yield: 56%. 1H-NMR(acetone-d )δ: 2.09(3H,s,CH ),3.90(3H,s,OCH ),6.79(1H,s,H-8), 6 3 3 7.12(1H,s,H-5),7.65(1H,s,H-4);OHnotdetected. 6-Methoxy-3-methyl-2-oxo-2H-chromen-7-yl benzoate (6): Intermediate 5 (0.516 g, 2.50 mmol), was dissolvedindryTHF(20mL),andtriethylamine(0.522mL,3.75mmol)wasadded. Thesolutionwas cooledat0˝C,andbenzoylchloride(0.435mL,3.75mmol)wasaddeddropwise. After10min,the coolingbathwasremoved,andthemixturewasstirredatroomtemperaturefor5h. Theresulting suspensionwasdilutedwithdichloromethane(100mL)andwashedwithsaturatedaqueousNaHCO 3 (3ˆ40mL).TheorganicphasewasdriedoverNa SO andfiltered,andthesolventwasevaporated 2 4 undervacuum. Theresiduepurifiedthroughflashchromatography(gradienteluent: ethylacetatein n-hexane0%Ñ40%). Yield: 59%. 1H-NMR(CDCl )δ: 2.84(3H,s,CH ),3.87(3H,s,OCH ),7.33(1H,s, 3 3 3 H-8),7.61(2H,t,J=7.8Hz,H-3a,H-5a),7.73–7.77(2H,m,H-5,H-4a),7.96(1H,s,H-4),8.18(2H,d, J=7.3Hz,H-2a,H-6a).
Description: