ebook img

Discovery of an OB Runaway Star Inside SNR S147 PDF

2.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discovery of an OB Runaway Star Inside SNR S147

Mon.Not.R.Astron.Soc.000,1–10(2014) PrintedJanuary29,2015 (MNLATEXstylefilev2.2) Discovery of an OB Runaway Star Inside SNR S147 B. Dinçel1(cid:63), R. Neuhäuser1, S.K. Yerli2, A. Ankay3, N. Tetzlaff1, G. Torres4, M. Mugrauer1 1AstrophysikalischesInstitutundUniversitäts-SternwarteJena,07745Jena,Germany 2OrtaDog˘uTeknikÜniversitesi,DepartmentofPhysics,06531Ankara,Turkey 5 3Bog˘aziçiUniversity,DepartmentofPhysics,34342I˙stanbul,Turkey 1 4Harvard-SmithsonianCenterforAstrophysics,60GardenSt.,MailStop20,CambridgeMA02138,USA 0 2 n Accepted2015January17.Received2014December12;inoriginalform2014May25 a J 8 ABSTRACT 2 We present first results of a long term study: Searching for OB–type runaway stars inside supernovaremnants(SNRs).Weidentifiedspectraltypesandmeasuredradialvelocities(RV) ] by optical spectroscopic observations and we found an early type runaway star inside SNR R S147.HD37424isaB0.5Vtypestarwithapeculiarvelocityof74±8 kms−1.Tracingback S thepasttrajectoriesviaMonteCarlosimulations,wefoundthatHD37424waslocatedatthe . h samepositionasthecentralcompactobject,PSRJ0538+2817,30±4 kyrago.Thisposition p is only ∼4 arcmin away from the geometrical center of the SNR. So, we suggest that HD - 37424wasthepre–supernovabinarycompaniontotheprogenitorofthepulsarandtheSNR. o We found a distance of 1333+103 pc to the SNR. The zero age main sequence progenitor r −112 t mass should be greater than 13 M . The age is 30±4 kyr and the total visual absorption s (cid:12) towardsthecenteris1.28±0.06mag.Fordifferentprogenitormasses,wecalculatedthepre– a [ supernovabinaryparameters.TheRocheLoberadiisuggestthatitwasaninteractingbinary inthelatestagesoftheprogenitor. 1 v Keywords: OBRunaway Stars;HD 37424,Neutron Stars;pulsars; PSRJ0538+2817, Su- 0 pernovaRemnants;SNRS147 2 2 7 0 . 1 INTRODUCTION binarieslike4U1700-37(Ankayetal.2001)andVelaX–1(Kaper 1 etal.1997)aresuchexamples. 0 High space velocities of OB runaway stars are explained by two 5 Yet,thelowrateofX–raybinariesandthehighrateofisolated independentmechanisms:dynamicalejectionduetogravitational 1 neutronstarsbytakingintoconsiderationtheselectioneffects,the interactionsofmassivestarsinclustercores(Povedaetal.1967) : binarydisruptionislikelytooccurinmostcases(Guseinovetal. v and binary disruption as a result of a supernova explosion of the 2005)(hereafter,G05).Thekinematicsofthebinarydisruptiondue i initiallymoremassivecomponent(Blaauw1961).Bothscenarios X toanasymmetricsupernovaexplosioniswidelydiscussedinTauris areviable,butwhetheroneofthemechanismsisdominantisstill r &Takens(1998).However,asampleofobservationallyconfirmed uncertain.Accordingtothevirialtheorem,throughasymmetricsu- a OB runaway–NS couples is needed for a better understanding of pernovaexplosioninabinarysystem,ifmorethanhalfofthetotal theproblem. massofthesystemisreleased,thenthenewbornneutronstar(or The importance of searching for OB runaways inside SNRs blackhole)andthenon–degeneratecomponentarenomoregravi- wasfirstmentionedinvandenBergh(1980).However,thekine- tationallybound(Blaauw1961).However,theenergystoredinthe maticalstudyofknownOBstarsinsideSNRswasconcludedwith orbit, in most cases, is not sufficient to produce the neutron star kickvelocitiesthataretypicallyintherangeof300–500 kms−1 a lack of OB runaways due to the poor sample of SNRs and OB stars.Still,thereisnoknownOorB–typerunawaystarthatcanbe (Lyne & Lorimer 1994; Allakhverdiev et al. 1997; Hobbs et al. directlylinkedtoanSNRgivenintheliterature. 2005;Hansen&Phinney1997).Theasymmetryinsupernovaex- plosions is responsible for such high velocities (Wongwathanarat InG05,theoutcomeofexploringrunawaypairsfrombinary etal.2013).Therefore,therearenopulsarcompanionstomanyof supernovadisruptionisbroadlydiscussed.Firstly,identifyingthe theOBrunawaystars(Sayeretal.1996).Insomecases,thecom- explosion centers more precisely will be useful for determining pactobjectdoesnotreceiveasignificantkickand/orthemajority thevelocitiesofyoungNSsofwhichpropermotionmeasurements of thetotal mass isstored on thesecondary through conservative have high uncertainties. Thus, the kick that is gained by the NS masstransfer,hence,thecompactobjectremainsboundtothecom- duetotheasymmetryoftheSNcanbedeterminedmoreprecisely. panionstar(vandenHeuvel1993).TherunawayhighmassX–ray Secondly, the distance to the remnant can be measured more ac- curatelybystudyingtherunawaystar,asitcannotmovefaraway fromtheexplosioncenterintheobservationallifetimeoftheSNR. (cid:63) Correspondenceaddress:[email protected] Finally,possibleeffectsofaclosebinarysystemontheasymmetry (cid:13)c 2014RAS 2 Dinçeletal oftheSNecanalsobeexamined.Additionally,itwouldbeadirect Table1.DistanceestimatesforS147.(Rl)denotestheradiuslowerlimitof evidenceofthebinarysupernovascenario(BSS). theSNR. The observational efforts are concentrated on runaway–NS couplingandabundanceinvestigationsofrunawaystars.Someex- Distance(kpc) Method Reference amples of the runaway–NS pairs (components are separated) are 1.6±0.3 Σ−D Sofueetal.(1980) PSRB1929+10–ζ Oph(Hoogerwerfetal.2001;Bobylev2008; 0.8–1.37 Rl,Σ−D Kunduetal.(1980) Tetzlaffetal.2010),PSRJ0630-2834–HIP47155(Tetzlaffetal. 0.6 Rl Kirshner&Arnold(1979) 2013) and PSRJ0826+2637 – HIP13962 (Tetzlaff et al. 2014). 0.9 Σ−D Clark&Caswell(1976) Basedontheirmotionsinspace,thepulsarsandthecorresponding 0.8±0.1 AV Fesenetal.(1985) 1.06 Σ−D Guseinovetal.(2003) runawaystarsweretracedbackintimebyusing3–DMonteCarlo 0.88< HighVelGas Sallmen&Welsh(2004) simulations. They were found at the same position and the same 1.2 PulsarDM Krameretal.(2003) timeinsideayoungopencluster.ThePSRJ0630-2834–HIP47155 1.47+0.42 PulsarPlx Ngetal.(2007) pairisthoughttobeejectedfromveryoldSNRAntlia. 1.3+−0.02.227 PulsarPlx Chatterjeeetal.(2009) Thereareconsiderableuncertaintiesinthesecasesasthesu- −0.16 pernova events took place more than 105 yr ago. The separation betweentheobjectsisverylargeandtheSNRhasfadedawaylong angulardiameter(θ)oftherelatedSNR.Thisvalueissomewhatre- agoand/orthecomponentsareoutsideoftheSNR(theAntliacase). laxedtoθ/6consideringtheuncertaintiesinthegeometricalcenters Otherimportantobservationalevidenceistheenhancementofα– oftheSNRs.Thestarsinthisregionareexpectedtobeconsistent process elements in the hyper–velocity star HD271791. The star withtherespectiveSNRintermsofdistanceandreddening. isproposedtobeejectedfromamassiveclosebinarysystemdue Forthiscomparison,theadopteddistancesofSNRsgivenin to an SN that enriches its photosphere in elements which can be Guseinovetal.(2003,2004a,b),andA valuesfromNeckeletal. V synthesizedinlargeamountsduringtheevolutionoftheprogenitor (1980) were used. 48 SNRs within 5 kpc from the Sun were se- (Przybillaetal.2008). lectedforinvestigation. Themethodfollowedinourworkisadirectstudyofpossible Inthispaper,theresultoftherunawaysearchinSNRG180.0- runawaystarsinsideSNRsasdescribedinG05. 1.7 (S147) is given. The kinematic relation between the runaway Briefly,assumingthatthemassivebinarymassratioisgreater starHD37424andthepulsarPSRJ0538+2817isshown,thepossi- than1:4,OB–typestarcandidatesaredeterminedbyacarefulstudy blehostOBassociationisdiscussed,theSNRparametersarecon- of their BVJHK magnitudes obtained from the UCAC4 catalog strainedandthepre–supernovabinaryisconstructed. (Zachariasetal.2012).Theangularseparationofthesourcesfrom thegeometricalcentersoftheremnantsarewithinthelimitsofthe maximumangulardistancethatarunawaystarcanhaveinalife- 2 S147,PSRJ0538+2817ANDHD37424 timeofanSNR.Thedistancemoduliarecalculatedforallsources withinthisregion,andthesourceshavingextinctionsandradialdis- S147isashelltypeSNRlocatedintheGalacticanti–centerdirec- tancesconsistentwiththoseoftheSNRsareconsideredas"candi- tion.Itis180arcminindiameterwithageometricalcenter(GC) dates".Measuringtheradialvelocitiesandidentifyingthespectral atα = 05h39m00s,δ = +27◦50(cid:48)00(cid:48)(cid:48) (Green2009).Itwasfirst typesoftheseobjectsviaspectroscopyrevealtheirrunawaynature, mentionedasanSNRcandidateinMinkowski(1958).Thecompact theiryouthandtheexactspatialrelationswiththeSNRs,inother objectrelatedtotheSNRisradiopulsarPSRJ0538+2817(Ander- words,thegeneticconnections. sonetal.1996).Inopticalbands,theshellstructureiswelldefined AlthoughtherunawaystarsarisingfromBSSmayalsobelate and dominated by filamentary emission in Hα. The emission is typestars,itistimeconsumingtocheckthepossiblerunawayna- brighter in the north and south edges and mainly concentrated in tureofallthestarsinsideeachSNR.Also,thelatetypestarsare thesouthernparts.Despiteofitsoldage,itconservesthespherical toofainttoobserveatlargedistances.Astarhavingthesameage symmetryexceptfortheblowoutregionsineastandwest(Figure asasupernovaprogenitormustbeyoung.AsOBtypestarsevolve 1). The total absorption in the V band is A =0.7 ± 0.2 magni- V faster,theyautomaticallysatisfythiscondition.Furthermore,high tude(Fesenetal.1985).Radioobservationsrevealthatthespectral massstarsarerareobjects.AnOBrunawaystardiscoveredinside index is unusually varying. The shell structure observed at radio anSNRcanbeexplainedbytheBSS.Consideringtheveryshort wavelengthscoincideswiththatinopticalbandsandiswelldefined observable lifetimes of SNRs and relatively short later evolution (Fuerst&Reich1986).But,noX–rayemissionisobservedfrom stagesofstars,mostprobably,mainsequencestarsareexpectedas theremnant(Sauvageotetal.1990).Suggesteddistancesvaryfrom OBrunawaysconnectedtoSNRs. 0.6to1.9 kpcinvariouspublications(Table1).Fourofthemea- The space velocity of an OB runaway star is thought to be surementsarebasedonΣ−Drelationwhichisusefultoestimate largerthan30−40 kms−1(Feast&Shuttleworth1965;Sayeretal. thedistancebyusingthesurfacebrightnessoftheSNR.InSofue 1996).AmoreprecisevalueisproposedinTetzlaffetal.(2011); etal.(1980)andKunduetal.(1980),themodelofMilne(1979)is 28 kms−1in3–Dand20 kms−1in2–D.Tosummarize,amain– used,whileinClark&Caswell(1976)andGuseinovetal.(2003), sequence OB type star of which at least one component of the estimationsarebasedontheirownmodels.Theradiuslowerlimit velocity vector is greater than 20 kms−1 is searched in selected calculatedthroughSNRdynamicsbasedonthemodelofChevalier SNRs. (1974) sets another constraint on the SNR distance. The distance Thefirstcriterionofthecandidateselectionistherestrictionof derivedfromthepulsar’sparallaxordispersionmeasureislarger theangularposition.MostoftheOBrunawayshavepeculiarveloc- thanthedistancesuggestedforthebackgroundstarsofwhichspec- itieslowerthan80 kms−1(Gies&Bolton1986;Philpetal.1996; trashowhighvelocitygasrelatedtotheSNR. Tetzlaffetal.2011).AstheshockwavevelocityoftheSNRsarede- Theagewasestimatedasmorethan100 kyrfromtheSedov celeratedfromroughly10000 kms−1toseveralhundred kms−1, solutionbyusingashockvelocity∼80–100 kms−1 (Sofueetal. itisexpectedthattherunawaystarcannotexceedonetenthofthe 1980;Kunduetal.1980).ThisvelocitywasderivedfromtheRV (cid:13)c 2014RAS,MNRAS000,1–10 RunawayinS147 3 Figure1. The4.8◦×4.1◦ HαimageofSNRS147takenattheUniversityObservatoryJena.Thegreencrossrepresentsthepulsar,thecyancrossshows theGCoftheSNRandtheyellowcircleisHD37424.Theyellowvectorsshowthepropermotionoftheobjects.Theredboxisthezoom–inareashownin therightpanel.Thewhitearrowsarethetracingbackconesofthepropermotionfor29300yr.Theanglebetweenthepmvectorsis139◦−148◦In2–D calculations,bothobjectscometowardseachotherascloseas0.126 pcwhichmeansthattheyhaveacommonorigin;binarysupernovadisruption. ofthefilamentaryknotsinLozinskaya(1976);Kirshner&Arnold Table2.BVJHK(inmag)andpm(in masyr−1)valuesofHD37424. (1979).Howeverthepulsar–SNRrelationindicatesanageof30± 4 kyr(from the travel time from the GC to the present position) Parameter Value (Krameretal.2003;Ngetal.2007).Foradistanceof1.3 kpc,and B 9.062±0.017 V 8.989±0.019 anangulardiameterof200arcmin,theradius(R)oftheSNRis38 J 8.666±0.017 pc.Then,assuminganageof30 kyr,theremnantisinitsSedov H 8.696±0.026 Phasehavingablastwavevelocityof500 kms−1.Theestimated K 8.699±0.019 explosionenergyisbetween1−3×1051ergandthecorresponding µ∗ 10.8±0.8 inter–cloud gas density is 0.03−0.1 cm−3 (Katsuta et al. 2012). µαδ -10.2±0.6 The SNRisexpanding in alow densitymedium, probablyin the cavitygeneratedbytheprogenitor. Thecentralsource,PSRJ0538+2817,isanextensivelystud- ied radio and X–ray pulsar located at α = 05h38m25.1s, δ = etal.2003).ThehydrogenatmospheremodelwithB= 1×1012 +28◦17(cid:48)09.2(cid:48)(cid:48),∼28arcminawayfromtheGCtowardsnorth.The GgivesT=2.12×106KandR(cid:39)10 km(Zavlin&Pavlov2004). 143.16msperiodand3.67×10−15ss−1periodderivative(Ander- AfaintpulsarwindnebulaisobservedinX–raysbutnotinradio son et al. 1996) imply a characteristic age of ∼620 kyr which is (Gaensleretal.2000).Itisnotknownwhethertheobservedelon- ∼20 times larger than its kinematic age of 30 kyr. This discrep- gatedstructureisthetorusorthejetsofthePWN.Butassuming ancyisexplainedbyeitheralonginitialspinperiodofP = 139 thatitisduetothetorus,itprovidesvaluableinformationonthe 0 ms(Krameretal.2003)orstrongmagneticfielddecay(Guseinov spin–kickalignment. et al. 2004c). The parallax distance was measured as 1.47+0.42 HD37424 is a sound OB runaway star at 10.3 arcmin −0.27 kpc (Ng et al. 2007) and 1.3+0.22 kpc (Chatterjee et al. 2009) away from the GC to the west at α = 05h39m44.4s, δ = −0.16 and the dispersion measure (DM) distance is 1.2 kpc (Kramer +27◦46(cid:48)51.2(cid:48)(cid:48).Photometricandkinematicinformationonthestar etal.2003)byusingtheNE2001modelofCordes&Lazio(2002) isgiveninTable2.Whilepropermotionvalueswereretrievedfrom whichareconsistentwitheachother.Themostpreciselymeasured theUCAC4catalog(Zachariasetal.2012),thephotometricmag- propermotionisµ∗ =−23.57+0.10 masyr−1,µ =52.87+0.09 nitudes are obtained from the ASCC-2.5V3 catalog (Kharchenko α −0.10 δ −0.10 masyr−1correspondingtoatransversevelocityof357+59 kms−1 2001). Its spectral type was previously identified as B0.5/1 IV/V −43 at1.3+0.22 kpc(Chatterjeeetal.2009).Althoughitpresentsno (Clausen & Jensen 1979). As there was no public data nor a vi- −0.16 clear γ–ray emission (Katsuta et al. 2012), the pulsar is observ- sualized spectrum, we established the spectral type again by tak- able in soft X–rays due to thermal emission. PSRJ0538+2817 is ingaspectrum.Thestarhasaveryhighpropermotioncompared famousforbeingoneofthefewthermalpulsars:Basedonablack- tootherearlytypeandpossiblydistantstars.Thereisnoreported body model, the surface temperature and the emitting radius are variabilityorbinarityintheliterature.Hence,HD37424isagood givenasT= 2.12×106 KandR= 1.68±0.05 km(McGowan OBrunawaystarcandidate. (cid:13)c 2014RAS,MNRAS000,1–10 4 Dinçeletal 3 OBSERVATIONS HD37424 was observed at the TÜB˙ITAK National Observa- tory (TUG) with the TUG Faint Object Spectrograph and Cam- era (TFOSC) mounted on the 150cm Russian Turkish Telescope (RTT–150). The observations were carried out on 2013 August 9 and10.Twospectrawereobtainedwitha600sexposuretimefor each. Grism 14 was used with a 67 micron slit. The wavelength rangeinthisconfigurationis3270–6120Åandtheresolvingpower (R)is∼1337.5Helampspectratakeninthesamenightwiththe object were used for wavelength calibration, and 5 halogen lamp spectrawereobtainedinthebeginningandattheendofthenight forflat–fielding.Also,2moretargetshadbeenobservedinthesame wayon2012September13and14forthesearchfortherunaway star.Withthesamepurpose,12objectswereobservedattheCalar Alto Observatory on 2013 January 29 with Calar Alto Faint Ob- jectSpectrograph(CAFOS)onthe2.2metertelescope.Thecov- ered wavelength range of the grism B–200 is 3200–7000 Å and R∼550. 3 HgCdAr and 3 halogen spectra were taken in the be- Figure2.TFOSCspectrumofHD37424comparedtomainsequenceB ginningandintheendofthenightforwavelengthcalibrationand typestars.Distinctivefeaturesaremarked.Fromlefttoright;SiIV λ4089, flat–fielding.ThehighresolutionobservationsofHD37424were HeII λ4200, SiIII λ4552, OII λ4640, CIII+OII λ4650 blend, HeII performedattheFredL.WhippleObservatoryon2013September λ4686,HeI λ4713 16and21.TheTillinghastReflectorEchelleSpectrograph(TRES) mounted on the 1.5 meter telescope was used. Two spectra were spectra retrieved from Walborn & Fitzpatrick (1990). To main- takenatR∼44000inabroadwavelengthrange;3800–9100Åfor tain equally resolved spectra, the standard spectra were boxcar 300s exposure time. HD36665 which is supposed to be a back- smoothedby13.Figure2showstheTFOSCspectrumofHD37424 groundobjecttotheSNRwasobservedon2014February11with comparing with main sequence B type stars from various sub- theFibreLinkedEchelleAstronomicalSpectrograph(FLECHAS) classes. HD37424 shows HeII λ4686 absorption indicating that (Mugraueretal.2014)attheUniversityObservatoryJena.Thecov- thespectraltypeisearlierthanB1.Thisfeatureisnotseeninstars eredwavelengthrangeis3900–8100ÅandR∼9200.Threespec- withaspectraltypelaterthanB0.7.Ontheotherhand,HeI lines tra with 600 s exposure time were obtained. Three tungsten and (i.e.HeI λ4713)arenotasweakasinOtypestarscomparedto 3 Th-Ar lamp spectra were taken immediately before this set for HeII lines;λ4200,λ4686.TheSiIV λ4116lineistotallyblended flat–fieldingandwavelengthcalibration. and unmeasurable. SiIII λ4552 is in low strength compared to TheobservationsofSNRS147wereperformedattheUniver- SiIV λ4089likeintheB0Vtypespectrum.Thisratiodecreases sityObservatoryJenawiththeSchmidt-Teleskop-Kamera(STK), towardshighertemperatures,butHeI λ4541isnotstrongerthan operatedintheSchmidt-focusofthe90cmtelescopeoftheobser- SiIII λ4552asseeninB0VandO9.5Vspectra.Giventheequal vatory(seeMugrauer&Berthold(2010)).Theobservationswere strengthsofOII λ4640,HeII λ4686,HeI λ4713andmorein- carried out with the narrow–band Hα filter of the STK, which tenseCIII+OII λ4650blends,HD37424matchesbestwithB0.2V. spansafull–width–half–maximumof5nm.Intotal,22fieldson ConsideringtheslightlystrongerHeI λ4713,B0.5wouldbethe theskywereobservedduring5nights,eachwithafieldofviewof best approach to the temperature class of the star. SiIV λ4089 52.8(cid:48)×52.8(cid:48).Ateachpositiontwo600sintegrationsweretaken strengthincreasesagainstHeI λ4026–4144astheluminosityclass withtheSTK,i.e.about7.3hoursofintegrationtimeintotal.The goes higher. However, neutral helium lines are strong enough to individualrawimagesperfieldweredark-andflatfield–corrected judgethatHD37424isamainsequencestar;B0.5V.Thespectral andfinallyaveraged.Pointsourcesdetectedintheoverlapregions typeisbetweenB0.2V–B0.7V,butitisassumedasB0.5±0.5Vin ofthefullyprocessedimageswerethenusedtocreatethemosaic thedistanceandextinctioncalculationstoavoidunderestimationof imageofSNRS147,showninFigure1,whichcoversatotalfield theerrors. ofviewof4.8◦×4.1◦. ThesourcesobservedbyCAFOSareforegroundstarswitha FLECHAS, TFOSC and CAFOS data were reduced with maximumdistanceof671+96 pc.Theirspectralpropertieswere −56 IRAF. All raw frames from TFOSC and CAFOS were over–scan identifiedbythesameprocedureasdoneforHD37424.However, strippedandnofurthersubtractionwasdoneaslongastheover– duetothelowerresolutionCAFOSspectrahavehigheruncertainty scanneddarkframesyieldsnullcount.Yet,FLECHASimageswere (Table3).WeusedFLECHAStoidentifythespectraltypesofthe subtractedbythedarkframestakeninthepreviousnight.Theex- backgroundstarHD36665.ThisisaB1±0.5Vtypestar(Figure3). posuretimeofadarkframeisthesameasthatofthecorresponding scienceorcalibrationframe.Hence,theilluminationeffectwasre- TRESdatawereusedforradialvelocity(RV)measurements moved. of HD37424. Due to the low signal to noise, 10 absorption fea- Then, the flat images were combined while rejecting the turescouldbeused(Table4).Doubletsortripletlinesareavoided frames having minimum and maximum counts. Next, the object as these features increased the dispersion significantly. The lines spectrawereextractedbyassigninganappropriatebackgroundre- were fitted by Gaussian functions and the best shifts were deter- giontoeach.Thearcspectrawereextractedastracedbythecorre- mined.TwomoreGaussianfitswithdifferentcenterswereapplied spondingapertureoftheobjectspectra.Afterwavelengthcalibra- foreachline;onefitstheouteredgeofthenoiseoftheblueside tionwasperformed,allspectrawerenormalized. whilefittingtheinneredgeofthered.Theotherfitstheouteredge The final spectra were compared with MK standard star oftheredandtheinneredgeoftheblue.Bydoingthis,underesti- (cid:13)c 2014RAS,MNRAS000,1–10 RunawayinS147 5 Table4.RadialvelocitymeasurementsofHD37424.Thelaboratorywave- lengthofthefeatures,theGaussianwidth(σ)ofthefit,thewavelengthshift obtainedbythebestfittingGaussian,upperandlowerlimitsoftheshift fromdifferentGaussianfitsandthefinalerrorarepresented.Thefeatures aregiveninÅwhileallothercolumnsarein kms−1 ObservationsonSeptember16th,2013 Feature σ BF UL LL E 3889.051 164 -10.1 19.3 -29.2 29.4 3970.074 137 -0.5 21.4 -22.3 21.9 4101.737 144 -9.4 12.2 -32.3 22.9 4143.759 98 +4.0 17.1 -10.9 14.9 4340.468 142 -10.6 6.2 -28.8 18.2 4387.928 81 -13.1 -7.1 -24.1 11 4861.332 139 -13.8 0.9 -18.9 14.7 4921.929 89 -16.5 -1.6 -32.4 15.9 Figure3. TheFLECHASspectrumofHD36665(black)incomparison 6562.817 115 -14.7 0.3 -21.5 15 withaB1Vtemplate. 6678.149 82 -7.5 0.3 -14.5 7.8 ObservationsonSeptember21st,2013 Table3.Observedstarsintheregion.Names,angularseparationstothe Feature σ BF UL LL E SNRGC(inarcmin),spectraltypes,instrumentsusedanddistanceswith 3889.051 164 -12.6 6.2 -28.2 18.8 upper and lower errors (in pc) are given. The error in temperature sub- 3970.074 137 -1.4 18.0 -19.8 19.4 classes is ±1 for those with integer value and ±0.5 for those with half 4101.737 144 -5.1 14.9 -21.2 20 integervalue.TheresolutionofCAFOSisnotenoughtodistinguishthe 4143.759 98 -1.9 7.2 -8.7 9.1 luminosityclassesIVandV.Yet,thestarsareassumedtobeinluminosity 4340.468 142 -11.5 11.9 -36.6 25.1 classV. 4387.928 81 -8.8 -4.1 -19.3 10.5 4861.332 139 -11.7 -3.0 -19.5 8.7 Name Angular Spec. Inst.1 Distance Distance 4921.929 89 -17.2 -4.9 -31.6 14.4 Separation Type (Error) 6562.817 115 -14.4 1.4 -29.7 15.8 TYC1869-01281-1 19.4 A2V C 574 +73/-41 6678.149 82 -6.7 3.3 -15.1 10 TYC1869-01317-1 5.5 B9.5V T 1013 +183/-174 BF:Bestfit,UL:UpperLimit,LL:LowerLimit,E:Error TYC1869-01334-1 25.5 F2V C 289 +38/-34 TYC1869-01376-1 27.9 A7V C 428 +18/-32 TYC1869-01505-1 23.5 F1V C 380 +50/-44 TYC1869-01610-1 17.6 F7V C 245 +18/-16 Table5.MeasuredvelocitiesforinterstellarCaII–KandHandNaI–D1 TYC1869-01632-1 27.2 F8V C 316 +37/-26 andD2lines.TheselineshavealowGaussianwidthunliketheintrinsic TYC1869-01642-1 5.61 B9.5V T 952 +172/-163 featuresofthestar.Theaveragevelocityis12.1 kms−1 withastandard TYC1869-01679-1 25.6 G2V C 170 +11/-9 deviation0.5 kms−1ineachobservation.Thedatainthefirstcolumnare TYC1869-01749-1 20.1 F8V C 166 +19/-14 in(Å)whiletheothersarein kms−1. TYC1873-00145-1 25.0 A3V C 603 +46/-50 TYC1873-00307-1 29.2 F8V C 326 +40/-29 Feature σ Velocity Velocity TYC1873-00347-1 19.8 A0V C 671 +96/-56 (Day1) (Day2) UCAC4-589-020390 22.1 F4V C 381 +14/-16 3933.664 7.5 12.3 11.8 1Instruments:C:CAFOS,T:TFOSC 3968.47 5.9 12.8 12.7 5889.953 9.0 11.6 11.6 5895.923 8.3 11.9 12.0 matingtheerrorsisavoided.Asthefeaturesarewideandthedata Day1:Sep.16th,2013;Day2:Sep21st,2013. arenoisy,thecentersofthesesecondaryfitsarefarawayfromthe best fits, 16 kms−1 on average. The difference between the best fitandtheupperlimit(towardsred)fitisdistinctfromthebestfit radioandγ–rayimages(Kunduetal.1980;Katsutaetal.2012).As andthelowerlimit(towardsblue)difference.Toavoidunderesti- thestarcanhardlybeaforegroundsource,wesuggestthat,inthis matingtheerror,thegreaterdifferenceisassignedasthefinalerror. direction,theshockedejectahasnotreachedthedenseinterstellar Theaverageheliocentricvelocitiesofthefirstandthesecondspec- gasyet.Thereadermustnotethat,thebackgroundstarsdisplaying tra are -9.2 and -9.1 kms−1 with line to line scattering standard high velocity CaII lines in Sallmen & Welsh (2004) are located deviationsbeing6.5and5.5 kms−1respectively. behindbrightfilamentknots.Thehighvelocitygasisfoundwhere Aslongasthestarisinsidethesupernovaremnant,highve- thefilamentsareconcentrated(Lozinskaya1976). locity gas accelerated by the SNR is expected to reveal itself as UsingtheabsolutevisualmagnitudefromAlleretal.(1982), blue–shiftedcomponentstoCaII–KandHand/orNaI–D1andD2 for a spectral type B0.5V±0.5, the distance modulus yields absorption features. The spectra show no clear high velocity fea- 1868+410 pc for HD37424. Using the luminosity of the same −403 tures(Figure4).Theaverageheliocentricvelocityoftheinterstel- spectral type from Hohle et al. (2010), we find the distance as largasis12.1±0.5 kms−1(Table5).Thisistypicalfortheneigh- 1318±119 pc which is well consistent with the distance of the boringstars(Silk&Wallerstein1973).Thestarhasnopositional pulsar.Thetotalvisualabsorptionwastakenintoaccountinboth correspondencewithbrightfilaments,butwithfainter Hαemitting calculations. regions.Itislocatedatthevicinityoftheeasterncavityseeninthe Astheabsolutemagnitudesforearlytypestarscanrangefrom (cid:13)c 2014RAS,MNRAS000,1–10 6 Dinçeletal Figure4.ThestronginterstellarlinesofHD37424.Left:CaII–KlinefromTRESspectrum.Despiteaweakblendedfeatureat-13 kms−1,thereisnoclear highvelocitycomponent.Middle:CaII–Hline(H(cid:15)asabackground)fromthesamespectrum.Againthereisnoclearhighvelocitygascomponent.Right: InterstellarNaI–D1andD2lines.ThefeaturewithhighFWHMistheHeI λ5875triplet.ThosearoundSodiumdoubletaretellurics. star to star in the same temperature, interstellar CaII lines are aration dmin and the past time τ at which it occurred. The dis- also used in distance determination. By using the following rela- tributionofseparationsd issupposedtoobeythedistribution min tionfromMegieretal.(2009), ofabsolutedifferencesoftwo3DGaussians(seee.g.Hoogerwerf (cid:32) (cid:33) et al. 2001, equations A3 and A4; Tetzlaff et al. 2012, equations 2.60 1 and 2), if it is assumed that the stellar 3D positions are Gaus- D=77+ 2.78+ EW(H) (1) EW(K) −0.932 siandistributed.Sincetheactual(observed)caseisdifferentfrom EW(H) this simple model (no 3D Gaussian distributed positions, due to the distance to HD37424 is found to be 1288+304 pc which is e.g.theGaussiandistributedparallaxthatgoesintothepositionre- −193 almostinthesamerangeasthepulsar.Theequivalentwidthsare ciprocally,uniformradialvelocitydistributionoftheNS,etc.),we 243±7and160±15mÅforCaII–KandCaII–Hlinesrespectively. adaptthetheoreticalformulae(weuseequations1and2inTetzlaff The extinction towards the star was also derived from 4430 etal.(2012)withthesymbolsµandσfortheexpectationvalueand and4502ÅDIB’s.Themeasuredequivalentwidthshavehigher- standarddeviation,respectively)onlytothefirstpartofthed min ror due to the blending. Using the EW’s, the E(B-V) was calcu- distribution(uptothepeakplusafewmorebins,seeTetzlaffetal. lated based on the relation mentioned in Herbig (1975). It yields 2012).Thederivedparameterµthengivesthepositionaldifference 0.42±0.08 mag; points to somewhat larger color excess but does betweenthetwoobjects.1 notexclude0.35±0.04magderivedfromphotometry. Wefindthatbothstarswereatthesamepositioninthepast i.e.µ=0at(l,b)=(84.82±0.01,27.84±0.01)degat30±4 kpc(Figure5).Thispredictedpositionofthesupernovais4.2+0.8 −0.6 arcmin offset from the nominal geometric center. The predicted 4 KINEMATICS distance of the supernova (as it is seen from the Earth today) is HD37424 and PSRJ0538+2817 have proper motions receding 1333+103 pc. −112 fromeachotheranddepartingfromthesamelocationonthesky (Figure 1). The proper motion of both objects are corrected for Galacticrotationandsolarmotion.TheGalactocentricdistanceto 5 ASSOCIATIONS the Sun is taken as 8.5 kpc and the solar rotational velocity as 220 kms−1. The local standard of rest was taken from Tetzlaff ThereisnoknownOBassociationwithin4.5◦ (∼100 pcat1300 et al. (2011) as (U ,V ,W ) = (10.4±0.4, 11.6±0.2, 6.1±0.2) pc)fromSNRS147.Consideringtheangularseparationsandradial (cid:12) (cid:12) (cid:12) kms−1.TheresultantvaluesforHD37424areµ∗ = 10.0±0.8 distances,theprogenitorstarcannotbelinkedtoanyoftheyoung α masyr−1,µ = −5.9±0.6 masyr−1 andforthepulsar,µ∗ = openclusteraround.Hence,itisconsideredtobearunawaystar δ α −24.4±0.1 masyr−1,µ =57.2±0.1 masyr−1.Togetherwith ejectede.g.fromtheclusterNGC1960,whichis217 pcawayfrom δ the−20.0±6.5 kms−1 peculiarradialvelocity,HD37424hasa theSNR,severalmillionsyearsago(Ngetal.2007).However,bi- spacevelocityof74±8 kms−1at1.3 kpc.HD37424isarunaway narityamongclusterejectedrunawaystarsarerare(Gies&Bolton starofwhichvelocityishigherthantypicalrunawayvelocities40– 1986).So,astheprogenitorwasthepreviousbinarycompanionto 50 kms−1.The2–Dspacevelocityofthepulsaratthesamedis- HD37424,itmaybeunlikelythattheywereejectedfromaclus- tanceis382.2±0.8 kms−1. ter.Therefore,theneighboringstarsareinvestigatedtosearchfor We constructed the past 3D trajectories of PSRJ0538+2817 anyassociation.AlloftheOBtypestarswithin4.5◦(100pcat1.3 andtherunawaystarHD37424toevaluatewhetherthesetwoob- jects could have been at the same place at the same time in the past.Sinceweappliedthesamemethodalreadyinprecedingpa- 1 Theuncertaintiesontheseparationaredominatedbythekinematicun- certainties of the NS that are typically of the order of a few hundred pers (Tetzlaff et al. 2010, 2011, 2012), we refer to these publi- kms−1(becauseoftheassumedradialvelocitydistribution).Asaconse- cations for details. We construct three million past trajectories of PSRJ0538+2817andHD37424throughoutMonteCarlosimula- quence,thedistributionofseparationsdmin showsalargetailforlarger separations. However, the first part of the dmin distribution (slope and tionsbyvaryingtheobservables(parallax,propermotion,radialve- peak)canstillbeexplainedwellwiththetheoreticalcurve(hereequation2 locity)withintheirerrorintervals.FortheradialvelocityoftheNS, inTetzlaffetal.2012)sincethekinematicdispersionforonlythoserunsare weassumeauniformdistributionintherangeof-1500to+1500 muchsmaller,afewtensof kms−1fortheNS,i.e.afewtensofpcafter1 kms−1.Fromallpairsoftrajectories,weevaluatethesmallestsep- Myr. (cid:13)c 2014RAS,MNRAS000,1–10 RunawayinS147 7 Table7.Visualabsolutemagnitudesat1.3±0.1 kpcforthestarsofthepos- sibleOBassociationofwhichHD37424isamember.Errorsaremainlydue tothedistancerange1.2−1.4 kpc.TheexpectedMV forthecorresponding spectraltypesanditsdispersionfromWegner(2006)(W06)aregiven.All valuesareinmag. MV error MV Disp. Name (@1.3±0.1 kpc) (W06) (W06) TYC1869-01317-1 -0.14 +0.26/-0.27 +0.29 1.40 TYC1869-01642-1 -0.28 +0.26/-0.27 +0.29 1.40 HD37424 -2.86 +0.22/-0.23 -3.34 2.40 HD36993 -3.67 +0.22/-0.23 -4.02 2.30 HD37318 -4.46 +0.31/-0.32 -3.34 2.40 BD+27797 -2.97 +0.30/-0.31 -3.34 2.40 HD37696 -3.72 +0.22/-0.23 -3.34 2.40 BD+27850 -2.52 +0.20/-0.21 -2.95 1.16 HD245770 -3.49 +0.29/-0.30 -3.34 2.40 Figure5.Distributionsofminimumseparationsdminandcorresponding HD36441 -3.46 +0.29/-0.30 -2.95 1.16 flighttimesτforencountersbetweenPSRJ0538+2817andHD37424.The BD+26943 -2.36 +0.30/-0.31 -2.64 1.40 solidcurvesdrawninthedminhistogram(bottompanel)representthethe- HD38010 -5.04 +0.26/-0.27 -4.10 2.20 oreticallyexpecteddistributionwithµ = 0andσ = 0.35 pc,adaptedto BD+30938 -2.95 +0.20/-0.21 -2.32 1.50 thefirstpartofthehistogram. Sh2-2421 -2.74 +0.29/-0.30 -3.34 2.40 HD37366 -4.15 +0.22/-0.23 -4.49 2.27 BD+30987 -1.86 +0.24/-0.25 -1.49 2.00 kpcdistance)ofthegeometricalcenter(GC)oftheSNRwerese- BD+30976 -1.18 +0.33/-0.34 -0.63 1.40 lectedfromTheCatalogueofStellarSpectralClassifications(Skiff BD+25989 -2.41 +0.29/-0.30 -2.95 1.16 2013).Thespectraltypesareknownthroughspectroscopicobser- BD+27909 -2.96 +0.26/-0.27 -2.63 2.20 BD+311065 -1.76 +0.20/-0.21 -2.32 1.50 vations.Therearesomediscrepanciesinspectraltypesreportedby BD+311050 -2.30 +0.19/-0.20 -2.32 1.50 different papers. So, always the latest reference was chosen. To- HD38909 -2.98 +0.19/-0.20 -2.32 1.50 getherwith14starsfromourobservationsatTUGandCalarAlto, BD+311021 -1.15 +0.28/-0.29 -0.63 1.40 99 stars are used. The photometric data were obtained from the HD40297 -4.37 +0.29/-0.30 -3.75 1.30 catalogASCC-2.5V3(Kharchenko2001)exceptforUCAC4–589– 020390ofwhichphotometricdatawasretrievedfromtheUCAC4 catalog. magnitudesfromAlleretal.(1982).Errorsindistancesaredueto Foreachstarhavinganintegerspectralsubclass,distanceand theuncertaintyinspectraltypeandtheerrorinA werealsotaken V extinction are calculated in an interval between one spectral sub- intoaccount. classaboveandbelow,e.g.B0V–B2VforaB1Vtypestar.Forthose The spectro–photometric distance alone is not enough due havinghalfintegersubclass,halfspectralsubclassaboveandbelow to the high dispersion in the brightness of OB–type stars (Weg- areusede.g.B0V–B1VforaB0.5Vtypestar.Thetotalvisualex- ner 2006) (Thereafter W06). Assuming the stars beyond 1 kpc tinction,A ,wasdeterminedbyusingBVJHKcolorsandintrinsic are within 100 pc from the SNR GC, the absolute visual magni- V colordifferencesofcorrespondingspectraltypes.Usingthefollow- tudeswerecalculated.AlthoughthedispersionmentionedinW06 ingrelation,A valueswerederivedforeachcolordifference;B-J, is high, 24 of the stars fit well in the comparison with the W06 V B-H,B-K,V-J,V-H,V-K. values.Hence,wesuggestthatthesestarsaremembersofanOB association.(Table6,Table7,19ofthemhavesimilarpmvalues. (λ −λ )−(λ −λ ) AV = A1 /A2 −A1 /A2 0, (2) The average pm in right ascension is -1.39 masyr−1 and -4.17 λ1 V λ2 V masyr−1 in declination with 0.99 masyr−1 and 1.45 masyr−1 TheintrinsiccolorsareobtainedfromKenyon&Hartmann(1995) standarddeviationrespectively(Table8).At1.3 kpc,5ofthemare andWegner(1994),whileAλ/AV ratiosarefromRieke&Lebof- runawaystarsexceeding20 kms−12–Dpeculiarvelocity.Thisis sky(1985).Colordifferencesofshortintervals,i.e.H-Khavehigh consistentwiththegeneralratiooftherunawaystarstothenormal errorsastheyaremultipliedbyhighercoefficients.Thecolorex- starswhichis10–30percent(Gies1987). cessE(B-V)ismentionedseparately.(Table6)A valuesobtained V fromsixcolordifferenceswereaveragedandtheirstandarddevia- tionwerecalculated.Thiswasappliedforallthreepossiblespec- 6 DISCUSSION tral types of the source. As long as the error due to the spectral typeuncertaintyislargerthanthestandarddeviationofthecolor TherunawaynatureofHD37424isclear.Thechanceprojectionof differences,itwasassignedtobethefinalerror.Whentheerroris suchamassiverunawaystarmovingawayfromtheGCofanSNR asymmetric due to the intrinsic colors of different spectral types, intheGalacticanti–centerdirectionmustbeverylow.Inaddition, thelargeronewasaccepted.Insomecases,theuncertaintyisdom- combiningwiththecentralcompactobjectaftertracingbackboth inatedbytheerrorincolordifferences.Then,thesewerepreferred objectsatthesametimeshowsthatHD37424isclearlythepre– tobethefinalerrorforsuchsources.E(B-V)versusA fityieldsa supernova binary companion of the progenitor of SNR S147 and V totaltoselectiveabsorptionratiois3.24±0.06.Inindividualcases, PSRJ0538+2817.BSSisthefavoredexplanationforitsrunaway E(B-V)deviatesstronglyfromA .However,thelargesamplere- nature. V vealsthattheratiooftotaltoselectiveabsorptionhasausualvalue. HD37424 is a B0.5V type star with a mass of ∼13 M (cid:12) Thedistanceswerederivedfromdistancemoduliusingtheabsolute (Hohle et al. 2010). So, the progenitor of the pulsar must have a (cid:13)c 2014RAS,MNRAS000,1–10 8 Dinçeletal Table6.24starsbeyond1 kpcarepresented.Angulardistancesaregivenindegrees,distancesinparsecs,extinctionsandbrightnessinvisualbandin magnitudes.Inthecolumn;SpTadopted,theaveragespectraltypesthatareusedindistancecalibrationsaregiven. Ang.Sep. Name SpT SpT AV AV E(B-V) E(B-V) Distance Distance V Ref#∗ (adopted) (Err) (Err) (Err) 0.09 TYC1869-01317-1 B9.5V B9.5V 0.83 0.1 0.26 0.090 1013 +183/-174 11.258 tw 0.09 TYC1869-01642-1 B9.5V B9.5V 1.00 0.1 0.3 0.090 952 +172/-163 11.293 tw 0.17 HD37424 B0.5V B0.5V 1.28 0.06 0.35 0.036 1868 +410/-403 8.989 tw 0.52 HD36993 B0.5/1III/IV B0.5III-IV 1.35 0.06 0.39 0.028 1961 +636/-628 8.248 1 0.63 HD37318 B0.5Ve B0.5V 2.29 0.15 0.59 0.026 903 +231/-228 8.399 1 1.00 BD+27797 B0.5Ve B0.5V 2.50 0.14 0.62 0.094 1788 +485/-465 10.095 2 1.35 HD37696 B0.5IV/V B0.5IV-V 1.12 0.06 0.29 0.023 1549 +565/-558 7.973 1 1.35 BD+27850 B1.5IVe B1.5V 1.31 0.04 0.35 0.056 1525 +313/-305 9.362 2 1.52 HD245770 O9/B0III/Ve B0III-V 2.11 0.13 0.79 0.053 2595 +1090/-1066 9.187 3 1.76 HD36441 B0.5/1.5V B1V 1.13 0.13 0.33 0.058 1153 +628/-389 8.239 1 1.97 BD+26943 B2V B1.5V 1.41 0.14 0.37 0.040 1357 +723/-511 9.623 8 2.61 HD38010 B1III B1III 1.29 0.1 0.22 0.028 967 +437/-236 6.817 4 2.95 BD+30938 B3III B3III 1.44 0.04 0.45 0.030 1332 +741/-255 9.062 7 2.98 Sh2-2421 B0V B0V 2.17 0.13 0.78 0.056 2318 +853/-842 9.996 5 3.06 HD37366 O9.5V O9.5V 1.22 0.06 0.35 0.016 1375 +201/-199 7.640 6 3.07 BD+30987 B5III: B5III 0.73 0.08 0.25 0.044 1523 +398/-287 9.444 7 3.24 BD+30976 B7V B7V 0.89 0.17 0.18 0.020 994 +264/-226 10.277 7 3.45 BD+25989 B1Vn B1V 1.59 0.13 0.43 0.082 1872 +1061/-649 9.751 8 3.61 BD+27909 B2III B2III 1.87 0.1 0.55 0.076 2004 +683/-761 9.479 8 4.05 BD+311065 B3III B3III 0.67 0.04 0.27 0.043 2304 +1286/-442 9.482 7 4.07 BD+311050 B3III B3III 1.01 0.03 0.35 0.047 1791 +988/-338 9.276 7 4.09 HD38909 B3II-III B3II-III 0.56 0.03 0.17 0.033 2057 +1007/-992 8.145 9 4.28 BD+311021 B7V B7V 1.05 0.12 0.14 0.106 1007 +250/-218 10.465 7 4.46 HD40297 B9.5Ib/II B9.5Ib/II 1.07 0.13 0.25 0.015 1337 +693/-688 7.270 1 ∗Ref#:1:Clausen&Jensen(1979);2:Steeleetal.(1999);3:Wang&Gies(1998);4:Cucchiaroetal.(1976);5:Hunter&Massey (1990);6:Walborn(1971);7:Bouigueetal.(1961);8:Christy(1977);9:Morganetal.(1955);10:Christy(1977);tw:Thiswork. mighthavebeenaninteractingbinary.Hence,theprogenitorstar Table8.19starswithcommonpropermotionarepresented.Theaverage PMRAis-1.39 masyr−1andPMDecis-4.17 masyr−1.Thelastthreecol- shouldbeanakedheliumstaratthefinalstageofitsevolutionwith umnrepresentsthe2–Dspacevelocityofthestarswithrespecttotheaver- a mass even as low as 2 M(cid:12) (van den Heuvel 1993), (Woosley agemotionofthegroupwithmaximumandminimumvaluesin kms−1. etal.1995).However,howconservativethemasstransferwas,will Allthevaluesofpropermotionsarein masyr−1. beunderstoodafterfurtherobservations.Assumingacircularorbit, pre–supernovabinaryparametersarecalculatedfor2,5,10,15,20 and25 M (Table9)progenitormasses. Name µ∗α err µδ err VREL max min (cid:12) HD37318 -0.8 0.6 -5.9 0.6 11.2 16.1 6.9 As discussed in the previous section, the OB stars around TYC1869-01642-1 -1.5 1.1 -2.4 1.2 11.0 19.8 7.1 mightbemembersofanunidentifiedoldOBassociationofwhich HD38010 -1.7 1.0 -3.3 1.0 5.7 14.1 0.0 alloftheOtypestarsunderwentsupernovaexplosions.Thisalso BD+30976 -3.5 0.9 -5.3 0.5 14.7 21.1 8.4 makesaplausibleexplanationforthelowdensitymediuminwhich BD+311021 -2.8 0.7 -5.5 0.8 11.9 18.4 5.4 the SNR expands symmetrically. But, an ejection of the pre-SN TYC1869-01317-1 -0.9 0.9 -5.1 0.9 6.5 14.2 0.0 systemisalsopossible.AmembershiptoanOBassociationorto HD36441 -2.0 0.6 -6.6 0.6 15.4 20.1 11.2 aclusterisimportantalsoregardingthedistancedetermination.In BD+30938 -1.7 0.8 -3.6 0.6 4.0 9.9 0.0 thiswork,thedistancederivedfrompulsarparallax(1.3+0.20 kpc) HD40297 -1.4 1.0 -3.7 1.0 2.9 11.0 0.0 −0.16 isacceptedasthemostreliableestimation.Also,thedistancetothe BD+26943 -0.9 0.8 -3.7 0.8 4.2 11.2 0.0 starmeasuredfrominterstellarlinesisinthesamerange,1288+304 BD+30987 -2.0 0.6 -4.7 1.2 4.9 13.0 0.0 −193 BD+27797 -0.1 0.7 -3.1 1.4 10.4 19.6 4.2 (see section 3). The spectro–photometric distance is much larger BD+311050 -1.0 0.6 -4.0 0.6 2.7 7.8 0.0 byusingabsolutemagnitudesfromAlleretal.(1982).Yet,byus- BD+25989 -1.5 0.9 -2.5 1.6 10.3 21.1 4.9 ing typical luminosities for B0.5V type suggested in Hohle et al. HD36993 -0.2 0.9 -5.8 0.6 12.4 18.8 6.6 (2010),itis1318±119 pc.Hence,thedistancetothestarandthe HD38909 +0.7 0.5 -4.2 1.5 12.9 18.4 0.0 SNR can be assumed to be 1.3 kpc. However, the A measured V BD+311065 -1.0 0.6 -1.3 0.5 17.9 21.7 14.7 directlytowardsS147ismuchlowerthantheA towardsthestars V Sh2-2421 -0.1 0.7 -1.8 1.0 16.7 24.2 9.2 beyond1 kpc.Furthermore,twostars,HD36665andHD37318, HD245770 -2.0 0.5 -4.3 1.1 3.8 10.2 0.0 showhighlyshiftedinterstellarCaII andNaI linesrelatedtothe SNRimplyingthattheseobjectsarebackgroundsources(Sallmen &Welsh2004).Theirdistancesbasedonthereportedspectraltypes highermass.BasedonthelackofOtypestarsinthefield(seeTa- are closer to the Sun than HD37424 is. HD36665 has 837+347 −285 ble6)wesetanuppermasslimitof20–25 M .Itmayevenimply pcforB1VtypeandHD37318is903+231 pcfarawayadopting (cid:12) −228 atwinbinary.TheRocheLoberadiicalculatedfor15,20and25 B0.5V.Ontheotherhand,thedistanceforHD36665isidentified M vary between 91 and 311 R which shows that the system as 1860 pc in Neckel et al. (1980) through H measurements. It (cid:12) (cid:12) β (cid:13)c 2014RAS,MNRAS000,1–10 RunawayinS147 9 Table9.Thebinaryseparations,theorbitalvelocitiesoftheprogenitor,theorbitalperiodsandtheRocheLoberadiiofthepre–supernovabinaryforvarious finalmassesoftheprogenitorwith13 M(cid:12)HD37424aregiven.RocheLoberadiiarecalculatedbasedonEggleton(1983). ProgenitorMass(M(cid:12)) 2 5 10 15 20 25 BinarySeparation(R(cid:12)) 9−+31 49−+191 152−+3276 281−+6489 425−+17051 576−+113071 OrbitalVelocity(kms−1) 481±49 192±20 96±10 64±7 48±5 38±4 OrbitalPeriod(days) 0.85−0.22 9−2 45−11 103−26 176−44 259−65 +0.32 +4 +17 +39 +66 +98 RocheLobeRadius(R(cid:12)) 110−+2179 177−+4321 251−+6404 hasahighA of1.74mag.IfweassumethatHD36665isalsoat ACKNOWLEDGEMENTS V 1.3±0.1 kpc,thenitmustbeabrightB1Vtypestarwhichis1–1.5 ThisworkwasconceivedbythelateOktayH.GUSE˙INOV(1938- magbrighterthantheaveragevaluegiveninW06.HD37318also 2009). The authors acknowledge the leading role he had in all canbeamemberofthepossibleOBassociation. stages of this work and other related topics. His contribution to Thesupernovaeventhadoccurredquitenearbyinafairlyred- GalacticAstrophysicsandhisscholarshipwillbegreatlymissed. dened medium. Assuming a very faint SN (M = −14 mag), the V We thank Janos Schmidt and Christian Ginski for their observa- apparentvisualmagnitudeis−2.1mag,andforabrightSNwith tionalsupportandRonnyErrmannforusefuldiscussions.BD,NT M = −21mag,theapparentvisualmagnitudeis−9.1mag;as V andRNacknowledgesupportfromDFGintheSFB/TR-7Gravita- brightasSN1006.Theeventmighthavealsocausedthe10Bepeak tionalWaveAstronomy.ThisresearchhasmadeuseofAladin.We at35±2 kyrmeasuredinRaisbecketal.(1987)fromthedeepice wouldliketothanktheCalarAltoobservatorystafffortheirhelp coresfromDomeCandVostokAntarctica. inourobservations;andwewouldliketothankDFGinNE515/ 53-1forfinancialsupportfortheCalarAltoobservingrun.Wealso thankTÜB˙ITAKNationalObservatoryfortheirsupportsinusing 7 CONCLUSION RTT–150withprojectnumber12ARTT150-267. HD37424 is a B0.5V type runaway star from a binary ejec- tion due to the supernova which gave birth to SNR S147 and PSRJ0538+2817. The star has −9.2 ± 6.5 kms−1 heliocentric References radial velocity and 74±8 kms−13–D peculiar velocity. The dis- tancecalculatedfrominterstellarCaII linesis1288+304 pcand Allakhverdiev A. O., Guseinov O. H., Tagieva S. O., Yusifov −193 fromspectro–photometry1318±119 pc.Nohighvelocitygasre- I.M.,1997,AstronomyReports,41,257 latedwiththeSNRisdetectedinthespectra.Thepasttrajectories AllerL.H.etal.,eds,1982,Landolt-Börnstein:NumericalData of the pulsar and HD37424 are reconstructed throughout Monte andFunctionalRelationshipsinScienceandTechnology-New Carlosimulations.Itisfoundthatbothstarswereatthesamepo- Series”Gruppe/Group6AstronomyandAstrophysics”Volume sitionat(l,b) =(84.82±0.01,27.84±0.01)degat30±4 kyr 2 Schaifers/Voigt: Astronomy and Astrophysics / Astronomie inthepast.Thepositionoftheexplosionis4.2+0.8 arcminaway und Astrophysik ” Stars and Star Clusters / Sterne und Stern- −0.6 fromthegeometricalcenter.ThedistanceoftheSNRisfoundas haufen 1333+103 pc.A towardstheSNRis1.28±0.06mag. AndersonS.B.,CadwellB.J.,JacobyB.A.,WolszczanA.,Foster −112 V Today’s kinematics of the stars are well known, further de- R.S.,KramerM.,1996,ApJ,468,L55 tailedcalculationsshouldbedonetofindthetruekickvectorsof AnkayA.,KaperL.,deBruijneJ.H.J.,DewiJ.,HoogerwerfR., thepulsarandapossiblespin-kickalignment. SavonijeG.J.,2001,A&A,370,170 ThereisnoknownOBassociationreportedclosetotheSNR. BlaauwA.,1961,Bull.ofAstro.Inst.oftheNetherlands,15,265 19OBtypestarswithin100pcfromtheSNRgeometricalcenter BobylevV.V.,2008,AstronomyLetters,34,686 haveverysimilar2–Dvelocitieswiththe5runawaystarsincluding Bouigue R., Boulon J., Pedoussaut A., 1961, Annales de HD37424.ThismightbeanoldOBassociationhavingnobrightO l’ObservatoireAstron.etMeteo.deToulouse,28,33 typestars.ThelowdensitymediuminwhichtheSNRisexpanding ChatterjeeS.etal.,2009,ApJ,698,250 isprobablyduetothepreviousSNeandHIIregionsdrivenbythis ChevalierR.A.,1974,ApJ,188,501 oldassociation.Theprogenitorwasamassivestarwithazeroage ChristyJ.W.,1977,ApJ,217,127 mainsequencemassgreaterthan13 M .Consideringthelackof ClarkD.H.,CaswellJ.L.,1976,MNRAS,174,267 (cid:12) O type stars in the field, a progenitor mass much larger than 20 Clausen J. V., Jensen K. S., 1979, in McCarthy M. F., Philip M isnotexpected.Assumingacircularorbit,thepre–supernova A.G.D.,CoyneG.V.,eds,RicercheAstronomicheVol.9,IAU (cid:12) binaryseparationisintherangeof8to711 R for2to25 M Colloq.47:SpectralClassificationoftheFuture.p.479 (cid:12) (cid:12) finalmassoftheprogenitor.ThecorrespondingRocheLoberadii CordesJ.M.,LazioT.J.W.,2002,ArXivAstrophysicse-prints for 15 to 25 M masses vary from 91 to 311 R . It must have Cucchiaro A., Jaschek M., Jaschek C., Macau-Hercot D., 1976, (cid:12) (cid:12) beenaninteractingbinary. A&AS,26,241 For 1.3 kpc distance and 1.3 mag extinction, the SN which EggletonP.P.,1983,ApJ,268,368 happened 30±4 kyr ago had an apparent brightness of −2.1 to FeastM.W.,ShuttleworthM.,1965,MNRAS,130,245 −9.1mag. FesenR.A.,BlairW.P.,KirshnerR.P.,1985,ApJ,292,29 Thesourcewillbeinvestigatedregardingtheelementalsigna- FuerstE.,ReichW.,1986,A&A,163,185 turesofbinaryaccretionandthepossiblesupernovadebrisonits GaenslerB.M.,StappersB.W.,FrailD.A.,MoffettD.A.,John- photospherethroughhighresolutionandhighS/Nspectra. stonS.,ChatterjeeS.,2000,MNRAS,318,58 (cid:13)c 2014RAS,MNRAS000,1–10 10 Dinçeletal GiesD.R.,1987,ApJS,64,545 SauvageotJ.L.,BalletJ.,RothenflugR.,1990,A&A,227,183 GiesD.R.,BoltonC.T.,1986,ApJS,61,419 SayerR.W.,NiceD.J.,KaspiV.M.,1996,ApJ,461,357 GreenD.A.,2009,VizieROnlineDataCatalog,7253,0 SilkJ.,WallersteinG.,1973,ApJ,181,799 GuseinovO.H.,AnkayA.,SezerA.,TagievaS.O.,2003,Astro- SkiffB.A.,2013,VizieROnlineDataCatalog,1,2023 nomicalandAstrophysicalTransactions,22,273 SofueY.,FurstE.,HirthW.,1980,PASJ,32,1 GuseinovO.H.,AnkayA.,TagievaS.O.,2003,SerbianAstro- SteeleI.A.,NegueruelaI.,ClarkJ.S.,1999,A&AS,137,147 nomicalJournal,167,93 TaurisT.M.,TakensR.J.,1998,A&A,330,1047 GuseinovO.H.,AnkayA.,TagievaS.O.,2004a,SerbianAstro- TetzlaffN.,DinçelB.,NeuhäuserR.,KovtyukhV.V.,2014,MN- nomicalJournal,168,55 RAS,438,3587 GuseinovO.H.,AnkayA.,TagievaS.O.,2004b,SerbianAstro- TetzlaffN.,EisenbeissT.,NeuhäuserR.,HohleM.M.,2011,MN- nomicalJournal,169,65 RAS,417,617 Guseinov O. H., Ankay A., Tagieva S. O., 2004c, International TetzlaffN.,NeuhäuserR.,HohleM.M.,2011,MNRAS,410,190 JournalofModernPhysicsD,13,1805 TetzlaffN.,NeuhäuserR.,HohleM.M.,MaciejewskiG.,2010, GuseinovO.H.,AnkayA.,TagievaS.O.,2005,Astrophysics,48, MNRAS,402,2369 330 TetzlaffN.,SchmidtJ.G.,HohleM.M.,NeuhäuserR.,2012,29, HansenB.M.S.,PhinneyE.S.,1997,MNRAS,291,569 98 HerbigG.H.,1975,ApJ,196,129 Tetzlaff N., Torres G., Neuhäuser R., Hohle M. M., 2013, MN- HobbsG.,LorimerD.R.,LyneA.G.,KramerM.,2005,MNRAS, RAS,435,879 360,974 vandenBerghS.,1980,JournalofAstrophysicsandAstronomy, HohleM.M.,NeuhäuserR.,SchutzB.F.,2010,Astronomische 1,67 Nachrichten,331,349 vandenHeuvelE.P.J.,1993,66,309 HoogerwerfR.,deBruijneJ.H.J.,deZeeuwP.T.,2001,A&A, WalbornN.R.,1971,ApJS,23,257 365,49 WalbornN.R.,FitzpatrickE.L.,1990,PASP,102,379 HunterD.A.,MasseyP.,1990,AJ,99,846 WangZ.X.,GiesD.R.,1998,PASP,110,1310 KaperL.,vanLoonJ.T.,AugusteijnT.,GoudfrooijP.,PatatF., WegnerW.,1994,MNRAS,270,229 WatersL.B.F.M.,ZijlstraA.A.,1997,ApJ,475,L37 WegnerW.,2006,MNRAS,371,185 KatsutaJ.etal.,2012,ApJ,752,135 Wongwathanarat A., Janka H.-T., Müller E., 2013, A&A, 552, KenyonS.J.,HartmannL.,1995,ApJS,101,117 A126 KharchenkoN.V.,2001,KinematikaiFizikaNebesnykhTel,17, WoosleyS.E.,LangerN.,WeaverT.A.,1995,ApJ,448,315 409 ZachariasN.,FinchC.T.,GirardT.M.,HendenA.,BartlettJ.L., KirshnerR.P.,ArnoldC.N.,1979,ApJ,229,147 MonetD.G.,ZachariasM.I.,2012,VizieROnlineDataCatalog, KramerM.,LyneA.G.,HobbsG.,LöhmerO.,CarrP.,JordanC., 1322,0 WolszczanA.,2003,ApJ,593,L31 ZavlinV.E.,PavlovG.G.,2004,75,458 KunduM.R.,AngerhoferP.E.,FuerstE.,HirthW.,1980,A&A, 92,225 ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbythe LozinskayaT.A.,1976,SvA,20,19 author. LyneA.G.,LorimerD.R.,1994,Nat,369,127 McGowanK.E.,KenneaJ.A.,ZaneS.,CórdovaF.A.,Cropper M.,HoC.,SasseenT.,VestrandW.T.,2003,ApJ,591,380 Megier A., Strobel A., Galazutdinov G. A., Krełowski J., 2009, A&A,507,833 MilneD.K.,1979,AustralianJournalofPhysics,32,83 MinkowskiR.,1958,ReviewsofModernPhysics,30,1048 MorganW.W.,CodeA.D.,WhitfordA.E.,1955,ApJS,2,41 Mugrauer M., Avila G., Guirao C., 2014, Astronomische Nachrichten,335,417 Mugrauer M., Berthold T., 2010, Astronomische Nachrichten, 331,449 NeckelT.,KlareG.,SarcanderM.,1980,Bulletind’Information duCentredeDonneesStellaires,19,61 NgC.-Y.,RomaniR.W.,BriskenW.F.,ChatterjeeS.,KramerM., 2007,ApJ,654,487 PhilpC.J.,EvansC.R.,LeonardP.J.T.,FrailD.A.,1996,AJ, 111,1220 PovedaA.,RuizJ.,AllenC.,1967,BoletindelosObservatorios TonantzintlayTacubaya,4,86 PrzybillaN.,NievaM.F.,HeberU.,ButlerK.,2008,ApJ,684, L103 RaisbeckG.M.,YiouF.,BourlesD.,LoriusC.,JouzelJ.,1987, Nat,326,273 RiekeG.H.,LebofskyM.J.,1985,ApJ,288,618 SallmenS.,WelshB.Y.,2004,A&A,426,555 (cid:13)c 2014RAS,MNRAS000,1–10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.