DRAFTVERSIONJANUARY28,2016 PreprinttypesetusingLATEXstyleemulateapjv.08/22/09 DISCOVERYOFANINNERDISKCOMPONENTAROUNDHD141569A⋆ MIHOKOKONISHI1,∗,CAROLA.GRADY2,3,GLENNSCHNEIDER4,HIROSHISHIBAI1,MICHAELW.MCELWAIN3, ERIKAR.NESVOLD5,MARCJ.KUCHNER3,JOSEPHCARSON6,JOHN.H.DEBES7,ANDRASGASPAR4,THOMASK.HENNING8, DEANC.HINES7,PHILIPM.HINZ4,HANNAHJANG-CONDELL9,AMAYAMORO-MART´IN7,MARSHALLPERRIN7, TIMOTHYJ.RODIGAS5,10,EUGENESERABYN11,MURRAYD.SILVERSTONE2,CHRISTOPHERC.STARK7,MOTOHIDETAMURA12, ALYCIAJ.WEINBERGER5,JOHN.P.WISNIEWSKI13 DraftversionJanuary28,2016 6 1 ABSTRACT 0 We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, 2 interior to the previously known inner ring. The discovered inner disk component, obtained in broadband n opticallightwithHST/STIScoronagraphy,wasimagedwithaninnerworkingangleof0′.′25,andcanbetraced a from0′.′4 (∼46AU) to 1′.′0 (∼116AU) after deprojectionusingi=55◦. Theinner disk componentis seen to J forwardscatterinamannersimilartothepreviouslyknownrings,hasapericenteroffsetof∼6AU,andbreak 7 points where the slope of the surface brightnesschanges. It also has a spiral arm trailing in the same sense 2 asotherspiralarmsand arcsseen atlargerstellocentricdistances. Theinnerdisk spatially overlapswiththe previouslyreportedwarmgasdiskseeninthermalemission. Wedetectnopointsourceswithin2′′(∼232AU), ] in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9±3 M P J is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk E componentandtheinnerringof1M ,whichisbroadlyconsistentwithpreviousestimates. J . h Subjectheadings:circumstellarmatter—stars: imaging—stars: individual(HD141569A) p - o 1. INTRODUCTION ered two rings using the Near Infrared Camera and Multi- r Object Spectrometer (NICMOS) aboard Hubble Space Tele- t There are a numberof circumstellar disks associated with s scope (HST). The system was subsequently imaged in the a youngstars whichcanbecharacterizedashavingsmalldust optical (Mouilletetal. 2001; Clampinetal. 2003) using the [ masses, but still retaining gas. Some show localized gas emission(e.g., β Pic; Dentetal. 2014), butothershavecen- HSTSpaceTelescopeImagingSpectrograph(STIS)andAd- 2 vancedCameraforSurveys(ACS),respectively.Thediskhas trallyconcentratedgasandmm-sizeddebris(e.g.,HD21997; v alsobeenimagedusingground-basedadaptiveopticssystems Moo´retal. 2013;Ko´spa´letal. 2013). Thereare thedisksin 0 (Boccalettietal. 2003; Jansonetal. 2013; Wahletal. 2014; whichgapsorcavitieshaveformed,possiblyintandemwith 6 Billeretal.2015;Mazoyeretal.2016).Whilecomplexstruc- giantplanetformation. Inparticular,thesesystemschallenge 5 tures were detected, the coronagraphic studies did not find the practiceof inferringthephysicalpropertiesofthe debris 6 dust interior to ∼175 AU due to analysis technique issues. disks by modeling the infrared spectral energy distribution 0 However, mid-infrared observations detected thermal emis- (SED). 1. HD 141569 A is a B9.5 star (Mer´ınetal. 2004) located sion from small particles within 1′′ of the star (Fisheretal. 0 at 116±8 pc (vanLeeuwen 2007) from the Sun, and its 2000;Marshetal.2002). Theseobservationsusedfilterscon- 6 age is reported to be 5±3 Myr (Weinbergeretal. 2000). A taining strong polycyclic aromatic hydrocarbon (PAH) tran- 1 sitions, so that the nature of the material they detected re- mid-infrared excess detected by the Infrared Astronomical : mained unclear. Gas in the system has been studied in the v Satellite(IRAS;Walker&Wolstencroft1988;Sylvesteretal. millimeter (Pe´ricaudetal. 2014), the mid- and far-infrared i 1996) suggested that dust exists around HD 141569 A. X (Thietal.2014),withaninnerdiskcomponentdetectedfrom Disk structures around HD 141569 A were first imaged by ∼13 AU to ∼59 AU (Gotoetal. 2006) using its distance of r Augereauetal. (1999), and Weinbergeretal. (1999) discov- a 116 pc. HD 141569 A has two M-type companions (∼8′′, ⋆BasedondatacollectedbytheHubbleSpaceTelescope,operatedbythe Weinbergeretal.2000) whichmayproducethe outerspirals SpaceTelescopeScienceInstitute. (Clampinetal.2003). 1Department ofEarthand Space Science, Graduate School ofScience, Herein we present new imagery of the HD 141569 A cir- OsakaUniversity,Osaka,Japan. cumstellardebrissystem. TheHST/STISimageryhasanin- ∗E-mail:[email protected]. nerworkingangle(IWA)of0′.′25. Ourobservationsconfirm 2EurekaScientific.,Oakland,CA,USA 3GoddardSpaceFlightCenter,Greenbelt,MD,USA. thepreviouslyreportedouterdiskstructuresanddiscoverthe 4TheUniversityofArizona,Tucson,AZ,USA. presenceofaninnerdustdiskcomponent. 5CarnegieInstitutionofWashington,Washington,DC,USA. 6CollegeofCharleston,Charleston,SC,USA. 7SpaceTelescopeScienceInstitute,Baltimore,MD,USA. 2. OBSERVATIONSANDDATAREDUCTION 8MaxPlanckInstituteforAstronomy,Heidelberg,Germany. 2.1. Observations 9UniversityofWyoming,Laramie,WY,USA. We imagedHD 141569A and a PSF (PointSpreadFunc- 10HubbleFellow 11JetPropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena tion) reference star (HD 135298, A0V, B-V=0.08)14 using CA,USA. HST/STISon 2015June 12 and on 2015 August18, as part 12UniversityofTokyo,Tokyo,Japan. 13UniversityofOklahoma,Norman,OK,USA. 14takenfromSIMBAD,http://simbad.u-strasbg.fr/simbad/ 2 Konishietal. of the general observer program (ID:13786, PI: G. Schnei- subtraction in each target image (top 2×3 panels in Fig- der). We observed using two coronagraphic image plane ure 1). For example, we made 9 subtracted imagesper visit masks, WEDGEA1.0 and BAR5 (see §12.11 of the STIS (3 dithering target images × 3 dithering reference images), Instrument Handbook; Biretta 2015), and observed the PSF and then selected one per dithering (3 images in this case) reference star interleaved with the HD 141569 observations which achieved the smallest IWA. Within each visit, after (Table 1). The WEDGEA1.0 imagery is used, following target-minus-PSF template subtraction of the images in the Schneideretal.(2014),toprovidelargeareadeepimaging,at instrumentframe,werotatedthedifferenceimagesaboutthe thecostofsaturationnearthecoronagraphicwedge. There- occulted star to a common celestial frame. Then, suitable mainingdataareshallower,wereobtainedusingBAR5(“the masks were made with IDP3 for each rotated image to oc- bentfinger”),fillintheregionsaturatedintheWEDGEA1.0 cult non-physicalfeatures (diffraction spikes, coronagraphic imagery and provide an IWA as small as 0′.′2515. For the mask structures, saturatedpixels) and maskingof the binary BAR5observations,weemployedthree-pointdithering(cen- components HD 141569 BC. All images were registered to ter and ±0.25 pixel perpendicular to the long axis of the acommoncenterandthenmediancombined(bottom3pan- bar) to mitigate the effects of target mis-centering and to els in Figure 1). This combination of data from 6 different achievethe smallest possibleIWA. Threesets ofBAR5 data spacecraft roll angles removes all hot and dead pixels. In and one set of WEDGEA1.0 data were obtained per visit. WEDGEA1.0data,wealsousedthecosmicraystaskinIm- The observations were divided into several sub-exposures ageReductionandAnalysisFacility(IRAF)beforePSFsub- per set to facilitate cosmic ray removal. The total inte- traction to removethe hot and dead pixels, since there were gration time of HD 141569 A is 9.67×103 (WEDGEA1.0) notenoughframesateachrollangletoadequatelyfilterthem. and 9.07×102 seconds (BAR5), and that of PSF refer- Finally,theBAR5imagewasinsertedinthevoidareaofthe ence star is 3.22×103 (WEDGEA1.0) and 1.09×102 sec- WEDGEA1.0image. onds (BAR5). We used sub-array readouts to reduce over- Wedidnotuseprocessingtechniquesforangulardifferen- headtimesforourmanyexposures. Thefieldofview(FoV) tial imaging (e.g., Maroisetal. 2006; Lafrenie`reetal. 2007; is 1024 pix×427 pix (52′′×22′′) and 1024 pix×100 pix Soummeretal.2012)becausetheyintroducestructuredistor- (52′′×5′.′1) in WEDGEA1.0 and BAR5, respectively. The tions(Millietal.2012)andtheBAR5 imageryhasa limited data were taken at 6 spacecraft roll angles (See Table 1 amountofdata. ORIENTAT). AsdemonstratedinSchneideretal.(2014), combiningsuch data reduces the area obscured by the STIS 3. RESULTS coronagraphicoccultingstructureanddecorrelatesimagear- 3.1. Discoveryofaninnerdiskcomponent tifactsthatarestableintheinstrument. We detect an inner disk component interior to the previ- 2.2. Datareduction ouslyreportedringsinall6BAR5observationsandtheouter Forbasicinstrumentalcalibrationattheexposurelevel,we extent in WEDGEA1.0 data (Figure 1). In BAR5 data (top made use of the STIS calibration pipeline calstis software panels of Figure 1), the inner signal is elliptical in shape, (Bostroem&Proffitt 2011) and calibration reference files alignedwith thedisk majoraxis(PA=357◦ fromthenorth), provided by the Space Telescope Science Institute (STScI). and moves with the sky. This is not the behavior expected The calstis pipeline software performs bias and dark cur- from PSF subtraction residuals which are very close to cir- rent subtraction, as well as flat-field correction producing cularlysymmetricatlowspatialfrequencies(Schneideretal. “FTL” files in instrumental count units. We median com- 2014) and intrinsic to the disk due to the system inclination bined NUMEXP exposures in each set (4 exposures in totheline ofsight. We thereforeconcludethatwe havedis- WEDGEA1.0 and 8 exposures in BAR5), in order to re- coveredan inner componentto HD 141569A’s disk. In the movepixelsaffectedbycosmicrays, andthenconvertedthe bottom-rightpanelofFigure1,wedisplaythemergedBAR5 countunittoacounts−1unitbydividingeachexposuretime image with a elliptical line of i=55◦(Mouilletetal. 2001). (EXPTIMEinTable1). Figure2showsthemergedWEDGEA1.0andBAR5imagery The stellar PSF was subtracted using the method de- displayedwithastretchoptimizedforsignalwithin4′′ofthe scribed in Schneideretal. (2014), using the InteractiveData star, aswellas a cartoonshowingouradoptednomenclature Language (IDL)-based IDP3 (Image Display Paradigm #3; forthediskstructures. We refertotheouterringasCompo- Stobie&Ferro2006)software16. Thisstepsubtractsascaled nentA,theinnerringasComponentB,andthenewlyimaged andregisteredversionofthereferencestarHD135298from innerdisk componentas ComponentC. We also refer to the each HD 141569 A target image. The brightness scaling gap between Component A and B as Gap AB, and the gap factor was calculated as 1.067 from the difference of B- betweenComponentBandCasGapBC. magnitudesbetweentheHD141569A(7.20)andHD135298 ComponentChasnofluxdropdownto0′.′25,andanouter (7.27)14. We used the B-magnitude in this calculation be- radial extent of 1′.′0 defined from breaks seen in the radial surfacebrightness(SB)profile(seeSection3.3indetail).The causetheeffectivewavelengthofthisbandpassismostrepre- sentativeofaB9.5starasseenbyHST/STIS(λ ∼4400A˚). fitofthebottom-rightpanelofFigure1followsComponentC eff andsuggestsitisalsoati=55◦. Wethereforeusethisspecific The star’s position was defined as the crossing point of angletodeprojectthedisk. Inthesurfacedensity(SD)view, the diffraction spikes, since the star was occulted by the ComponentChasaspiralarmat1′.′1(seeSection3.3). WEDGEA1.0/BAR5 and was not measured directly. In the Figure2 (a) shows a final compositeimage, with boththe BAR5observation,thePSFsubtractionwasdoneinalltarget- data void and M-type companions masked as black. Fig- to-PSF template dither combinations. We selected the best ure2(a)reproducesthepreviouslyreportedazimuthalbright- ness asymmetries in ComponentA and B (Weinbergeretal. 15 See “Hubble Space Telescope STIS Coronagraphic BARs”, http://www.stsci.edu/hst/stis/strategies/pushing/coronagraphic bars 1999;Mouilletetal.2001;Clampinetal.2003),andsuggests 16https://archive.stsci.edu/prepds/laplace/idp3.html thattheseextendintoComponentC.Forfurthermeasurement InnerDiskComponentaroundHD141569A 3 and analysis, we deprojected the system using inclination Wemadeatoydiskmodel(Figure2(e))usingSBindices, i=55◦tomakeFigure2(b),andthenfollowtheClampinetal. and subtracted it from the composite BAR5 image. The SB (2003)methodologytocorrectthephasefunctionandillumi- has two components inside Component B, and thus the toy nationeffects.Afterdeprojection(Figure2(b)),thestellocen- diskhasa−1.4indexfrom0′.′25to 1′.′0(ComponentC) and tricmask-limitedIWAofourdatais0′.′4(∼46AU). a −3.0 index from 1′.′0 to 1′.′4 (halo between Component B and C). We also assumed i=55◦, g=0.1, and PA=357◦, and 3.2. Grainforwardscattering pericenteroffsetof1pixel(∼6AU)towardnorthwhenmade andsubtractedit. Figure2 (f)showsthe3×3-boxsmoothed We found a similar brightness asymmetry between the image. Ithasboundariesduetoedgesofthetoydisk,butwe east and west for Component C along the disk minor axis detectbrighterresidualsintheeastsideextendedatCompo- (see Figure 2 (a)) as previously reported for Component A nent C (enclosed area by a cyan line). These residuals may and B in the visible and near-infrared (Weinbergeretal. have a spiral arc-like geometry similar to other arcs in this 1999; Mouilletetal. 2001; Clampinetal. 2003). The ra- dial SB of the east side between 0′.′7–1′.′0 is 2.0±0.1× system. brighter than that of the west side (SB calculation is de- scribed in Section 3.3). This is similar to the measured 3.4. Sensitivitytoexoplanets asymmetry in Mouilletetal. (2001) and slightly larger than We detectednopointsourceswithin2′′ (∼232AU) ofthe Weinbergeretal. (1999) at 1.1 µm. This asymmetric ratio starinthePSF-templatesubtractedimage. Wecalculatedthe correspondsto g=0.14–0.15inthe Henyey-Greensteinphase sensitivity to exoplanets that may exist within the disk and function (Henyey&Greenstein 1941) assuming a geometri- report our detection limits (see Brandtetal. 2013). The 1σ callythindiskandi=55◦. Clampinetal.(2003)reportedthat noise was calculatedfrom the standarddeviationof SB pro- Component A and B are not azimuthally uniform. We ad- file(employedsamecalculationasSection3.3)assumingthat justedg valuesassumingthatthisnon-uniformSBfeatureis onlythe core of the PSF (1 pixel)can be detected. Figure4 continuedinComponentCandobtainedabestfitvaluewith showsthe 5σ (5×1σ) contrastcurve, whichwe considerthe g=0.1. Thisis consistentwith the resultofWeinbergeretal. sensitivity limit of the observations. To calculate a contrast (1999)andMouilletetal.(2001).Wenotethatourgvalueisa relativetotheprimary,theprimarystarcountrateforourob- lowerlimitbecausethedegreeofforwardscatteringfordebris servationwasestimatedusingtheSTISimagingETC17 since disksis underestimated(Hedman&Stark 2015). Thisprob- itwasoccultedbywedgestructures. WeusedatemplateA0- lemwasaddressedin Starketal. (2014). Figure2 (c)shows type spectrum and normalized it using the V magnitude of the image after correcting for the scattering phase function HD 141569 A. Then the 5σ noise was divided by the esti- asymmetry. matedprimarystar’scountrate(2.1×106counts−1).Wecon- firmedthecontrastisreasonablebyembeddingsomeartificial 3.3. Radialsurfacedensityandbrightnessprofile stars. We multiplied Figure 2 (c) by r2 (arcsec2) to correct for Exoplanetarymassestimatesareshownintherightsideof theradialillumination,whichprovidesaproxySDmap(see Figure4. TheywereestimatedfromtheBTSettlevolutionary Figure 2 (d)). In order to investigate detailed structures, model(Allardetal.2011). Wetookthespectraofsub-stellar the SB and SD profiles were made (Figure 3) using the de- objects(20,15,10,8,and5MJ at5Myr)fromthePhoenix projected image and the SD image (Figure 2 (b) and (d)). websimulator18 andcalculatedeachcountratewhichwould We calculated the mean within each small section (radial: beobtainedinourobservation,usingtheSTISimagingETC. 2 pixels, azimuth: 5◦), and converted counts s−1 pixel−1 IntheGapBC,whichisconsideredtobeformedbyagiant to flux density F (erg cm−2 s−1 A˚−1 pixel−1) according planet,thePSFcoreofthepossibleplanetisfrom0.5to4.5 to the equation dλescribed in § 5.3 of Bostroem&Proffitt counts s−1. It corresponds to the contrast of point sources (2011), and errors on these measurements were calculated from2.1×10−6downto2.4×10−7inGapBC.Convertedto as the 1σ scatter within a section. The SD profile in Fig- mass,ourluminosityupperlimitcorrespondstoamassupper ure 3 was normalized by the south peak of Component B limitof9±3MJ. (2.9×1020 erg arcsec2 cm−2 s−1 A˚−1). We note again that 4. DISCUSSION STIShasabroadbandpassandcannotspecifyasinglewave- length. For STIS, 1 count s−1 is 4.55×10−7 Jy according 4.1. Innerdiskcomponent to Schneideretal. (2014) and one square arcsec is approxi- Compared with previous STIS and ACS imagery, mately388pixels. Mouilletetal. (2001); Clampinetal. (2003) did not recover TheSBofComponentChasslopebreaks,whicharepoints Component C due to the occultation. The IWA of ground- where the SB drops, along the major axis at ∼1′′. The lo- base observations have reached 0′.′3 (Billeretal. 2015), but cation of the breaks is 1′.′0 (∼116 AU) in the north and 0′.′9 thesensitivitytofaintstructuresatthisIWAaremoredifficult (∼104 AU) in the south. The difference between the north torecoverwiththeirprocessingbecauseitcausedsignificant andsouthbreaksindicatethattheComponentCcenterisoff- self-subtractionatsmallIWA. setof0′.′05(∼6AU)towardthenorth.Thereisnoclearbreak OurimagedComponentC overlapspartiallywith thedisk intheeastandwestsideprobablyduetoanelongationeffect seen in mid-infrared thermal emission (Fisheretal. 2000; introducedbythe deprojection. We placenotightconstraint Marshetal. 2002). A warm disk in CO emission was de- ontheComponentCcenteralongtheminoraxis,butnotethat tected by Gotoetal. (2006) at 13–59 AU based on a more GapBCisslightlyshiftedtoeastaccordingtoSBinFigure3. recentstellar parallaxfrom vanLeeuwen (2007). The Com- It might be caused by a pericenter offset of Component C. ponent C material we now see in scattered light is, in part, Aspiralarmcouldbedetectedat1′.′1(∼128AU)intheeast sideseeninFigure2(d)andSDprofileinFigure3,withsame 17http://etc.stsci.edu/etc/input/stis/imaging/ senseastheouterspirals. 18https://phoenix.ens-lyon.fr/simulator/index.faces 4 Konishietal. in the same stellocentric regionas the CO emission. A spa- age of 5 Myr and stellar mass of 2.5 M⊙ (Weinbergeretal. tialoverlapofespeciallysmall-graindustandgasisexpected 2000),andestimatingtheverticalopticaldepthofthediskas in a transitional disk. HD 141569 A disk has some transi- L /L =1.8×10−2(Mer´ınetal.2004),weusethetech- IR star tionaldiskcharacteristics,whichmightindicatethatthissys- niqueofNesvold&Kuchner(2015)toplaceanupperlimitof tem is in an evolutionary stage between transitional and de- 1M onahypotheticalplanetorbitinginGapBC. J bris disks. Our ComponentC traces dust beyond the radius Because we detect a hot dust population close to the star, reportedby Currieetal. (inprep.), and partially overlapping we are able to constrain the size of Gap BC and therefore with the warm CO disk reported by Gotoetal. (2006) and our upper limit for the planet in Gap BC, 1 M , is smaller J thePAHdiskreportedbyThietal.(2014). Smalldustgrains thanthoseofArdilaetal.(2005)andRecheetal.(2009).Fur- suchas we viewin the broadbandopticalare expectedto be thernumericalsimulationsareneededtodeterminethebest-fit coupledtothegas(Takeuchi&Artymowicz2001). Thispre- systemarchitecturetoexplainthedustdistributioninthedisk. diction can be confirmed with ALMA data (see Currieetal. (inprep.)). 5. SUMMARY 4.2. Dynamicallimitsonplanets WedetectedaninnerdiskcomponentaroundHD141569A withHST/STISinoptical.Thediskcomponentistracedfrom Wisdom (1980) used the resonance overlap criterion to 0′.′4 (∼46 AU) to 1′.′0 (∼116 AU) after deprojection using analytically derive the relationship between the width of i=55◦. It has SB radial profile breaks, a pericenter offset of a gap and the mass of the planet in a collisionless disk. 6AU,aspiralarmat1′.′1,andoverlapspartiallywiththepre- Nesvold&Kuchner (2015) used numerical simulations of a viouslyknownwarmCOdisk. collisional disk to estimate a time-dependentgap law. This collisional gap law is based on gas-free N-body simulations of a planetesimal belt and does not consider the effects of gasdragorradiationpressureondustdynamics,allofwhich This study is based on observations made with the may be important in the case of HD 141569. However, NASA/ESA HST, obtained at STScI, which is operated by Ardilaetal. (2005) simulated the effects of both gas drag the Association of Universities for Research in Astronomy and radiative forces on the dust in HD 141569 A. Therein (AURA), Inc., under NASA contract NAS 5-26555. These they found that their simulated planetesimal distribution re- observations are associated with program No.13786. Sup- sembled the observed dust distribution. The gap law can portfor programNo.13786was providedby NASA through be used to place upper limits on the mass of a planet orbit- a grant from STScI. We thank the anonymous referee for ing in a gap, but it is limited by a degeneracy between the helpful suggestions. M.K. acknowledges the support of the planet mass and the radial distance between the planet and NASAexchangeprogramoperatedbyUniversitiesSpaceRe- the gap. Because we measure the location of both the in- search Association and of the Osaka University Scholarship ner and outer edge of the gap in the HD 141569 A disk, for Overseas Research Activities 2015. J.C. acknowledges we can breakthisdegeneracyby assumingthatthe gapcon- support from the South Carolina Space Grant Consortium tains a planet on a circular orbit at the midpoint between REAPProgram. the gap edges (137.5 AU for Gap BC). Assuming a system Facilities:HST(STIS). REFERENCES Allard,F.,Homeier,D.,&Freytag,B.2011,inAstronomicalSocietyofthe Mer´ın,B.,Montesinos,B.,Eiroa,C.,etal.2004,A&A,419,301 PacificConferenceSeries,Vol.448,16thCambridgeWorkshoponCool Milli,J.,Mouillet,D.,Lagrange,A.-M.,etal.2012,A&A,545,A111 Stars,StellarSystems,andtheSun,ed.C.Johns-Krull,M.K.Browning, Moo´r,A.,Juha´sz,A.,Ko´spa´l,A´.,etal.2013,ApJ,777,L25 &A.A.West,91 Mouillet,D.,Lagrange,A.M.,Augereau,J.C.,&Me´nard,F.2001,A&A, Ardila,D.R.,Lubow,S.H.,Golimowski,D.A.,etal.2005,ApJ,627,986 372,L61 Augereau,J.C.,Lagrange,A.M.,Mouillet,D.,&Me´nard,F.1999,A&A, Nesvold,E.R.,&Kuchner,M.J.2015,ApJ,798,83 350,L51 Pe´ricaud,J.,DiFolco,E.,Dutrey,A.,etal.2014,inThirtyyearsofBetaPic Biller,B.A.,Liu,M.C.,Rice,K.,etal.2015,MNRAS,450,4446 andDebrisDisksStudies,58 Biretta,J.2015,STISInstrumentHandbook,Version14.0 Reche,R.,Beust,H.,&Augereau,J.-C.2009,A&A,493,661 Boccaletti,A.,Augereau,J.-C.,Marchis,F.,&Hahn,J.2003,ApJ,585,494 Schneider,G.,Grady,C.A.,Hines,D.C.,etal.2014,AJ,148,59 Bostroem,K.A.,&Proffitt,C.2011,STISDataHandbookv.6.0 Soummer,R.,Pueyo,L.,&Larkin,J.2012,ApJ,755,L28 Brandt,T.D.,McElwain,M.W.,Turner,E.L.,etal.2013,ApJ,764,183 Stark,C.C.,Schneider,G.,Weinberger,A.J.,etal.2014,ApJ,789,58 Clampin,M.,Krist,J.E.,Ardila,D.R.,etal.2003,AJ,126,385 Stobie,E.,&Ferro,A.2006,inAstronomicalSocietyofthePacific Currie,T.,etal.,inprep. ConferenceSeries,Vol.351,AstronomicalDataAnalysisSoftwareand Dent,W.R.F.,Wyatt,M.C.,Roberge,A.,etal.2014,Science,3431490 SystemsXV,ed.C.Gabriel,C.Arviset,D.Ponz,&S.Enrique,540 Fisher,R.S.,Telesco,C.M.,Pin˜a,R.K.,Knacke,R.F.,&Wyatt,M.C. Sylvester,R.J.,Skinner,C.J.,Barlow,M.J.,&Mannings,V.1996, 2000,ApJ,532,L141 MNRAS,279,915 Goto,M.,Usuda,T.,Dullemond,C.P.,etal.2006,ApJ,652,758 Takeuchi,T.,&Artymowicz,P.2001,ApJ,557,990 Hedman,M.M.,&Stark,C.C.2015,ApJ,811,67 Thi,W.-F.,Pinte,C.,Pantin,E.,etal.2014,A&A,561,A50 Henyey,L.G.,&Greenstein,J.L.1941,ApJ,93,70 vanLeeuwen,F.2007,A&A,474,653 Janson,M.,Brandt,T.D.,Moro-Mart´ın,A.,etal.2013,ApJ,773,73 Wahl,M.,Metchev,S.,Patel,R.,etal.2014,inIAUSymposium,Vol.299, Ko´spa´l,A´.,Moo´r,A.,Juha´sz,A.,etal.2013,ApJ,776,77 IAUSymposium,ed.M.Booth,B.C.Matthews,&J.R.Graham,72 Lafrenie`re,D.,Marois,C.,Doyon,R.,Nadeau,D.,&Artigau,E´.2007,ApJ, Walker,H.J.,&Wolstencroft,R.D.1988,PASP,100,1509 660,770 Weinberger,A.J.,Becklin,E.E.,Schneider,G.,etal.1999,ApJ,525,L53 Marois,C.,Lafrenie`re,D.,Doyon,R.,Macintosh,B.,&Nadeau,D.2006, Weinberger,A.J.,Rich,R.M.,Becklin,E.E.,Zuckerman,B.,&Matthews, ApJ,641,556 K.2000,ApJ,544,937 Marsh,K.A.,Silverstone,M.D.,Becklin,E.E.,etal.2002,ApJ,573,425 Wisdom,J.1980,AJ,85,1122 Mazoyer,J.,Boccaletti,A.,Choquet,E.,etal.,2016,ApJinpress,arxiv: 1601.00505 InnerDiskComponentaroundHD141569A 5 TABLE1 OBSERVATIONLOG TargetName UTDate visit# ORIENTATa CORONAGRAPH EXPTIMEb NUMEXPc TINTTIMEd DATASETe HD141569A 2015Jun12 visit1 111.53 BAR5 6.3 8 50.4 ocjc35010,ocjc35020,ocjc35030 WEDGEA1.0 400 4 1600 ocjc35040 visit2 95.53 BAR5 6.3 8 50.4 ocjc36010,ocjc36020,ocjc36030 WEDGEA1.0 400 4 1600 ocjc36040 visit4 81.53 BAR5 6.3 8 50.4 ocjc38010,ocjc38020,ocjc38030 WEDGEA1.0 400 4 1600 ocjc38040 HD135298 2015Jun12 visit3 81.01 BAR5 6.8 8 54.4 ocjc37010,ocjc37020,ocjc37030 WEDGEA1.0 400 4 1600 ocjc37040 HD141569A 2015August18 visit5 56.53 BAR5 6.3 8 50.4 ocjc31010,ocjc31020,ocjc31030 WEDGEA1.0 405.7 4 1622.8 ocjc31040 visit6 46.53 BAR5 6.3 8 50.4 ocjc32010,ocjc32020,ocjc32030 WEDGEA1.0 405.7 4 1622.8 ocjc32040 visit8 36.53 BAR5 6.3 8 50.4 ocjc34010,ocjc34020,ocjc34030 WEDGEA1.0 405.7 4 1622.8 ocjc34040 HD135298 2015August18 visit7 58.80 BAR5 6.8 8 54.4 ocjc33010,ocjc33020,ocjc33030 WEDGEA1.0 405.5 4 1622 ocjc33040 Note:(a)Positionangleoftheimage+Yaxismeasuredeastwardfromcelestialnorth(degree). (b)Individualexposuretimes(sec). (c)Numberofexposures. (d)Totalintegrationtime(sec);EXPTIME×NUMEXP. (e)sameasROOTNAMEintheheaderandfitsfilename 6 Konishietal. E! E! E! N! N! N! 1″! 1″! 1″! !"#"$%! !"#"$&! !"#"$’! E! E! N! N! N! E! 1″! 1″! 1″! !"#"$(! !"#"$)! !"#"$*! 1! 3! 5! 7! 9! 1″! 1″! 0.1(! N! N! E! E! E! N! 1″! +,-! .,/,#$! 0.4! 2! 3.6! 1! 5! 9! FIG.1.—Top2×3panels:PSF-templatesubtractedimagesofHD141569curcumstellardiskatsixseparatefieldorientationsusingtheBAR5maskrevealing theinnerduskcomponent(ComponentC),andinnerringcomponent(ComponentB).RedlinesshowsmajoraxisofComponentB.SeeTable1fordetail.Bottom- left2panels: DeepimagingwiththeWEDGEA1.0maskobscuresmostofComponentCimagedwithBAR5,butcleanlyimagestherings(ComponentAand B)beyond,asshownseparatelyatthetwoobservationalepochsdesignedtoprovidemaximumvisibilityaroundthestar.Bottom-rightpanel:ThemergedBAR5 imagewitharedlinerepresentsadiskati=55◦andPA=357◦.Thescaleunitiscounts−1. InnerDiskComponentaroundHD141569A 7 FIG.2.—(a)Finalimage. Intherightimage,ournomenclatureisannotatedonthesameimageaspresentedatleft. (b)Deprojectedimageassumingi=55◦. (c)Deprojectedandphasecorrectedimageusingg=0.1.(d)Deprojectedandphasecorrectedimagemultipliedbyr2,whichisaproxytoasurfacedensitymap. Starmarksaretheprimarystar’sposition.Thecentralobscurationandbinarystarsatbottomrightaremaskedasblack.(e)ToydiskmodelmadeinSection3.3. Blueellipsesareboundaryofmodeldisks. (f)CompositeBAR5imagesubtractedatoydisk. Thecolorscaleislognormalin(a),(b),(c),and(e),andlinearin (d)and(f).Thescaleunitiscounts−1. 8 Konishietal. +,-.# "&&#################$&&##################%&&###################&###################%&&#################$&&##################"&&# ’(%&$&# # 7812# /012# # 94:26# 34526# " 8 # 4 2’7 # 6 5* %&$&# 4( !2 # 24/( # 231( # & # +( # # ’ 0 /( # / ’ . - %&%)# , #*+ # ) ’( # *."$&( *."$&( $%& # /,&-0! /,&-0! "# # ! # !"#$"%&%’()! !"#$"%&%’(!! !"#$"%&%’()! # %&%*# !"# !$# !%# &# %# $# "# /0)*" 9’5#:;’&-’<(!’5%#%=:.(0%#&/’&8" ’()*" 1,2*." +,-*." %" ! 4 3 2’ )1 *$+,-.! 0 )+ / % $" . # - , *+ ) ( %&’ $ # " ! #" !"#$"%&%’()! !"#$"%&%’(!! !"#$"%&%’()! !" &%" &$" &#" !" #" $" %" 0)5#"6)/3)*+,)5%#%7"1+8%#/2)/9! FIG.3.—Toppanel: Surfacebrightness(SB)profilealongthemajor(N/S)andminor(E/W)axisofFigure2(b). Bottompanel: normalizedsurfacedensity (SD)profilealongthemajorandminoraxisofFigure2(d). PlottedhereisthenormalizedSDprofileaftercorrectingforaphasefunctionassumingg=0.1 asymmetryparameterwithi=55◦.Fornormalization,thepeakvalueofsouthofComponentBwasused. InnerDiskComponentaroundHD141569A 9 !" #!" $!!" $#!" %!!" %#!" !"#$! $!(," $&’(!," " " " ’-./" 01./" " 234/5" 637/5" %!@ $&’$(!!(##"" A! " ! " $#@ + A! -. " ! *+, " 1- () $&’$(!!(++"" ;7 &’ " :" $!@A! % 39 " 8 )@ A! " " #@ $&’$(!!(**"" A! " " " <-=">? <-=";> ! ! " $&’$(!!())"" !" !&#" $" $&#" %" %&#" /01,)203+04’501-,-6)*’!-,3.03$! FIG.4.—5σdetectionlimitsonexoplanets.Theabscissaandordinateaxesaredeprojectedseparationand5σcontrastrelativetotheprimarystar,respectively. Theshadedareaisoccultedbythewedge.Therightordinateaxisshowscorrespondingmassestimatedfromthestarevolutionmodel(BT-Settl). Moredetailis describedinSection3.4.