Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons Kunihiro Morishima, Mitsuaki Kuno, Akira Nishio, Nobuko Kitagawa, Yuta Manabe, Masaki Moto, Fumihiko Takasaki, Hirofumi Fujii, Kotaro Satoh, Hideyo Kodama, et al. To cite this version: KunihiroMorishima,MitsuakiKuno,AkiraNishio,NobukoKitagawa,YutaManabe,etal.. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature, 2017, 542, pp.386-390. 10.1038/nature24647. hal-01630260v2 HAL Id: hal-01630260 https://hal.inria.fr/hal-01630260v2 Submitted on 22 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thismanuscriptisthepre-submissionmanuscriptprovidedbytheauthors. Forthefinal,post-reviewversion,pleasesee: http://www.nature.com/nature/journal/vaap/ncurrent/full/nature24647.html Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons Kunihiro Morishima1, Mitsuaki Kuno1, Akira Nishio1, Nobuko Kitagawa1, Yuta Manabe1,Masaki Moto1 — Fumihiko Takasaki2, Hirofumi Fujii2, Kotaro Satoh2, Hideyo Kodama2, Kohei Hayashi2, Shigeru Odaka2 — Sébastien Procureur3, David Attié3, Simon Bouteille3,DenisCalvet3,ChristopherFilosa3,PatrickMagnier3,IrakliMandjavidze3,MarcRiallot3 —BenoitMarini5,PierreGable7, YoshikatsuDate8,MakikoSugiura9,YasserElshayeb4,TamerElnady10,MustaphaEzzy4,EmmanuelGuerriero7,VincentSteiger5,Nico- lasSerikoff5,Jean-BaptisteMouret11,BernardCharlès6,HanyHelal4,5,MehdiTayoubi5,6 CorrespondingAuthors:KunihiroMorishima(morishima@flab.phys.nagoya-u.ac.jp)andMehdiTayoubi([email protected]) 1F-lab,NagoyaUniversity.Furo-cho,Chikusa-ku,Nagoya,464-8602,Japan—2KEK,1-1oho,Tsukuba,Ibaraki305-0801Japan—3IRFU,CEA, UniversitéParisSaclay,91191Gif-sur-Yvette,France—4CairoUniversity,9AlGameya,Oula,GizaGovernorate,Egypt—5HIPInstitute,50 rue de Rome 75008 Paris, France — 6Dassault Systèmes, 10 Rue Marcel Dassault, 78140 Vélizy-Villacoublay, France — 7 Emissive, 71 rue deProvence75009Paris,France—8 NEP,4-14Kamiyama-cho,Shibuya-ku,Tokyo150-0047,Japan—9Suaveimages,N-2MaisondeShino, 3-30-8Kamineguro,Meguro-Ku,Tokyo,153-0051,Japan—10AinShamsUniversity,Kasrel-Zaafaran,Abbasiya,Cairo,Egypt—11InriaNancy -GrandEst,615rueduJardinBotanique,Villers-lès-Nancy,54600,France The Great Pyramid or Khufu’s Pyramid was built on the Giza In1986,ateamsurveyedthepyramidusingmicrogravimetry17,thatis, Plateau (Egypt) during the IVth dynasty by the pharaoh Khufu themeasurementofslightvariationsingravityduetolargevariations (Cheops), whoreignedfrom2509to2483BC1. Despitebeingone intheamountofmatter18.Basedonthesedata,theteamdrilled3holes of the oldest and largest monuments on Earth, there is no con- inthecorridortotheQueen’schamberinthehopeoffindinga“hidden sensus about how it was built2,3. To better understand its inter- chamber”; the team only observed sand17. A more recent analysis of nal structure, we imaged the pyramid using muons, which are the same data dismissed the theory of a “hidden chamber” where the by-products of cosmic rays that are only partially absorbed by holeshadbeendrilled17.In1988,aGround-PenetratingRadarsurvey19 stone4,5,6. The resulting cosmic-ray muon radiography allows us suggested that an unknown corridor could be parallel to the Queen’s tovisualizetheknownandpotentiallyunknownvoidsinthepyra- chambercorridor. Toourknowledge,thistheoryhasbeenneithercon- mid in a non-invasive way. Here we report the discovery of a firmednorrefuted. large void (with a cross section similar to the Grand Gallery and Here we follow in the footsteps of Alvarez et al.5 who used spark a length of30 m minimum) above theGrand Gallery, which con- chambers as muon detectors in Khafre’s pyramid (Kephren) and con- stitutesthefirstmajorinnerstructurefoundintheGreatPyramid cludedthatthereisnounknownstructurewithavolumesimilartothe sincethe19th century1. Thisvoid,namedScanPyramidsBigVoid, King’schamberabovetheBelzonichamber5. Muonparticlesoriginate was first observed with nuclear emulsion films7,8,9 installed in the from the interactions of cosmic rays with the atoms of the upper at- Queen’s chamber (Nagoya University), then confirmed with scin- mosphere,andtheycontinuouslyreachtheEarthwithaspeednearto tillatorhodoscopes10,11 setupinthesamechamber(KEK)andre- thatoflightandafluxofaround10,000perm2perminute4. Similarto confirmedwithgasdetectors12outsideofthepyramid(CEA).This X-rayswhichcanpenetratethebodyandallowboneimaging,theseele- large void has therefore been detected with a high confidence by mentaryparticlescankeepaquasi-lineartrajectorywhilegoingthrough threedifferentmuondetectiontechnologiesandthreeindependent hundreds of meters of stone before decaying or being absorbed. By analyses. These results constitute a breakthrough for the under- recordingthepositionandthedirectionofeachmuonthattraversestheir standingofKhufu’sPyramidanditsinternalstructure.Whilethere detectionsurface,muondetectorscandistinguishcavitiesfromstones: iscurrentlynoinformationabouttheroleofthisvoid,thesefindings while muons cross cavities with practically no interactions, they can showhowmodernparticlephysicscanshednewlightontheworld’s be absorbed or deflected by stones. Put differently,muons traversing archaeologicalheritage. aregionwithlower-than-expecteddensitywillresultinahigher-than- The pyramid of Khufu is 139 m high and 230 m wide1,13. There expectedfluxinthedirectionoftheregion. Intherecentyears,muon arethreeknownchambers(Fig. 1),atdifferentheightsofthepyramid, detectors have been successfully deployed in particle accelerators, in whichalllieinthenorth-southverticalplane1: thesubterraneancham- volcanology6, to visualize the inner structure of the Fukushima’s nu- ber,theQueen’schamber,andtheKing’schamber.Thesechambersare clear reactor11,20, and for homeland security21. In heritage buildings, connectedbyseveralcorridors, themostnotableonebeingtheGrand detectorshavebeenrecentlysetupinarchaeologicalsitesnearRome22 Gallery(8.6mhigh×46.7mlong×2.1to1.0mwide). TheQueen’s andNaples23(Italy),wheretheywereabletodetectsomeknownstruc- chamberandtheKing’schamberpossesstwo“airshafts”each,which tures from underground, and in the Teotihuacan Pyramid of the Sun were mapped by a series of robots14,15 between 1990 and 2010. The (Mexico)24. However,sincethemuonsgeneratedbycosmicrayscome original entrance is believed to be the “descending corridor”, which fromthesky, thedetectorscanonlydetectdensityvariationsinsome starts from the North face, but today tourists enter the pyramid via a solidangleabovethem(theexactacceptancedependsonthedetection tunnelattributedtoCaliphal-Ma’mun’s(aroundAD820)1. technology).Inaddition,themuonimagingtechniquemeasurestheav- MostofthecurrentunderstandingofKhufu’sPyramidcomesfrom eragedensityofthestructureinagivendirection: whileavoidresults architecturalsurveysandcomparativestudieswithotherpyramids1,2,13. inalowerdensity,itsimpactonthemuonradiographyisdeterminedby InHistories,HerodotusdescribedtheconstructionofKhufu’sPyramid, theratiobetweenthevoidandthelengthofmaterialthatistraversed. butthisaccountwaswrittenabout2,000yearslater(in440BC).The Forthisreason,smallcavitieslikeairshaftscannotbedetectedbythis onlyknowndocumentswrittenduringKhufu’sreignwerediscoveredin techniquewithinareasonableexposuretime.Lastly,inlargeanddense 201316,butthesepapyridescribeonlythelogisticsoftheconstruction, buildingslikeKhufu’sPyramidwhereonlyabout1%ofmuonsreach suchashowthestonesweretransported,andnottheconstructionitself. thedetectors,thedataneedtobeaccumulatedoverseveralmonths. 1 a b c d Nagoya and KEK detectors Nagoya and KEK detectors CEA G2 (Brahic) Nagoya KEK Pyramid central axis 23 m NE1 NE2 H1 H2 South North N o rth QKiunege'sn c'sh cahmabmebrer Grand Gallery South Grand gallery axis m 7 Subterranean chamber 5.5 m 1.0 m 4.0 m CEA detectors CEA detectorsGrand Gallery axis 17 m 1.0 m CEA G1 (Alhazen) f g h i e King's chamber Grand Gallery Queen's chamber Figure1|MuondetectorsinstalledforKhufu’sPyramid.a,Sideviewofthepyramid,withsensorpositionsandindicativefieldofview.b,Topview.c,Close viewofthepositionofthegasdetectors(CEA).d,OrthographicviewofQueen’schamberwithnuclearemulsionfilms(NagoyaUniversity,redpositionsNE1and NE2)andscintillatorhodoscopes(KEK,greenpositionsH1andH2). e,Orthographicviewofthemainknowninternalstructuresf,Nuclearemulsionplatesin positionNE1(NagoyaUniversity).g,NuclearemulsionplatesinpositionNE2(NagoyaUniversity).h,ScintillatorhodoscopessetupforpositionH1(KEK).i,Gas detectors(muontelescopes,CEA). We first installed nuclear emulsion films (Fig. 1f-g), developed by then performed a triangulation using the data from the two positions NagoyaUniversity,becausetheyarecompactanddonotrequireelec- and four points along the new void (Methods). The results show that tricpower,whichmakesthemwellsuitedforinstallationinthepyramid thenewvoidhasanestimatedlengthofmorethan30mandislocated (ExtendedDataTable1). Anuclearemulsionfilmisaspecialphoto- between40mand50mawayfromthedetectorpositions,21mabove graphicfilmthatcandetectmuontrajectoriesinthree-dimensionalim- thegroundlevel. ageswithsub-micrometricaccuracy7,8,9.Intheseexperiments,weused Theseconddetectiontechnology,designedbyKEK,iscomposedof unitfilmsof30×25cm2andcoveredamaximum8m2atatime. Each four layers of scintillator hodoscopes arranged in two units of double filmhasa70micronsthickemulsioncoatingonbothsidesofa175mi- orthogonallayers10,11 (Fig. 1h). Eachlayeriscomposedof120plastic cronsthicktransparentplasticbase(Methods).Themuonmeasurement scintillatorbarsmeasuring1×1cm2incrosssectiontocoveranareaof accuracyisaround1microninpositionandaround1.8mrad(~0.1de- 120 × 120 cm2. Two units are vertically separated to allow the mea- gree)forverticaltrackbyusingtheinformationobtainedwithonefilm surementofthetwo-dimensionalincomingdirectionofthemuons. We (ExtendedDataTable1). placedthedetectorsneartheSouth-Eastcorner(positionH1,Fig1d)of The films were installed near the south-west corner of the Queen’s theQueen’schamberinAugust2016.Theseparationbetweentwounits chamber (position NE2, Fig. 1d) and in the adjacent narrow hand- wassetto1.5m. Unfortunately,thenewlydetectedvoidwasoverlap- excavated corridor called “Niche” (position NE1, Fig 1d) on the east pingwiththeGrandGallery,whichmadeitdifficulttoidentify.Aftera sideoftheQueen’schamber.Thedistancebetweenthecentresofthese stableoperationforfivemonths,wemovedthedetectortoanotherposi- twodetectorsisabout10monaverage,whichallowsustoperforma tionnearthesouth-westcornerofthechamberinJanuary2017(position stereoanalysisofthedetectedstructures. TheexposurestartedinDe- H2,2.9mfrompositionH1,Fig.1d)andreducedtheunitseparationto cember2015. Duringtheexposure,wemodifiedthefilmconfiguration 1.0mtoenlargetheangularcoverageofthemeasurement.Thedetector several times when we changed the films (every two months on aver- operationhasbeenverystableformorethanoneyearandisstillbeing age);onlyasubsetofthefulldatasetwasusedforthisanalysistomit- continued(Methods). igatetheeffectoftheparallaxontheresolution(ExtendedDataTable Whenwenormalizetheresultsbythesimulationofthesolidpyra- 1andMethods). Aftereachexposure,thenuclearemulsionfilmswere midwithouttheknownstructures,weseethemclearly(Fig. 3a,b). By processedbyphotographicdevelopmentinthedarkroomoftheGrand normalizing with a simulation that includes the known structures, we Egyptian Museum Conservation Center. After the development, they observe a muon excess that is consistent with Nagoya’s result (Meth- were transported to Nagoya University and read-out by an automated ods,Fig.3c-f). nuclearemulsionscanningsystem25,26,27. Thethirdkindofinstrument,designedbytheCEA,ismadeofmicro- We compared the resulting muon radiographs (Fig. 2a,b) with the pattern gaseous detectors (Micromegas) based on an argon mixture12 expected results computed using Monte Carlo simulation that include (Methods). Theyarerobustenoughtobeinstalledoutsideandcanrun knownstructuresinsidetheobservationregion(Fig.2c,d). Thesecom- for unlimited time, but they have a larger footprint than the emulsion parisonsclearlyshowthatthelargeknownstructures(theGrandGallery plates(Fig. 1i,ExtendedDataTable1). Each“telescope”isbuiltfrom andtheKing’schamber)areobservedbythemeasurementsandthere- fouridenticaldetectorswithanactiveareaof50×50cm2,andasignal sultsmatchtheexpectation(Fig. 2a-d). However, fromthetwoposi- onatleastthreeofthemisrequiredtotriggertheacquisition.Anonline tions,wealsodetectedanunexpectedandsignificantexcessofmuons analysis is performed to extract the muon track parameters which are in a region almost parallel to the image of the Grand Gallery. Statis- thentransferredatCEA,inFrance,witha3Gconnection(Methods). tical significance of the excess is higher than 10 sigma at the highest InordertoconfirmNagoya’sdiscoveryandtoprovideanadditional difference direction (Fig. 2c). The muon excess is similar to the one pointofview,weplacedtwosuchtelescopesinfrontoftheNorthface generated by the Grand Gallery, which means that the volume of the ofthepyramid(Fig.1a-c),lookinginthedirectionoftheGrandGallery twovoidsisofthesameorder(Fig.2e,fandExtendedDataFig.2).We (Methods),andcloseenoughtoeachothersothattheirdatacanbecom- 2 1) a c e on New void B B siti po New void NE 1 ulsions, B m ar e A A e cl u n ( 2) b d f n B New void B o siti o 2 ns, p B New void E sio Nul m A A e ar e cl u n ( nal analysis gQueen’s chamber [m] B h Queen’s chamber [m] A i West [m] C 3-dimensio Height from the floor of C,SDoAuth North [m] Height from the floor of EDast B CWest [m] East SoAuth D B North [m] Figure2|Resultsoftheanalysisofthenuclearemulsionfilms.(A:King’schamber,B:GrandGallery,C:Queen’schamber(positionNE2),D:Niche(position NE1),NewVoid:theunexpectedmuonexcessregion;thesearecommoninallplots)a,b,Two-dimensionalhistogramsofthedetectedmuonflux(/cm2/day/sr)at positionsNE1andNE2. Theresolutionofthishistogramis0.025×0.025(Methods). Inthisfigure,rightiswest,topisnorth. Thefouredgesofthepyramidare clearlyseenasacrosspattern.c,d,ResultsofsimulationwiththeknowninnerstructuresusingtheGeant4software28frompositionsNE1andNE2.e,f,Histogram oftypicalangularregionasshownbythewhitesquare(0.4≤tanθy<0.7). Theredlineshowsthedata;theblacksolidlineshowsthesimulationwiththeinner structures;thegraydashedlineshowsthesimulationwithouttheinnerstructures. Errorbarsindicate1sigmaofstatisticalerror(standarddeviation). Moreslices areavailableontheExtendedDataFig.2.g-i,Resultsofthetriangulationanalysis(threesectionalviews).Eachfigureshowstheinnerstructures(grayline)andthe results.Foreachposition,wedividedtheregionofinterest(0≤tanθy<1)intofourslicesandextractedthecenterofthemuonexcessforeachofthem,resulting in4pairsofdirection(Methods).Eachofthefourpointsrepresentstheresultofthetriangulationforapairofslicesandtheassociatedstatisticalerror(Methods). ThedetectorpositionsareshownasablackboxforpositionNE1andawhiteboxforpositionNE2;gshowsaverticalsection(rightisnorth);hshowsavertical section(rightiswest);ishowsahorizontalsection(upiswest,rightisnorth). bined(Fig. 1c). Aprevious3-monthmeasurementcampaignwithone 1. Lehner,M.,Thecompletepyramids: SolvingtheAncientMysteries telescopeonthenorthsidealreadyrevealedananomalyinthisregion, (ThamesandHudson,2008). above 3 sigma, but the telescope was shifted from the main vertical 2. Hawass, Z., Pyramid Construction: New Evidence Discovered in axis,andsonotoptimallypositioned. Aftertwomonthsofacquisition Giza.Stationen:BeiträgezurKulturgeschichte,1998. from the new position, the data analysis reveals two statistically sig- 3. Smith,C.B.,Hawass,Z.&Lehner,M.,Howthegreatpyramidwas built(HarperCollins,2006). nificant excesses of muons in the core of the pyramid (Fig. 4): one correspondingtotheGrandGalleryandonecorrespondingtotheun- 4. ParticleDataGroup, Reviewofparticlephysics. ChinesePhysics C40(10),100001(2016). expectedvoid(Methods). The3Dmodelconfirmsthatthetelescopes’ 5. Alvarez,L.W.etal.,Searchforhiddenchambersinthepyramids. observationconvergestothesameregionastheoneobtainedfromthe Science167(3919),832-839(1970). Queen’schamberwithemulsionplates(Fig.4h).Theoverallcombined 6. Tanaka,H.K.M.,Nakano,T.,Takahashi,S.,Yoshida,J.&Niwa,K., excessesyield8.4(resp.5.8)sigmafortheGrandGallery(resp.thenew Developmentofanemulsionimagingsystemforcosmic-raymuon void)(Methods). Toourknowledge,thisisthefirsttimeaninstrument radiography to explore the internal structure of a volcano, , Mt. hasdetectedadeepvoidfromoutsideapyramid. Asama.Nucl.Instrum.MethodsPhys.Res.A575,489-497(2007). Three techniques of cosmic-ray muon imaging were applied to in- 7. Morishima, K., Nishio, A., Moto, M., Nakano, T. & Nakamura, M., Development of nuclear emulsion for muography. Annals of Geo- vestigatetheinnerstructureofthepyramid. Theknownvoids(King’s physics60(1),0112(2017). chamberandGrandGallery)areobservedaswellasanunexpectedbig 8. Nakamura,T.A.etal.,TheOPERAfilm: Newnuclearemulsionfor void,whichfullydemonstratestheabilityofcosmic-raymuonradiogra- large-scale,high-precisionexperiments.".NuclearInstrumentsand phytoimagestructures.Thecentreofthevoidislocatedbetween40m MethodsinPhysicsResearchSectionA:Accelerators,Spectrome- and50mfromtheflooroftheQueen’schamber.Itslengthismorethan ters,DetectorsandAssociatedEquipment 556(1),80-86(2006). 30manditscrosssectioniscomparabletothatoftheGrandGallery. 9. Nishio,A.,Morishima,K.,Kuwabara,K.&Nakamura,M.,Develop- Therearestillmanyarchitecturalhypothesestoconsider;inparticular, ment of nuclear emulsion detector for muon radiography. Physics Procedia80,74-77(2015). thebigvoidcouldbemadeofoneorseveraladjacentstructures,andit 10. Fujii,H.etal.,Detectionofon-surfaceobjectswithanunderground couldbeinclinedorhorizontal.Thedetailedstructureofthevoidshould radiography detector system using cosmic-ray muons. PTEP (5), befurtherstudied. Overall,thisdiscoveryshowshowthemethodsde- 053C01(2017). velopedinparticlephysicscanshedlightononeofthemostimportant 11. Fujii,H.etal.,Performanceofaremotelylocatedmuonradiography heritagebuildings,anditcallsformoreinterdisciplinarycollaborations system to identify the inner structure of a nuclear plant. PTEP 7, tohelpunderstandingthepyramidanditsconstructionprocess. 073C01(2013). 3 Figure3|Resultsoftheanalysisofthescintillationhodoscopes. a-b,Two-dimensionalhistogramsofthedetectedangleofmuonsafternormalizationbythe simulationwithoutinnerstructuresatpositionsH1andH2(Methods). Theimagespresentatopviewandthenorthistheupward. ∆xand∆ycorrespondto thechannelnumberdifferencebetweentheupperandlowerlayersalongxandycoordinates(Methods). Thebinnumberhencerangesfrom-120to120and providesthetangentoftheincidentanglewhendividedby150(resp.100)forpositionH1(resp.H2).Thedetectorintroducesadarkcross-shapedartefactvisible onthetwo-dimensionalhistograms,whichaddsasmallsystematicerrorof3%totheanalysis(Methods). c-d,Two-dimensionalhistogramsofdetectedangleof muonsafteranormalizationbythesimulationwithinnerstructures(whicharethereforeremoved). Theimagespresentthetopviewandthenorthistheupward. Theunexpectedstructureisvisible. e-f,Histogramsoftypicalangularregion(-25<∆x<75,25<∆y<47)correspondingtoasliceofpanelscandd(yellow rectangle). MoreslicesareavailableinExtendedDataFig. 4. Blackpointswitherrorbarsshowtherelativeexcessafterdividingthedatabythemodelwiththe knownstructures(theKing’schamberandtheGrandGallery): aperfectagreementbetweenthedataandthemodelwouldcorrespondtoahorizontalline;apeak correspondstoanunexpectedexcessofmuonsinthedata. 12. Bouteille,S.etal.,AMicromegas-basedtelescopeformuontomog- 24. Menchaca-Rocha, A., Searching for cavities in the Teotihuacan raphy: The WatTo experiment (and references therein). Nuclear Pyramid of the Sun using cosmic muons experiments and instru- Instruments and Methods in Physics Research Section A: Accel- mentation.InternationalCosmicRayConference4,325(2011). erators,Spectrometers,DetectorsandAssociatedEquipment 834, 25. Yoshimoto,M.,Nakano,T.,Komatani,R.&Kawahara,H.,Nuclear 223-228(2016). emulsion readout system HTS aiming at scanning an area of one 13. Dash, G., The Great Pyramid’s Footprint: Results from our 2015 thousandsquaremeters.e-Print:arXiv,1704.06814(2017). Survey.Aeragram16(2),8-14(2015). 26. Morishima,K.,Hamada,K.,Komatani,R.,Nakano,T.&Kodama,K., 14. Hawass,Z.etal.,Firstreport:Videosurveyofthesouthernshaftof Developmentofanautomatednuclearemulsionanalyzingsystem. thequeen’schamberinthegreatpyramid. AnnalesduServicedes RadiationMeasurements50,237-240(2013). Antiquitésdel’Egypte84,203-216(2010). 27. Hamada, K. et al., Comprehensive track reconstruction tool 15. Richardson,R.etal.,The"Djedi"RobotExplorationoftheSouth- "NETSCAN 2.0" for the analysis of the OPERA Emulsion Cloud ern Shaft of the Queen’s Chamber in the Great Pyramid of Giza, Chamber.JournalofInstrumentation7(7),P07001(2012). Egypt.JournalofFieldsRobotics30(3),323-348(2013). 28. Agostinelli,S.etal.,GEANT4—asimulationtoolkit. Nuclearinstru- 16. Tallet, P., LespapyrusdelaMerRouge1: Le"journaldeMerer" ments and methods in physics research section A: Accelerators, (InstitutFrançaisd’ArchéologieOrientale,2017). Spectrometers,DetectorsandAssociatedEquipment 506(3),250- 17. Bui,H.D.,ImagingtheCheopspyramid (SpringerScience&Busi- 303(2003). nessMedia,2011). 18. Butler, D. K., Microgravimetric and gravity gradient techniques for AuthorcontributionsK.M., M.K., A.N., N.K., Y.M.andM.M.per- detection of subsurface cavities. Geophysics 49 (7), 1084-1096 formedtheexperimentsandanalysedtheresultsforthenuclearemulsion (1984). films;F.T.,H.F.,K.S.,H.K.,K.H.andS.O.performedtheexperiments 19. Yoshimura,S.,Nakagawa,T.,Tonouchi,S.&Seki,K.,Nondestruc- andanalysedtheresultsforthescintillatorhodoscopes. S.P.,D.A.,S. tivePyramidsinvestigation,Part1and2. StudiesinEgyptianCul- B.,D.C.,C.F.,P.M.,I.M.andM.R.performedtheexperimentandanal- ture6(1987). ysedtheresultsfortelescopesgasdetectors.B.M.,P.G.,E.G.,N.S.,Y. D.andM.S.createdthe3Dmodelsusedformuographysimulationsand 20. Morishima,K.etal.,Firstdemonstrationofcosmicraymuonradiog- RTMS.B.M.designedandimplementedtheRealTimeMuographySim- raphyofreactorcoreswithnuclearemulsionbasedonanautomated ulator(RTMS)andcontributedtotheanalyses;Y.E.,T.E.,M.E.andV.S. high-speed scanning technology. Proc. of the 26th Workshop on coordinatedthedifferentexperimentsoperationsonthefield(muography, RadiationDetectorsandTheirUses(2012). 3Dscans);thepaperwasmainlywrittenbyK.M.,S.P.,F.T.,M.T.,B.M. 21. Borozdin, K. N. et al., Surveillance: Radiographic imaging with andJ.-B.M.,withcontributionsofalltheotherauthors;H.H.,M.T.,B.C., cosmic-raymuons.Nature422(6929),277(2003). B.M.andY.E.designedandcoordinatedtheproject(ScanPyramids); 22. Menichelli,M.etal.,Ascintillatingfibrestrackerdetectorforarchae- Authorinformation Correspondenceandrequestsformaterialsshould ologicalapplications. NuclearInstrumentsandMethodsinPhysics be addressed both to K. M. (morishima@flab.phys.nagoya-u.ac.jp) and Research Section A: Accelerators, Spectrometers, Detectors and M.T.([email protected]). AssociatedEquipment572(1),262–265(2007). Acknowledgements This experiment is part of the ScanPyramids 23. Saracino,G.etal.,Imagingofundergroundcavitieswithcosmic-ray project, which is supported by NHK, La Fondation Dassault Systèmes, muonsfromobservationsatMt. Echia(Naples). ScientificReports Suez, IceWatch, le Groupe Dassault, Batscop, Itekube, Parrot, ILP, 7(1),1181(2017). Kurtzdev, Gen-G, Schneider Electric. The measurement with nuclear 4 a G1 (Alhazen) 1600 b d G2 (Brahic) 2200 e 1400 2000 1800 1200 1600 1000 141.3 ± 28.3 1400 167.1 ± 44.6 800 11020000 600 800 400 600 400 200 200 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 tan(θ) tan(θ) 1000 c 1200 f 800 1000 800 600 141.8 ± 24.7 163.0 ± 26.5 600 400 400 200 200 g 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 h 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 tan(θ) tan(θ) Triangulation positions from Nagoya University G1 (Alhazen) G2 (Brahic) Figure4|Resultsoftheanalysisofthegasdetectors. a,2DimagefrompositionG1(Alhazentelescope,Fig. 1a,b)inlogarithmicscale,withwhiterectangles indicatingthe2muonexcessesseenbythetelescope.b,Horizontalsliceshowingthemuonexcessthatcorrespondstotheupperdottedblackrectangleinpanela. Thesolidblacklineisafitofthedata(Methods). c,Horizontalsliceshowingthemuonexcessthatcorrespondstothelowerdottedblackrectanglein(a). d,2D imagefrompositionG2(Brahictelescope,Fig1a,b)inlogarithmicscale,withwhiterectanglesindicatingthe2muonexcessesseenbythetelescope.Somenoiseis visibleatthecentreoftheimage,butitdoesnotinterferewiththescannedregions.e,Horizontalsliceshowingthemuonexcessthatcorrespondstotheupperblack rectanglein(d).f,Horizontalsliceshowingthemuonexcessthatcorrespondstothelowerblackrectanglein(d).g,Yellowconeandredcone,tracedfromposition 1,indicatingtheangularareafortheobservedmuonexcesses(a-c).ThetwoconesintersecttheverticalplaneoftheGrandGallery(RTMSsoftware).h,Sideview ofthesameconesasing,forthetwopositions,confirmingthatthe2excessescorrespondtotheGrandGalleryandthenewvoid.Theblackcrossescorrespondto thepositionestimatedwiththenuclearemulsionplates(Fig.2g-i):thetwoanalysesareperfectlycompatible.Gridsizeis10m(RTMSsoftware).Moreslicesare availableontheExtendedDataFig.6. emulsionswassupportedbytheJST-SENTANProgramfromJapanSci- atNagoyaUniversity. Inthisdesign,silverbromidecrystalswithadiam- enceandTechnologyAgency,JSTandJSPSKAKENHIGrantNumbers eterof200nmaredispersedina70µmthicksensitiveemulsionlayer, JP15H04241. The CEA telescopes were partly funded by the Région whichiscoatedonbothsidesofa175µmthicktransparentpolystyrene Ile-de-France and the P2IO LabEx (ANR-10-LABX-0038) in the frame- plastic base7,29 (Extended Data Fig. 1a,b). When a charged particle work “Investissements d’Avenir” (ANR-11-IDEX-0003-01) managed by passesthroughthisemulsionlayer,itsthree-dimensionaltrajectory(track) the Agence Nationale de la Recherche (ANR, France). The detectors isrecordedandcanberevealedthroughthechemicaldevelopmentpro- werebuiltbytheELVIAcompanyandtheCERNMPGDworkshop. The cess (Extended Data Fig. 1c,e). Thanks to the precise grain size and authorswouldliketothankthemembersandbenefactorsoftheScan- structure, tracks can be reconstructed with sub-micron accuracy in 4π Pyramidsproject,andinparticular:T.Hisaizumi,themembersofCairo steradiansbyusinganopticalmicroscope(ExtendedDataFig. 1d). The University, the members of F-lab Nagoya University, Y. Doki, Aïn El trackreconstructionqualitydependsonthegraindensityperlengthalong ShamsUniversity3Dscanningteam,themembersofEgyptianMinistryof the line of a track. In this experiment, films with a grain density of 37 Antiquities,K.ElEnany,M.ElDamaty,T.Tawfik,S.Mourad,S.Tageldin, grainsper100µmandanoiselevelofabout1grainper1000µm3were E.Badawy,M.Moussa,T.Yabuki,D.Takama,T.Shibasaki,K.Tsutsum- used. These films can be used for long term (2-3 months) measure- ida, K. Mikami, J. Nakao, H. Kurihara, S. Wada, H. Anwar, T. de Ter- mentinanenvironmentat25°C(temperatureintheQueen’schamber) sant,P.Forestier,L.Barthès,M.-P.Aulas,P.Daloz,S.Moignet,V.Raoult- bytuningofvolumeoccupancyofsilverbromidecrystals(35%)30. Each Desprez,S.Sellam,P.Johnson,J.-M.Boursier,,T.Alexandre,V.Ferret, 30×25cm2filmwasvacuum-packedinanaluminiumlaminatedpackage T. Collet, H. Andorre, C. Oger-Chevalier, V. Picou, B. Duplat, K. Guil- forlightshieldingandhumiditycontrol(30%RH)(ExtendedDataFig.1f). bert,J.Ulrich,D.Ulrich,C.Thouvenin,L.Jamet,A.Kiner,M.-H.Habert, An acrylic plate with 2 mm thickness was also packed together for the B.Habert, L.Gaudé, F.Schuiten, F.Barati, P.Bourseiller, R.Theet, J.- controlofnoiseincrease9. Thepackedfilmwasfixedontoanaluminum P. Lutgen, R. Chok, N. Duteil, F. Tran, J.-P. Houdin, L. Kaltenbach, M. honeycombplate(ExtendedDataFig. 1g,h)atNagoyaUniversity,and Léveillé-Nizerolle, R. Breitner, R. Fontaine, H. Pomeranc, F. Ruffier, G. thentransportedtoCairobyairplane. Toavoidtheelevatedcosmic-ray Bourge, R.Pantanacce, M.Jany, L.Walker, L.Chapus, E.Galal, H.A. flux during the flight, we transported the two emulsions layers of each Mohalhal,S.M.Elhindawi,J.Lefaucheux,J.-M.Conan,E.M.Elwilly,A. detectorseparatelyandassembledtheminEgypt. Sincewerejectthe Y.Saad, H.Barrada, E.Priou, S.Parrault, J.-C.Barré, X.Maldague, C. trajectoriesthatarenotcrossingthetwolayers,themuonsaccumulated Ibarra Castenado, M. Klein, F. Khodayar, G. Amsellem, M. Sassen, C. duringtheflightarerejectedintheanalysisandareconsideredasback- Béhar, M. Ezzeldin, E. Van Laere, D. Leglu, B. Biard, N. Godin, P. der groundtracks. Manuelian,L.Gabriel,P.Attar,A.DeSousa,F.Morfoisse,R.Cotentin. Dataacquisition(Nuclearemulsions-NagoyaUniversity).Theobser- vationwithnuclearemulsionfilmswaslaunchedintheQueen’schamber in December 2015 and the films were periodically replaced. Each film wasalignedwithareferencelinedrawnwithalasermarkerandaspirit level,whichledtoanangularerroroflessthan10mrad. Aftereachex- Methods posure,weprocessedthefilmsbyphotographicdevelopmentinthedark roomattheGrandEgyptianMuseumConservationCenter. Forthede- Detector Design (nuclear emulsions - Nagoya University). Nuclear velopingsolution,weusedtheXAAdeveloper(FUJIFILMCo.Ltd.)for25 emulsion is a special photographic film that is able to detect minimum minutesat20°C.Afterthedevelopment,wecarriedthefilmstoNagoya ionizing particles such as cosmic-ray muons (Extended Data Fig. 1). University,wheretheywereread-outbyanautomatednuclearemulsion The films used in this experiment have been developed and produced scanningsystemdevelopedsinceearly1980’sinNagoyaUniversity31,32. 5 In this experiment, tracks recorded in films were scanned by a Hyper Dataacquisition(scintillatorhodoscopes-KEK).Rawdata-timeand TrackSelector25whichcanread-outtracksataspeedof4700cm2/hwith positionofallhitchannels-arefirststoredinaPCandregularlyretrieved angularaccuracyof1.8mradforverticaltracks,andsavedinacomputer withUSBmemorytobesenttoKEKthroughtheInternet. Intheoff-line storagedeviceasdigitaldata(position,angle,pulseheight). Theangu- analysis,amuoneventisdefinedbythecoincidenceofthe4layers,with laracceptanceisapproximately|tanθ|≤1.3whereθisthezenithangle atmost2neighboringhitsineachofthem. Eventsareaccumulatedin relativetotheperpendicularoftheemulsionsurface. two-dimensionalbins(∆x,∆y)givenbythechannelnumberdifferences betweentheupperandlowerlayersalongxandycoordinates. Thebin Dataanalysisandstatistics(nuclearemulsions-NagoyaUniversity). numberhencerangesfrom-120to120andprovidesthetangentofthe Themuontracksarereconstructedbythecoincidencebetweenthetwo incidentanglewhendividedby150(resp.100)forpositionH1(resp.H2). stackedfilmswithincriteriaofsignalselectionandthencountedasde- WeinstalledthedetectoratpositionH1inAugust2016, andcontinued tectedmuons26. Inthisanalysis,asubsetofthefulldatasetwasused thedatatakingforfivemonthsuntilJanuaryin2017. Duringthisperiod, toavoiddecreasingtheresolutionbecauseofimagingparallax: 4.4mil- we accumulated 4.8 M events. We then moved the detector by 2.9 m liontrackswereaccumulatedfor98daysatpositionNE1and6.2million west in order to better investigate the newly observed void. The data tracks for 140 days at position NE2, with an effective area of 0.45 m2. taking is still continuing for more than eight months and 12.9M events Subsequently,detectedmuonswereintegratedintotwo-dimensionalan- wereaccumulatedatpositionH2attheendofSeptember2017,withan gularspace(tanθx-tanθy)withthebinsizeofaspecifiedsize(e.g.,0.025 overallsmoothacquisitionformorethanayear. × 0.025) and the angular acceptance of |tanθ|≤ 1.0, and converted to muonflux(/cm2/day/sr)ineachbin(Fig.2). Dataanalysisandstatistics(scintillatorhodoscopes-KEK).Thefirst WeusedtheMonteCarlosimulatorGeant4Version10.228tocompute step of the analysis is the normalization of the data by a Monte Carlo the expected muon flux at detector position. In these simulations, the simulation that takes into account the cosmic ray muon flux and muon physical process of electromagnetic interactions and decays of muons interactions35,36(energylossandmultiplescattering)inthePyramid.We were included, Miyake’s formula of integrated intensity of cosmic-ray assumeaconstantenergylossof1.7MeVperg/cm2(ref.4),ameanden- muons was utilized as a flux model, and only muons were generated sity of 2.2 g/cm3, and a radiation length of 26.5 g/cm2 for the stones. asprimaryparticlesinthissimulator33. Inordertoreducetheprocess- Muonsarepropagatedinstepsof0.1m. Becausetheknownstructures ingtime, onlymuonswerepropagatedandtherangeofincidentmuon ofthePyramidaresimulated,theireffectsareremovedafterthenormal- energy was limited to be 20 to 1000 GeV in the zenith angular range izationofthedataandtheremainingmuonexcessshowstheexistence 0 to 70 degree (-2.75 < tanθ < 2.75). For the pyramid simulation, we ofanunknowncorridor-likenewstructure. Thesuccessfuleliminationof modeledtheshapeandthelocationoftheknownstructures(theGrand theknownstructuressuggeststhereliabilityofoursimulation. Slicesof Gallery, the King’s chamber, the corridor that connects them, and the theimagesalong∆xarepresentedinExtendedDataFig.4a,b.Thever- Queen’schamber)usingthesurveyofDormion34. Wedefinedthatany ticalscaleistherelativeyieldtothesimulationresult. Thenewstructure emptyvoidwouldbefilledwithairandthatthestonesarelimestone(2.2 isclearlyseenineachslice. Thesignificanceofthemuonexcesswas g/cm3)exceptaroundtheKing’schamber,wheretheyaregranite(2.75 obtainedbyaGaussianfit:atpositionH1theexcessheightsintheslices g/cm3). Theexposureperiodinthesimulationiscompatiblewith1000 rangesfrom5.2%to8.9%andmorethan10sigmaexceptforthemost days,whichisapproximately10timeslongerthanthatofanalyzeddata. outerslice,inwhichtheheightisstillmorethan5sigma. AtpositionH2 Weestimatedtherockthicknessdistributionin2Dfromthedetectorpo- theheightrangesfrom8.9%to11%andareagainabove10sigmaex- sition:theminimumthicknessis65mandthemaximumthicknessis115 ceptforthemostouterslice,inwhichtheexcessisabove7sigma.From m. Ifweassumethefluctuationofsurfacestructureis1mscale(stone theseslices,wefoundthatthestructurestartsalmostatthecentreofthe size),theeffectoftherelativefluctuationislessthan2%. Pyramidandendsatananglewhosetangentis0.8totheNorth. Asa Normalization was performed to compare real and simulated data in result,thelengthofthemainpartofthenewstructureisapproximately the region without the analyzing target (the Grand Gallery, the King’s 30m. ResultsfrombothpositionH1andH2showthatthenewvoidis chamber,andtheanomalyregion). Theexcessregionofmuonfluxwas abovetheGrandGallery,whichisconsistentwithNagoya’sresult. clearlyapparentintheimages(Figure2a-d).Twohistograms(Figure2e,f) Detector design (gas detectors - CEA). A telescope (Extended Data showmuonfluxextractingfromtheslicein0.4≤tanθy <0.7. Fromthe Fig.5a)iscomposedof4Micromegas(ExtendedDataFig.5b),aMicro- comparisonbetweendataandthesimulation,thesignificancesofeach PatternGaseousDetector(MPGD)inventedatCEA-Saclay37(Extended anomalyregionwereevaluatedat13.7sigma(statistical)forpositionNE1 DataFig. 5c). Allthedetectorsareidentical,withanactiveareaof50× and12.7sigmaforpositionNE2. 50cm²(ref.12). Theyarebuiltfromthebulktechnology38 withascreen- Inordertolocatethenewlydiscoveredstructure,weperformedatri- printingresistivefilmontopofthereadoutstripstoallowforstableop- angulationfromthetwopositions. ThecentreofdetectorpositionNE1 erationandhighergain39. EachdetectorprovidesXandYcoordinates waslocatedat5.8meastfromtheaxisoftheGrandGalleryandat4.5 througha2Dreadoutinsertedontotheprintedcircuitboard(Extended mwestforpositionNE2. ThedistancebetweenpositionNE1andNE2 DataFig. 5d). The1037readoutstrips(482micronpitch)ofeachco- is1.1minnorth-south(Figure1d). Inordertodeterminethedirection ordinatearemultiplexedaccordingtoapatentedscheme40. AnArgon- towardtheanomalyregion,weperformedthefittingoftheexcessregion iC4H10-CF4,non-flammablegasmixture(95-2-3)isflushedinseriesin toaGaussianfunctionbydividingtheregion(0≤tanθy<1)intofourre- allthedetectorsofatelescope,withaflowbelow0.5L/h,thankstoatight gionswithasegmentof0.25intanθy,becausethenewstructureseems seal(measuredgasleakbelow5mL/hperdetector). toalignalongthetanθyaxisdirection(ExtendedDataFig. 2). Thefitted Each telescope is operated with a Hummingboard nano-PC running center value was used for triangulation and the errors of the estimated GNU/Linux,whichcontrolsalltheelectronics41:adedicatedhighvoltage positionsweredefinedfromtheerrorsonthesightlinescomingfroma power supply (HVPS) card with 5 miniaturized CAEN modules, which halfofthebinwidth,i.e.0.0125intanθxand0.125intanθy(Fig.2g-i). provideupto2kVwith12Vinputs,andtheFrontEndUnit(FEU)readout electronicsbasedontheDREAMASIC42.Aparticularlyimportantfeature Detector design (scintillator hodoscopes - KEK). The detector con- of DREAM is its self-triggering option to generate the trigger from the sistsoftwounitsofdoublelayers, i.e., xandylayers, ofplasticscintil- detectorsthemselves. Adedicatedsoftwarepackagewasdevelopedto lator arrays (Extended Data Fig. 3a-c). A single scintillator element is 10 ×10 mm2 in cross section and 1200 mm long. Each layer has 120 interface all these electronic components to the Hummingboard which performsthedataacquisitionwiththeFEU.Italsomonitorsandsetsthe elementstightlypacked,andhenceitsactiveareais1200×1200mm² highvoltagesthroughtheHVPSandapatentedamplitudefeedbackto (ExtendedDataFig.3d).Theelementhasacentralholealongitslength, keepthegainconstantinspiteoftheextremeenvironmentalconditions throughwhichawave-shifteropticalfiberisinsertedtoefficientlytrans- oftheGizaplateau(ExtendedDataFig.5e-g).Theoverallconsumption ferthescintillationlighttoaMulti-PixelPhotonCounterSensor(MPPC, ofatelescopeisonly35W. Hamamatsu). ThebiasvoltageoftheMPPCwasselectedaccordingto thetemperatureoftheQueen’sChamber, whichisconstantregardless A trigger is formed by the FEU when at least 5 coordinates out of 8 oftheweatheroutside. EachlayerhasitsownDAQbox,whichdigitizes observeasignalaboveaprogrammablethreshold.Thesampledsignals theinformationofsensorsignalsandsendsthemtoacommonPCinside (50samplesatafrequencyof100/6MHz,ExtendedDataFig. 5h)ofall thedetectorframe. Thetotalpowerconsumptionofthedetectorsystem theelectronicchannels(64×8)arethendirectlyconvertedtoaROOT is300W.Theverticaldistancebetweenthetwounitsis1500mmatpo- file43, a format commonly used in particle physics. The nano-PC per- sitionH1and1000mmatpositionH2,andgivesanangularresolution formstheonlinereconstructionofmuontrajectories,andthemuontrack around7and10mradrespectively.Thetangentacceptancerangesfrom parametersaresenttoFrancewithsomeenvironmentaldata(tempera- 0(vertical)to0.8and1.2radrespectively. ture,pressure,humidityinthegas)througha3Gconnection. The detector introduces a dark cross-shaped artefact visible on the Dataacquisition(gasdetectors-CEA).Thedatawerecollectedfrom two-dimensionalhistograms(Fig. 3a-d),whichaddsasmallsystematic May4thtoJuly3rd,2017withastabledatataking. Twotelescopeswere errorof3%totheanalysis. Accordingtoouranalyses,theerrorislikely installedinfrontofthechevrons(Northface),atadistanceof17and23 tobecausedbytheverynarrowgapbetweenneighboringscintillatorel- m,respectively(Fig. 1b,c). Theaxisofbothtelescopesdeviatedslightly ements,butthiseffecthasnotbeenfullyunderstoodyet.Thissystematic fromthenorth-southaxis,towardtheeast,topreventtheGrandGallery errorisnotrelevantinthepresentanalysis,whichonlyexaminestheex- frombeingatthecentreoftheimage,wheresomecorrelatednoisecan istenceofthenewvoid. showup. Duringtheacquisitiontimethetwotelescopes(calledAlhazen 6 and Brahic, at positions G1 and G2, see Fig. 1b,c) recorded 15.0 and 29. Morishima,K.,LatestDevelopmentsinNuclearEmulsionTechnol- 14.5 million triggers, respectively, from which 10.6 and 10.4 million of ogy.PhysicsProcedia80,19-24(2015). track candidates were identified. After the chi² quality cut, 6.9 and 6.0 30. Nishio,A.etal.,LongTermPropertyofNuclearEmulsion.Program million good tracks were reconstructed, and form the images shown in andProceedingsofThe1stInternationalConferenceonAdvanced Figure4(a)and(d). Imaging(ICAI2015),668-671(2015). Dataanalysisandstatistics(gasdetectors-CEA).Fromtheacquired 31. Aoki, S. et al., The Fully Automated Emulsion Analysis System. tracks,wesearchedforanomaliesbyextractingslicesintan(phi),i.e.hor- NuclearInstrumentsandMethodsinPhysicsResearchSectionB: izontalslices. Togetmorestatistics,thethicknessoftheslicesislarger BeamInteractionswithMaterialsandAtoms51,466-472(1990). thanthebinningshowninthe2Dimages. Wechoseaslicethicknessof 0.10fortheAlhazentelescope,andweincreasedto0.11fortheBrahic 32. Morishima, K.&Nakano, T., Developmentofanewautomaticnu- telescopetokeeproughlythesamestatistics.TheExtendedDataFig.6 clearemulsionscanningsystem,S-UTS,withcontinuous3Dtomo- illustratesalltheslicesmadewithAlhazenfrom0.21to-0.19. Fromone graphicimageread-out. JournalofInstrumentation 5(4), P04011 histogramtoanother,theslicepositionisshiftedby0.02,whichmeans (2010). thedataofconsecutivehistogramslargelyoverlap. Thegoalistoscan 33. Miyake,S.,Rapporteurpaperonmuonsandneutrinos. 13thInter- thepyramidanddetectanydeviationfromstatistics,beingfluctuationsor nationalcosmicrayconference(1973). not. AscanbeseenonExtendedDataFig.6,theslicesshowsmoothdis- 34. Dormion, G., La chambre de Cheops: analyse architecturale (Fa- tributions,exceptaroundhistograms5-6and15. Thehistograms6and yard,2004). 15correspondtoFig. 4band4crespectively. Thesedistributionswere 35. Reyna,D.,Asimpleparameterizationofthecosmic-raymuonmo- fittedwithdifferentfunctions,inparticularpolynomials.Thoughsuchfunc- mentumspectraatthesurfaceasafunctionofzenithangle. arXiv tionsareessentiallyempirical,aCRY/Geant4simulationwasperformed preprint,hep-ph/0604145(2006). tofurthervalidatethischoice,leadingtoagoodagreementusinga2nd orderpolynomialwithareducedχ²of1.4.Thesamefunctionreproduces 36. Jokisch, H., Carstensen, K., Dau, W., Meyer, H. & Allkofer, O., datadistributionsfairlywell-withareducedχ²valueof1.6and2.0re- Cosmic-raymuonspectrumupto1TeVat75zenithangle.Physical spectivelyforhistograms6and15-exceptinaregionwhereanexcess reviewD19(5),1368(1979). isclearlyobservedonbothslices,withsinglebinexcessof4.2and5.3 37. Giomataris,I.Y.,Rebourgeard,P.,Robert,J.P.&Charpak,G.,MI- sigma respectively. Re-fitting with a 2nd order polynomial and a Gaus- CROMEGAS:ahigh-granularityposition-sensitivegaseousdetector siansignificantlyreducestheχ²to1.2and1.4,withaGaussianintegral forhighparticle-fluxenvironments. NuclearInstrumentsandMeth- of141.3±28.3(5.0sigma, histogram6)and141.8±24.7(5.7sigma, ods in Physics Research Section A: Accelerators, Spectrometers, histogram 15). Similarly, Brahic data show 2 significant excesses, cor- DetectorsandAssociatedEquipment376(1),29-35(1996). responding to Fig. 4e and 4f. A 2nd order polynomial alone results in reduced χ² value of 1.8 and 2.4 respectively, while adding a Gaussian 38. Giomataris,I.Y.etal.,Micromegasinabulk. NuclearInstruments and Methods in Physics Research Section A: Accelerators, Spec- reducesthemto1.5and1.6. TheGaussianintegralis167.1±44.6(3.7 trometers, Detectors and Associated Equipment 560 (2), 405-408 sigma,Fig.4e)and163±26.5(6.1sigma,Fig.4f). (2006). The3Dmodelconfirmsthatthe(wellcompatible)excessesfromFig. 4c(Alhazen)and4f(Brahic)pointtothesameregionofthepyramidand 39. Alexopoulos, T. et al., A spark-resistant bulk-micromegas cham- overlapverywellwiththeGrandGallery(Fig. 4h). Thequasi-fulloverlap berforhigh-rateapplications. NuclearInstrumentsandMethodsin ofthecones(duetothepurposefulproximityofthetelescopes)justifies PhysicsResearchSectionA:Accelerators, Spectrometers, Detec- adding the 2 excesses, leading to 304.8 ± 36.2 (i.e., 8.4 sigma). This torsandAssociatedEquipment640,110-118(2011). fullyvalidatestheabilityofthetelescopestounambiguouslydetectlarge 40. Procureur,S.,Dupré,R.&Aune,S.,Geneticmultiplexingandfirst structuresinthecoreofthepyramid. results with a 50x50cm2 Micromegas. Nuclear Instruments and The 3D model also confirms that the excesses from Fig. 4b and 4e Methods in Physics Research Section A: Accelerators, Spectrom- pointtothesameregion. Likebefore,thequasi-fulloverlapofthecones eters,DetectorsandAssociatedEquipment729,888-894(2013). justifiesaddingthe2excesses, leadingto308.4±52.8(5.8sigma). A 3DcomparisonwiththetriangulationmadebyNagoyaUniversityfurther 41. Bouteille,S.etal.,AMicromegas-basedtelescopeformuontomog- confirmsalargeoverlapoftheseregions.Theotherslicesshownoother raphy:TheWatToexperiment.NuclearInstrumentsandMethodsin anomalyexceeding5sigma. PhysicsResearchSectionA:Accelerators, Spectrometers, Detec- Itisworthmentioningthatthisanalysisreliesdirectlyonrawdatawith- torsandAssociatedEquipment834,223-228(2016). outmodelsubtraction, whichmeansthesystematicsaremuchsmaller, 42. Flouzat, C. et al., Dream: a 64-channel Front-end Chip with Ana- andcanonlyoriginatefromthefittingfunction.Asanexercise,a3rdpoly- logue Trigger Latency Buffer for the Micromégas Tracker of the nomialfitwasusedforthehistogramsshowingthenewvoid,resultingin CLAS12Experiment.Proc.ofTWEPPconference(2014). excessesof5.2and3.6sigmaforAlhazenandBrahic,andacombined excessof303.5±52.1(5.8sigma). 43. Brun,R.&Rademakers,F.,ROOT—anobjectorienteddataanalysis framework. NuclearInstrumentsandMethodsinPhysicsResearch 3-dimensional model of the pyramid. We designed an accurate 3- SectionA:Accelerators,Spectrometers,DetectorsandAssociated dimensional model of the pyramid by combining existing architectural Equipment389(1-2),81-86(1997). drawings34,44photogrammetry45, and laser scanner measurements45, both inside and outside of the pyramid. After merging these data, the 44. Maragioglio, V. & Rinaldi, C., L’architettura delle piramidi Menfite. modelcontainsabout500,000triangles(ExtendedDataFig.7b-d).This ParteIV,LaGrandepiramidediCheope(Rapallo,1965). modelwasmainlyusedintheRTMSsimulator(seebelow)andasref- 45. Kraus,K.,Photogrammetry:geometryfromimagesandlaserscans erence for the simplified models used in the other simulators. The full (WalterdeGruyter,2007). modelhasaprecisionofapproximately30cmfortheinternalstructures andapproximately1mfortheexternalcasing. RealTimeMuographySimulator.TheRealTimeMuographySimulator Extended Data Table 1 | Comparison of the three muon detection (RTMS,ExtendedDataFigure7a)isafast,interactivesimulatorthatwas technologies. mainlyusedforpreliminaryanalyses,toaidpositioningthegassensors (telescopes),andforconfirmingtheresultsobtainedfromtheotherssim- Nuclear emulsion Hodoscopes Gas detectors ulators. Itallowstheusertoplaceasensorinthedetailed3Dmodelof Nagoya University KEK CEA thepyramidandtosimulatetheobservedmuonrateinrealtime. Muon Angular Resolution 2-14 mrad 7-10 mrad 0.8 - 4 mrad scatteringisnotsimulated.Foreachpixelofthesensor,whichrepresents Angular Acceptance 45 degrees 34 - 45 degrees 45 degrees adirectionrelativetothesensor,thesimulatorcomputestheopacity(in- Active area 30 cm x 25 cm / unit: 1.2 m x 1.2 m 50 cm x 50 cm tegral of the density along the path) from the sensor to the outside of (for this analysis) 0.75 m x 0.6 m (NE1) thepyramid,alongthisdirection. Weusedadensityof2.2g/cm3forthe limestone, and2.6g/cm3 forthegranite. Weconsiderthatmuonslose 0.9 m x 0.5 m (NE2) Position Resolution 1 μm 10 mm 400 μm energyataconstantrateof1.69MeVperg/cm2 (ref4) whichallowsus Height 0.2 mm 1-1.5 m 60 cm tocomputetheminimalenergyEmintocrossthepyramidgiventhevalue Power requirement No Yes (300W) Yes (35W) oftheopacity. Finally,weuseMiyake’sformula33 tocalculatethedistri- Data taking Need development Real time Real time butionofmuonsthathavegreaterenergythanE comingatazenith min angleθ. Thisvalueiscomputedforeachpixeloftheimage,leadingtoa 2-dimensionalhistogramsimilartothoseobtainedwiththedetectors. Data availability. The data that support the findings in this study are availablefromthecorrespondingauthorsonreasonablerequest. 7 a b Silber bromide crystals c Track (diameter 200 nm) Emulsion layer 70 μm Transparency 175 μm plastic base plate Photographic 70 μm development Emulsion layer process d e 100 μm g h Aluminum honeycomb plate : 17 mm f Rubber plate (5 mm) Nuclear emusion (0.3 mm) Aluminum honeycomb plate : 17 mm ExtendedDataFigure1 |Overviewofthenuclearemulsionfilms(NagoyaUniversity).a,Acrosssectionalschematicviewofnuclearemulsion.b,Enlarged schematicviewoftheemulsionlayer.Silverbromidecrystalsaredispersedingelatin.Thereddashedarrowshowsthetrajectoryofthechargedparticle.c,Afterthe photographicdevelopmentprocess,silvergrainsarealignedalongthelineswiththetrajectory(or,track)ofchargedparticle.d,Anopticalmicroscopicphotograph ofatrackofminimumionizedparticlerecordedinanuclearemulsion.e,Anuclearemulsionafterdevelopment.f,Avacuumpackednuclearemulsion.g,Schematic viewofthedetectorconfiguration: sixpackednuclearemulsionfilmswithadetectionareaof30×25cm2each(yellow)arefixedbetweenaluminumsupporting plates(honeycombplate,ingrey).Twofilmsstackedontopofeachotherarepressedwitharubbersheet(black)byfourshortscrews.Threeadditionallongscrews areusedaslegstocorrecttheinclinationofthedetector. h,Crosssectionalschematicviewofthenuclearemulsiondetectorasshowning. Twopackedfilmsare stackedbetweentwohoneycombplatesandrubbersheet. 8 NE1 (nuclear emulsions, position 1) NE2 (nuclear emulsions, position 2) ExtendedDataFigure2 |Slicesofthedataforthenuclearemulsionplates. Eachfigureshowslicesfortanθyevery0.25units(intangent)andseparatedinto fourrangesat0≤tanθy<1(Fig.2a,c).Toppanelshowsmuonfluxdistributionandbottompanelshowsdifferenceofmuonfluxineachfigure.Inthetoppanels, theredlineshowsthedata,theblacksolidlineshowsthesimulationwiththeinnerstructures,andthegreydashedlineshowsthesimulationwithoutanyinternal structure. Inthebottompanels,theredlineshowsthesubtractionbetweenthedataandthesimulationwiththeinnerstructures,theblacklineshowssubtraction betweenthesimulationwiththeinnerstructuresandwithoutthem,sothattheGrandGalleryappearsasamuonexcess. Errorbarsindicate1sigmaofstatistical error(standarddeviation).ThecomparisonbetweentheexcessthatcorrespondtotheGrandGalleryandtheonethatcorrespondstothenewvoidshowsthatthetwo structuresareofasimilarscale.Foreachprojectionofdifferenceofmuonflux,weperformedaGaussianfittingtoestimatethedirectionofanomalies.Thefitting zonewas0≤tanθx≤0.2forpositionNE1and-0.2≤tanθx≤0forpositionNE2.Thesefittedcentreswereusedforthetriangulation. a b d c ExtendedDataFigure3 |Overviewofthescintillatorhodoscopes(KEK).a,Verticalviewofthedetector,consistingoftwounitsoforthogonaldoublescintillator layers.Abluearrowindicatesamuontrackpassingthroughthewholeinstrument.b,Crosssectionofascintillatorelement,showingthecentralholefortheoptical fiber.b,Gridmadeofdoublelayers,detectingthepositionofincidentmuons.d,Planeviewofthedetectorhavinganactiveareaof1.2×1.2m². 9
Description: