ebook img

Discovering Group Theory PDF

218 Pages·2017·1.848 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discovering Group Theory

PUBLISHED TITLES CONTINUED A MATLAB® COMPANION TO COMPLEX VARIABLES A. David Wunsch TEXTBOOKS in MATHEMATICS MEASURE AND INTEGRAL: AN INTRODUCTION TO REAL ANALYSIS, SECOND EDITION Richard L. Wheeden MEASURE THEORY AND FINE PROPERTIES OF FUNCTIONS, REVISED EDITION Lawrence C. Evans and Ronald F. Gariepy NUMERICAL ANALYSIS FOR ENGINEERS: METHODS AND APPLICATIONS, SECOND EDITION DISCOVERING Bilal Ayyub and Richard H. McCuen ORDINARY DIFFERENTIAL EQUATIONS: AN INTRODUCTION TO THE FUNDAMENTALS Kenneth B. Howell GROUP THEORY PRINCIPLES OF FOURIER ANALYSIS, SECOND EDITION Kenneth B. Howell REAL ANALYSIS AND FOUNDATIONS, FOURTH EDITION Steven G. Krantz A Transition to Advanced Mathematics RISK ANALYSIS IN ENGINEERING AND ECONOMICS, SECOND EDITION Bilal M. Ayyub SPORTS MATH: AN INTRODUCTORY COURSE IN THE MATHEMATICS OF SPORTS SCIENCE AND SPORTS ANALYTICS Roland B. Minton TRANSFORMATIONAL PLANE GEOMETRY Tony Barnard Ronald N. Umble and Zhigang Han Hugh Neill CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business Version Date: 20160725 International Standard Book Number-13: 978-1-138-03016-9 (Paperback) Library of Congress Cataloging‑in‑Publication Data Names: Barnard, Tony (Mathematics professor) | Neill, Hugh. | Barnard, Tony (Mathematics professor). Mathematical groups Title: Discovering group theory / Tony Barnard and Hugh Neill. Other titles: Mathematical groups Description: Boca Raton : CRC Press, 2017. | Previous edition: Mathematical groups / Tony Barnard and Hugh Neill (London : Teach Yourself Books, 1996). | Includes index. Identifiers: LCCN 2016029694 | ISBN 9781138030169 Subjects: LCSH: Group theory--Textbooks. | Algebra--Textbooks | Mathematics--Study and teaching. Classification: LCC QA174.2 .B37 2017 | DDC 512/.2--dc23 LC record available at https://lccn.loc.gov/2016029694 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface ......................................................................................................................xi 1. Proof ..................................................................................................................1 1.1 The Need for Proof ...............................................................................1 1.2 Proving by Contradiction ....................................................................3 1.3 If, and Only If ........................................................................................4 1.4 Definitions ..............................................................................................6 1.5 Proving That Something Is False ........................................................6 1.6 Conclusion ..............................................................................................7 What You Should Know..................................................................................7 Exercise 1 ...........................................................................................................7 2. Sets .....................................................................................................................9 2.1 What Is a Set? .........................................................................................9 2.2 Examples of Sets: Notation ..................................................................9 2.3 Describing a Set ...................................................................................10 2.4 Subsets ..................................................................................................11 2.5 Venn Diagrams ....................................................................................12 2.6 Intersection and Union .......................................................................13 2.7 Proving That Two Sets Are Equal .....................................................14 What You Should Know................................................................................16 Exercise 2 .........................................................................................................16 3. Binary Operations ........................................................................................19 3.1 Introduction .........................................................................................19 3.2 Binary Operations ...............................................................................19 3.3 Examples of Binary Operations ........................................................20 3.4 Tables ....................................................................................................21 3.5 Testing for Binary Operations ...........................................................22 What You Should Know................................................................................23 Exercise 3 .........................................................................................................23 4. Integers ...........................................................................................................25 4.1 Introduction .........................................................................................25 4.2 The Division Algorithm .....................................................................25 4.3 Relatively Prime Pairs of Numbers ..................................................26 4.4 Prime Numbers ...................................................................................27 4.5 Residue Classes of Integers ................................................................28 4.6 Some Remarks .....................................................................................32 What You Should Know................................................................................32 Exercise 4 .........................................................................................................33 5. Groups .............................................................................................................35 5.1 Introduction .........................................................................................35 5.2 Two Examples of Groups ...................................................................35 5.3 Definition of a Group ..........................................................................37 5.4 A Diversion on Notation ....................................................................39 5.5 Some Examples of Groups .................................................................40 5.6 Some Useful Properties of Groups ...................................................43 5.7 The Powers of an Element ..................................................................44 5.8 The Order of an Element ....................................................................46 What You Should Know................................................................................49 Exercise 5 .........................................................................................................49 6. Subgroups ......................................................................................................51 6.1 Subgroups ............................................................................................51 6.2 Examples of Subgroups ......................................................................52 6.3 Testing for a Subgroup .......................................................................53 6.4 The Subgroup Generated by an Element .........................................54 What You Should Know................................................................................56 Exercise 6 .........................................................................................................56 7. Cyclic Groups ................................................................................................59 7.1 Introduction .........................................................................................59 7.2 Cyclic Groups .......................................................................................60 7.3 Some Definitions and Theorems about Cyclic Groups .................61 What You Should Know................................................................................63 Exercise 7 .........................................................................................................63 8. Products of Groups .......................................................................................65 8.1 Introduction .........................................................................................65 8.2 The Cartesian Product ........................................................................65 8.3 Direct Product Groups .......................................................................66 What You Should Know................................................................................67 Exercise 8 .........................................................................................................67 9. Functions ........................................................................................................69 9.1 Introduction .........................................................................................69 9.2 Functions: A Discussion.....................................................................69 9.3 Functions: Formalizing the Discussion ...........................................70 9.4 Notation and Language .....................................................................71 9.5 Examples ..............................................................................................71 9.6 Injections and Surjections ..................................................................72 9.7 Injections and Surjections of Finite Sets ..........................................75 What You Should Know................................................................................77 Exercise 9 .........................................................................................................77 10. Composition of Functions ...........................................................................81 10.1 Introduction .........................................................................................81 10.2 Composite Functions ..........................................................................81 10.3 Some Properties of Composite Functions .......................................82 10.4 Inverse Functions ................................................................................83 10.5 Associativity of Functions .................................................................86 10.6 Inverse of a Composite Function ......................................................86 10.7 The Bijections from a Set to Itself .....................................................88 What You Should Know................................................................................89 Exercise 10 .......................................................................................................89 11. Isomorphisms ................................................................................................91 11.1 Introduction .........................................................................................91 11.2 Isomorphism ........................................................................................93 11.3 Proving Two Groups Are Isomorphic ..............................................95 11.4 Proving Two Groups Are Not Isomorphic ......................................96 11.5 Finite Abelian Groups ........................................................................97 What You Should Know..............................................................................102 Exercise 11 .....................................................................................................102 12. Permutations ................................................................................................105 12.1 Introduction .......................................................................................105 12.2 Another Look at Permutations ........................................................107 12.3 Practice at Working with Permutations .........................................108 12.4 Even and Odd Permutations ...........................................................113 12.5 Cycles ..................................................................................................118 12.6 Transpositions ...................................................................................121 12.7 The Alternating Group .....................................................................123 What You Should Know..............................................................................124 Exercise 12 .....................................................................................................125 13. Dihedral Groups .........................................................................................127 13.1 Introduction .......................................................................................127 13.2 Towards a General Notation ............................................................129 13.3 The General Dihedral Group D .....................................................131 n 13.4 Subgroups of Dihedral Groups .......................................................132 What You Should Know..............................................................................134 Exercise 13 .....................................................................................................134 14. Cosets ............................................................................................................137 14.1 Introduction .......................................................................................137 14.2 Cosets ..................................................................................................137 14.3 Lagrange’s Theorem .........................................................................140 14.4 Deductions from Lagrange’s Theorem ..........................................141 14.5 Two Number Theory Applications .................................................142 14.6 More Examples of Cosets .................................................................143 What You Should Know..............................................................................144 Exercise 14 .....................................................................................................145 15. Groups of Orders Up To 8 .........................................................................147 15.1 Introduction .......................................................................................147 15.2 Groups of Prime Order.....................................................................147 15.3 Groups of Order 4 .............................................................................147 15.4 Groups of Order 6 .............................................................................148 15.5 Groups of Order 8 .............................................................................149 15.6 Summary ............................................................................................151 Exercise 15 .....................................................................................................152 16. Equivalence Relations ...............................................................................153 16.1 Introduction .......................................................................................153 16.2 Equivalence Relations.......................................................................153 16.3 Partitions ............................................................................................155 16.4 An Important Equivalence Relation ...............................................157 What You Should Know..............................................................................159 Exercise 16 .....................................................................................................159 17. Quotient Groups .........................................................................................161 17.1 Introduction .......................................................................................161 17.2 Sets as Elements of Sets ....................................................................163 17.3 Cosets as Elements of a Group ........................................................164 17.4 Normal Subgroups ............................................................................165 17.5 The Quotient Group ..........................................................................167 What You Should Know..............................................................................169 Exercise 17 .....................................................................................................169 18. Homomorphisms ........................................................................................171 18.1 Homomorphisms ..............................................................................171 18.2 The Kernel of a Homomorphism ....................................................174 What You Should Know..............................................................................175 Exercise 18 .....................................................................................................176 19. The First Isomorphism Theorem.............................................................177 19.1 More about the Kernel ......................................................................177 19.2 The Quotient Group of the Kernel ..................................................178 19.3 The First Isomorphism Theorem ....................................................179 What You Should Know..............................................................................182 Exercise 19 .....................................................................................................182 Answers ...............................................................................................................183 Index .....................................................................................................................217 Preface This book was originally called Teach Yourself Mathematical Groups, and pub- lished by Hodder Headline plc in 1996. In this new edition, there is some new material and some revised explanations where users have suggested these would be helpful. This book discusses the usual material that is found in a first course on groups. The first three chapters are preliminary. Chapter 4 establishes a number of results about integers which will be used freely in the remain- der of this book. The book gives a number of examples of groups and sub- groups, including permutation groups, dihedral groups, and groups of residue classes. The book goes on to study cosets and finishes with the First Isomorphism Theorem. Very little is assumed as background knowledge on the part of the reader. Some facility in algebraic manipulation is required, and a working knowl- edge of some of the properties of integers, such as knowing how to factorize integers into prime factors. The book is intended for those who are working on their own, or with limited access to other kinds of help, and also to college students who find the kind of reasoning in abstract mathematics courses unfamiliar and need extra support in this transition to advanced mathematics. The authors have therefore included a number of features which are designed to help these readers. Throughout the book, there are “asides” written in shaded boxes, which are designed to help the reader by giving an overview or by clarifying detail. For example, sometimes the reader is told where a piece of work will be used and if it can be skipped until later in the book, and sometimes a connection is made which otherwise might interrupt the flow of the text. The book includes very full proofs and complete answers to all the ques- tions. Moreover, the proofs are laid out so that at each stage the reader is made aware of the purpose of that part of the proof. This approach to proofs is in line with one of our aims which is to help students with the transition from concrete to abstract mathematical thinking. Much of the student’s pre- vious work in mathematics is likely to have been computational in character: differentiate this, solve that, integrate the other, with very little deductive work being involved. However, pure mathematics is about proving things, and care has been taken to give the student as much support as possible in learning how to prove things. New terminology is written in bold type whenever it appears. At the end of each chapter, a set of key points contained in the chapter are summarized in a section entitled What You Should Know. These sections are included to help readers to recognize the significant features for revision purposes. The authors thank the publishers for their help and support in the produc- tion of this book. In particular, they thank Karthick Parthasarathy at Nova Techset and his team for the excellent work that they did in creating the print version from the manuscript. Tony Barnard Hugh Neill May 2016 1 Proof 1.1 The Need for Proof Proof is the essence of mathematics. It is a subject in which you build secure foundations, and from these foundations, by reasoning, deduction, and proof, you deduce other facts and results that you then know are true, not just for a few special cases, but always. For example, suppose you notice that when you multiply three consecutive whole numbers such as 1 × 2 × 3 = 6, 2 × 3 × 4 = 24, and 20 × 21 × 22 = 9240, the result is always a multiple of 6. You may make a conjecture that the prod- uct of three consecutive whole numbers is always a multiple of 6, and you can check it for a large number of cases. However, you cannot assert correctly that the product of three consecutive whole numbers is always a multiple of 6 until you have provided a convincing argument that it is true no matter which three consecutive numbers you take. For this example, a proof may consist of noting that if you have three con- secutive whole numbers, one (at least) must be a multiple of 2 and one must be a multiple of 3, so the product is always a multiple of 6. This statement is now proved true whatever whole number you start with. Arguing from particular cases does not constitute a proof. The only way that you can prove a statement by arguing from particular cases is by ensur- ing that you have examined every possible case. Clearly, when there are infi- nitely many possibilities, this cannot be done by examining each one in turn. Similarly, young children will “prove” that the angles of a triangle add up to 180° by cutting the corners of a triangle and showing that if they are placed together as in Figure 1.1 they make a straight line, or they might mea- sure the angles of a triangle and add them up. However, even allowing for inaccuracies of measuring, neither of these methods constitutes a proof; by their very nature, they cannot show that the angle sum of a triangle is 180° for all possible triangles. So a proof must demonstrate that a statement is true in all cases. The onus is on the prover to demonstrate that the statement is true. The argument that “I cannot find any examples for which it doesn’t work, therefore it must be true” simply isn’t good enough. 2 Discovering Group Theory b b a c c a FIGURE 1.1 “Proof” that the angles of a triangle add to 180°. Here are two examples of statements and proofs. EXAMPLE 1.1.1 Prove that the sum of two consecutive whole numbers is odd. Proof Suppose that n is the smaller whole number. Then (n + 1) is the larger number, and their sum is n + (n + 1) = 2n + 1. Since this is one more than a multiple of 2, it is odd. ■ The symbol ■ is there to show that the proof is complete. Sometimes, in the absence of such a symbol, it may not be clear where a proof finishes and subsequent text takes over. EXAMPLE 1.1.2 Prove that if a and b are even numbers, then a + b is even. Proof If a is even, then it can be written in the form a = 2m where m is a whole number. Similarly b = 2n where n is a whole number. Then a + b = 2m + 2n = 2(m + n). Since m and n are whole numbers, so is m + n; therefore a + b is an even number. ■ Notice in Example 1.1.2 that the statement says nothing about the result a + b when a and b are not both even. It simply makes no comment on any of the three cases: (1) a is even and b is odd; (2) a is odd and b is even; and (3) a and b are both odd. In fact, a + b is even in case (3) but the statement of Example 1.1.2 says nothing about case (3).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.