ebook img

Directivity Patterns for Room Acoustical Measurements and Simulations PDF

188 Pages·2015·18.45 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Directivity Patterns for Room Acoustical Measurements and Simulations

MartinPollow Directivity Patterns for Room Acoustical Measurements and Simulations LogosVerlagBerlinGmbH λογος Aachener Beitra¨gezurTechnischenAkustik Editor: Prof.Dr.rer.nat.MichaelVorla¨nder InstituteofTechnicalAcoustics RWTHAachenUniversity 52056Aachen www.akustik.rwth-aachen.de BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheInternetathttp://dnb.d-nb.de. D82(Diss.RWTHAachenUniversity,2014) (cid:13)c CopyrightLogosVerlagBerlinGmbH2015 Allrightsreserved. ISBN978-3-8325-4090-6 ISSN1866-3052 Vol.22 LogosVerlagBerlinGmbH Comeniushof,GubenerStr.47, D-10243Berlin Tel.: +49(0)30/42851090 Fax: +49(0)30/42851092 http://www.logos-verlag.de Directivity Patterns for Room Acoustical Measurements and Simulations VonderFakultätfürElektrotechnikundInformationstechnikder Rheinischen-WestfälischenTechnischenHochschuleAachen zurErlangungdesakademischenGradeseines DOKTORSDERINGENIEURWISSENSCHAFTEN genehmigteDissertation vorgelegtvon Diplom–Ingenieur Martin Pollow ausRosenheim Berichter: UniversitätsprofessorDr.rer.nat.MichaelVorländer UniversitätsprofessorDr.-Ing.PeterVary TagdermündlichenPrüfung:29.September2014 DieseDissertationistaufdenInternetseitenderHochschulbibliothekonlineverfügbar. meinen Eltern gewidmet Abstract Acousticsourcesandreceiverspossessdistinctdirectivitypatternsthatquantify their directional dependent behavior. In common room acoustical applications these directivity patterns are often neglected, although they are known to have considerable influence on the obtained results. This thesis presents methods to obtainandimplementsourceandreceiverdirectivitypatternsforroomacousti- calmeasurementsandsimulations.Atypicalcomplexscenarioforroomacoustics consists of a concert hall that is excited by various natural sound sources (such as musical instruments) with the sound received by human listeners. Therefore, a large number of natural sound sources has been measured, analyzed and pro- cessed in order to assemble a directivity database. The sound reception of the humanlistenersisdescribedbythehead-relatedtransferfunctions(HRTFs)that are derived from numerical simulations or measurements of artificial heads and human individuals. Both source and receiver directivity patterns can be represented as spherical wave spectra (SWS) using a decomposition of the angular functions into the set of orthonormal spherical harmonics. In this domain angular interpolation and range extrapolation can be implemented conveniently, yielding physically correctresultsforsamplingschemesthataresufficientlydenseinordertoavoid spatial aliasing artifacts. Suitable regularization allows to derive the SWS of spatiallyincompletedata(withmissinginformationatsomedirections)ordata that suffers from measurement uncertainties. Themeasurementofroomimpulseresponsesforarbitrarydirectivitypatternsis performed using specialized spherical loudspeaker arrays to provide broadband excitation in terms of temporal and spatial frequency components. Assuming linear and time-invariant systems a sequential measurement approach greatly enhances the maximum resolution of the synthesized directivity patterns. For room acoustical simulations that include source and/or receiver directivity pat- ternstheparticlebasedmethodscanbeextendedbymultiplicationinthespatial domain. Wave based analytical simulations allow to implement arbitrary direc- tivity patterns by the computation of the Cartesian derivatives of the room’s eigenmodes. The results obtained in this thesis can be used to enhance the au- ralizationofroomsandtoanalyzetheperceptionalimpactofsourceandreceiver directivity in room acoustical applications. V Contents 1 Introduction 1 2 Fundamentals and preliminaries 5 2.1 Definitions of directivity . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Fourier transform of signals . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Fourier acoustics in spherical coordinates . . . . . . . . . . . . . . . 9 2.3.1 Wave equation and separation of variables . . . . . . . . . . 9 2.3.2 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . 11 2.3.3 Spherical wave spectrum . . . . . . . . . . . . . . . . . . . 13 2.3.4 Boundary value problems . . . . . . . . . . . . . . . . . . . 15 2.3.5 Transformation of acoustic spherical fields . . . . . . . . . . 18 2.3.6 Dirac impulse on unit sphere . . . . . . . . . . . . . . . . . 20 2.3.7 Cross-correlation of spherical functions . . . . . . . . . . . . 21 2.3.8 Frequency dependent order truncation . . . . . . . . . . . . 22 2.4 Discrete Fourier acoustics in spherical coordinates . . . . . . . . . . 23 2.4.1 Matrix formulation . . . . . . . . . . . . . . . . . . . . . . 24 2.4.2 Error measure . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.3 Condition number . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.4 Matrix inversion using regularization . . . . . . . . . . . . . 27 2.5 Spherical sampling schemes and aliasing analysis. . . . . . . . . . . 29 2.5.1 Equiangular quadrature sampling scheme . . . . . . . . . . 30 2.5.2 Gaussian quadrature sampling scheme . . . . . . . . . . . . 31 2.5.3 Sampling scheme using hyperinterpolation . . . . . . . . . . 32 2.5.4 Equiangular sampling schemes with regular spacing . . . . . 33 2.6 Measurement of acoustic transfer paths . . . . . . . . . . . . . . . 34 2.6.1 Multiple exponential sweep method. . . . . . . . . . . . . . 35 2.6.2 Reciprocity of transfer paths . . . . . . . . . . . . . . . . . 35 3 Directivity patterns of natural sound sources 37 3.1 Recording of musical instrument radiation patterns . . . . . . . . . 38 3.1.1 Types of sound excitation . . . . . . . . . . . . . . . . . . . 38 3.1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.3 Measurement equipment . . . . . . . . . . . . . . . . . . . 40 3.1.4 Measurement environment . . . . . . . . . . . . . . . . . . 42 3.1.5 Obtaining recordings for a directivity database . . . . . . . . 42 VII Contents 3.1.6 Recording audio for auralization . . . . . . . . . . . . . . . 44 3.2 Processing of recorded data . . . . . . . . . . . . . . . . . . . . . . 44 3.2.1 Analysis of the used array geometry . . . . . . . . . . . . . 45 3.2.2 Averaged magnitude data . . . . . . . . . . . . . . . . . . . 47 3.2.3 Time-dependent analysis . . . . . . . . . . . . . . . . . . . 47 3.2.4 Harmonic peak extraction . . . . . . . . . . . . . . . . . . . 48 3.3 Analysis of spectral smoothness . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Plotting cross-correlation values over frequencies . . . . . . 52 3.3.2 Woodwind instruments . . . . . . . . . . . . . . . . . . . . 54 3.3.3 Brass instruments . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 String Instruments. . . . . . . . . . . . . . . . . . . . . . . 58 3.3.5 Statistical evaluation . . . . . . . . . . . . . . . . . . . . . 58 3.4 Acoustic centering methods . . . . . . . . . . . . . . . . . . . . . . 59 3.4.1 Centering by minimizing the weighted SWS . . . . . . . . . 61 3.4.2 Centering by minimizing phase transitions . . . . . . . . . . 62 3.5 Summary natural sound sources. . . . . . . . . . . . . . . . . . . . 65 4 Directivity patterns of binaural sound receivers 67 4.1 Obtaining head-related transfer functions. . . . . . . . . . . . . . . 68 4.1.1 Simulation of HRTFs . . . . . . . . . . . . . . . . . . . . . 69 4.1.2 Sequential measurements of HRTFs . . . . . . . . . . . . . 71 4.1.3 Fast HRTF measurement methods . . . . . . . . . . . . . . 72 4.2 Low-frequency extension of measured HRTFs . . . . . . . . . . . . 75 4.3 Range extrapolation of HRTFs . . . . . . . . . . . . . . . . . . . . 76 4.3.1 Principle of calculation . . . . . . . . . . . . . . . . . . . . 77 4.3.2 Results for measured HRTFs . . . . . . . . . . . . . . . . . 78 4.3.3 Results for simulated HRTFs . . . . . . . . . . . . . . . . . 80 4.3.4 Conclusions range extrapolation of HRTFs . . . . . . . . . . 81 4.4 Reconstruction of missing data of HRTFs . . . . . . . . . . . . . . 81 4.5 Representation of HRTFs with varying focal point . . . . . . . . . . 83 4.6 Summary binaural sound receivers . . . . . . . . . . . . . . . . . . 84 5 Including directivity patterns in room acoustic measurements 87 5.1 Standardized room acoustic measurements . . . . . . . . . . . . . . 88 5.2 Analytic model for spherical loudspeakers . . . . . . . . . . . . . . 88 5.2.1 Aperture function to model membrane vibration . . . . . . . 89 5.2.2 Total surface velocity and acoustic impedance . . . . . . . . 90 5.2.3 Radiated sound pressure . . . . . . . . . . . . . . . . . . . 91 5.3 Design of compact spherical loudspeaker arrays . . . . . . . . . . . 92 5.3.1 Dodecahedron loudspeakers as multichannel source . . . . . 92 VIII

Description:
2.5 Spherical sampling schemes and aliasing analysis . 29 . 5.4.3 Directivity synthesis for high resolution radiation patterns: Sequential approach using . sound sources using a surrounding spherical microphone array.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.