ebook img

Directional analysis of surface artefact distributions. A case study from the Murghab Delta, Turkmenistan PDF

23 Pages·3.064 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Directional analysis of surface artefact distributions. A case study from the Murghab Delta, Turkmenistan

Directional  analysis  of  surface  artefact  distributions.  A  case  study  from  the   Murghab  Delta,  Turkmenistan     Steven  Markofsky  and  Andrew  Bevan     Postprint  of  2011  paper  in  Journal  of  Archaeological  Science  39.2:  428-­‐439  (doi:   10.1016/j.jas.2011.09.031).       Abstract     This  paper  investigates  directional  influences  in  the  distribution  of  Bronze  Age   surface  pottery  in  the  northern  Murghab  Delta,  Turkmenistan.    Drawing  upon  a   continuous  dataset  of  pottery  sherd  counts  obtained  by  intensive  field  survey,  it   examines  the  degree  to  which  we  can  make  sense  of  the  archaeological  processes   at  work  in  a  heavily  obstructed  and  dynamic  landscape.    In  so  doing,  it  makes  use   of   two   analytical   methods   that   have   rarely   been   used   in   archaeology:   a)   geostatistical   analysis   using   variograms   to   investigate   directional   spatial   autocorrelation  in  recorded  sherd  counts,  and  b)  angular  wavelet  analysis  in   evaluating   directional   influences   in   the   sherd   distributions   for   particular   chronological   periods.   While   some   kinds   of   directional   influence   can   be   identified   visually,   a   quantitative   approach   is   particularly   useful   in   deconstructing  such  patterns.    In  this  particular  dataset,  distinct  but  related   directional   processes   can   be   identified   and   measured:   a)   the   impact   of   the   complex   system   of   watercourses   in   the   delta   on   both   settlement   and   post-­‐ depositional  processes;  and  b)  recovery  bias  in  the  observations  made  during   survey.     1.  Introduction   Surface   pottery,   often   the   most   accessible   evidence   of   past   archaeological   landscapes,  constitutes  an  awkward  analytical  dataset.    Rather  than  resulting   from  any  single  archaeological  or  post-­‐depositional  process,  surface  material   typically  represents  a  palimpsest,  the  spatially  and  temporally  averaged  material   residue   of   a   range   of   processes.     Over   the   past   several   decades,   increasing   recognition  of  this  inherent  dynamism  in  material  distributions  has  fostered  a   shift  in  survey  methodology.    Whereas  traditional  surveys  focused  primarily  on   archaeological  sites  to  explore  settlement  patterns  (e.g.  Adams,  1965,  Adams,   1981),   more   recent   approaches   have   employed   a   broader   range   of   methodologies  designed  to  address  whole  archaeological  landscapes  (e.g.  Bintliff   and  Snodgrass,  1985,  Wilkinson  and  Tucker,  1995,  Cleuziou,  et  al.,  1998,  Van   Leusen,  2002).     A   limitation   of   the   analytical   methods   deployed   by   many   recent   surveys,   however,  has  been  their  tendency  to  consider  rather  simple  isotropic  spaces:  that   is,  ones  in  which  distributional  processes  are  assumed  to  have  equal  influences   in  all  directions  and  to  exist  in  a  uniform  spatial  environment  (Longley  and  Batty,   2003:   311).     This   temptation   to   simplify   can   be   analytically   convenient,   as   disregarding   anisotropic   (i.e.   directionally   varied)   influences   often   makes   it   easier  to  apply  standard  geographic  methods  such  as  Christaller  hierarchies,   catchment  models,  buffers,  networks  or  Voronoi/Thiessen  tessellations  (Evans and   Gould,   1982,   Conolly   and   Lake,   2006:   212).     Even   when   directional   influences  are  obvious  to  the  archaeologist,  for  example  the  inherent  linearity   that  may  characterise  the  distribution  of  surface  material  along  river  channels,   roads  or  valleys,  such  factors  tend  to  be  addressed  qualitatively  and  often  as  an   afterthought.     Because   anisotropy   has   been   seldom   investigated   formally   in   archaeological   research,   a   potentially   informative   body   of   data   has   been   overlooked.     For   example,  in  archaeological  survey,  directional  influences  may  factor  heavily  in   the  distribution  of  surface  material,  reflecting  not  only  trajectories  of  artefact   deposition  from  settlement-­‐derived  and  post-­‐depositional  processes,  but  also   recovery  biases  that  may  influence  the  interpretation  of  the  surface  distribution.     To  an  extent,  such  factors  can  be  detected  visually  or  with  the  help  of  GIS-­‐based   approaches.    However,  such  methods  only  provide  coarse  data  and  may  overlook   more  subtle  directional  patterns,  as  well  as  ways  in  which  they  may  be  measured   or  quantified.     In  this  paper,  we  investigate  anisotropy  in  a  carefully  recovered  distribution  of   surface   pottery   from   a   dynamic   fluvial   environment.     Using   some   analytical   approaches  that  have  been  rarely  applied  in  archaeology,  we  seek  not  only  to   identify  directional  trends  in  survey  data  that  may  not  be  readily  apparent,  but   also  to  measure  and  interpret  these  trends  in  the  context  of  settlement  dynamics,   post-­‐depositional  processes  and  potential  recovery  biases.     2.  Research  Context   The  survey  data  considered  below  is  derived  from  the  Northern  Murghab  Delta   Survey   (NMDS),   an   intensive   field-­‐walking   project   conducted   by   the   corresponding  author  in  the  Murghab  river  delta  in  southeastern  Turkmenistan   from   2007-­‐2009   (Figure   1).     Since   the   1970s,   the   Murghab   has   been   an   increasing  focus  of  archaeological  enquiry,  prompted  by  the  discoveries  of  major   Bronze  Age  sites  dating  to  the  late  3rd  and  early  2nd  millennium  BC  (Kohl,  1984,   Salvatori,   1998),   of   which   the   best-­‐known   is   Gonur   Depe   (Sarianidi,   1990,   Sarianidi,   2005).     Over   the   past   two   decades,   researchers   have   identified   hundreds  of  new  sites  in  the  overall  region  through  extensive  surveys  (Cattani   and   Salvatori,   2008,   Salvatori,   2008).     These   findings   have   led   to   a   new   interpretation  of  the  regional  Bronze  Age  settlement  pattern  which,  it  has  been   argued,   was   characterised   by   continuous   and   widespread   occupation   and   thought  to  be  reflective  of  an  integrated  proto-­‐state  structure.    While  not  yet   broadly  accepted,  such  an  interpretation  represents  a  substantial  change  from   previous  ones  that  had  envisioned  settlement  in  a  series  of  discrete  ‘micro-­‐ oases’,  each  representing  isolated  groups  (Hiebert,  1994:  39). Figure  1:  Map  of  Central  Asia  (NASA  Blue  Marble)  with  the  survey  area  indicated  by  small  white   square  in  centre  of  image     This  predominant  focus  on  regional  analysis  and  large  sites  in  the  interpretation   of  Murghab  settlement  has  however  precluded  a  more  refined  understanding  of   micro-­‐scale  distributions  of  archaeological  material.      While  a  few  small-­‐scale   intensive  surveys  have  been  conducted  in  the  region  (e.g.  Cleuziou  et  al.  1998;   Cerasetti   pers.   comm.),   a   continued   under-­‐emphasis   on   local   settlement   dynamics  and  material  distributions  has  led  to  a  rather  lopsided  interpretation   of  Murghab  settlement,  drawn  largely  from excavation  of  a  few  large  sites  in  the   context  of  regional  surveys.    This  situation  has  only  recently  begun  to  change,   driven   in   part   by   the   increasing   interest   in   small   sites   in   the   context   of   sedentary/nomadic  relationships  (e.g.  Cattani  et.  al.  2008).  Compounding  this   interpretative   problem   is   the   fact   that,   due   to   geomorphological   and   anthropogenic  processes,  the  recovery  potential  for  archaeological  sites  is  often   extremely  poor.    In  some  cases,  sites  have  been  completely  destroyed  as  a  result   of  an  explosion  in  urban  and  agricultural  development  over  the  past  several   decades,  associated  with  the  construction  of  the  Karakum  Canal.    Elsewhere,   particularly  in  the  central  and  southern  regions  of  the  delta,  aggrading  silts  have   resulted   in   alluvial   deposition   that   may   be   several   metres   deep   (Cremaschi,   1998).    In  the  northernmost  region  of  the  palaeodelta,  where  alluvial  deposits   are  shallower  and  agriculture  less  pervasive,  exposed  sites  are  often  severely   deflated,   susceptible   to   desert   winds   and   identifiable   only   as   nebulous   aggregations   of   surface   pottery.     Intermittent   but   often   heavy   dune   cover   obscures   much   of   the   landscape,   presenting   an   additional   barrier   to   archaeological  visibility  and  hindering  effective  interpretation.     The  northern  margin  of  this  inland  alluvial  fan  effectively  constitutes  a  unique   geomorphology  in  which  a  transitional  zone  exists  between  delta  and  desert   (Figure   2).     Each   of   these   regions   may   be   seen   to   broadly   exhibit   certain   prevailing  anisotropic  trends.    The  desert  morphology  is  represented  in  part  by   dune  ridges  that  tend  to  align  north-­‐south,  while  the  prevailing  geomorphology   of   the   delta,   by   contrast,   tends   more   towards   the   northwest.     Where   these   regions  interact,  however,  these  trends  become  much  more  complex,  a  situation exacerbated  by  relict  watercourses,  roadways  and  gas  pipelines.    Each  of  these   myriad   directional   influences   that   exist   in   the   landscape   has   potentially   influenced  the  present-­‐day  orientation  of  surface  pottery.             Figure  2:  Landscapes  of  the  northern  Murghab: a)  Landscape  of  low  dune  ridges  (left)  and  depressions  (right),  and   b)  Sand  begins  to  accumulate  on  an  old  trackway     A  survey  covering  11  km2  of  this  landscape  was  investigated  using  intensive   methods  in  which  surveyors,  spaced  20  metres  apart,  collected  information  at   20m  intervals  along  individual  transects.    This  process  has  provided  a  dataset  of   observations  that  are  recorded  on  a  20m  x  20m  grid,  each  grid  square  of  which   contains  information  such  as  the  sherd  counts  for  that  square.    For  ease  of   interpretation  and  discussion,  the  survey  area  is  also  divided  into  a  coarser  set  of   analytical   units,   defined   according   to   perceived   similarity   in   geomorphology   and/or  surface  scatter  (Figure  3).    This  archaeological  dataset  is  considered  in   detail  via  the  spatial  analysis  below. Figure  3.  NMDS  survey  area:   a)  NMDS  survey  boundary  with  analytical  units,  and   b)  Directionality  in  the  sherd  distribution     3.  Methodology   The  objective  of  the  following  analysis  is  to  ascertain  the  degree  to  which  sherd   counts   and   other   landscape   surface   phenomena   exhibit   continuity   in   some   directions  more  so  than  others  (i.e.  are  anisotropic  in  nature).    There  are  a variety  of  methods  for  considering  such  anisotropy  in  spatial  datasets,  including   directional  quadrat  counts,  nearest  neighbour  bearings,  directional  correlograms   and  Fourier  analysis    (Patterson,  1934,  Bartlett,  1964,  Haynes  and  Enders,  1975,   Rosenberg,  2000),  but  rarely  have  these  been  considered  in  archaeology.    Here   we  use  two  methods  for  understanding  possible  directional  effects  within  the   NMDS   data.     The   first   is   an   aspect   of   geostatistics   that   employs   directional   variograms  and  variogram  surfaces,which  are  graphical  plots  that  can  represent   spatial  variation  over  multiple  distances  and  in  different  directions.    The  second   method,  angular  wavelet  analysis,  examines  angular  variation  between  individual   point  pairs  (e.g.  surface  sherds).    While  geostatistics  have  seen  some  use  in   archaeology  and  have  recently  been  used  for  considering  surface  sherd  counts   (Bevan   and   Conolly,   2009:   258-­‐9),   angular   wavelets   have   not   yet   been   considered  in  this  context,  despite  having  produced  very  promising  results  when   applied  to  ecological  data  (e.g.  Rosenberg,  2004).         To   illustrate   each     method,   we   have   created   a   hypothetical   distribution   of   material  over  a  2km  x  2  km  grid  in  which  anisotropy  within  the  point  patterns   (the   heavy   diagonal   striping)   has   been   exaggerated   to   better   illustrate   the   concept  (Figure  4).      The  following  discussion  will  utilise  this  dataset,  first  in  the   context  of  geostatistics  and  then  of  angular  wavelet  analysis,  before  applying  the   methods  to  the  actual  NMDS  survey  data.         Figure  4.  Sample  data  for  a  hypothetical  2km  x  2km  region:   a)  sample  pattern  of  40,000  points,  and   b)  aggregated  Point  pattern.  Legend  indicates  sherd  counts  per  hypothetical  unit     The  first  method,  variogram  analysis,  falls  within  the  discipline  of  geostatistics,  a   body  of  related  concepts  and  methods  that  explore  spatial  variation  in  attribute   values  observed  at  different  point,  line  or  area  locations,  particularly  with  the   purpose  of  spatial  prediction,  simulation  or  sampling  optimisation  (Lloyd  and   Atkinson,  2004).    Geostatistics  typically  assume  an  underlying  continuous  field  of   variation  that  has  been  sampled  at  a  limited  number  of  locations.    Each  sample   point  has  a  distinct  attribute  value  as  well  as  a  location  in  space,  and  unknown   values  may  be  predicted  via  the  interpolation  method  known  as  kriging  (a  well-­‐ known  example  concerns  the  prediction  of  continuous  geological  phenomena based  on  sparsely  sampled  borehole  observations  Journel,  1974).    The  degree  of   similarity   between   individually-­‐measured   values   is   referred   to   as   spatial   autocorrelation  or  spatial  dependence  (see  Fortin  and  Dale,  2005:  6-­‐10  for  a   useful  distinction  between  the  two),  and  is  a  formal  expression  of  ‘Tobler’s  first   law  of  geography’(Tobler,  1970)  which  states  that  the  closer  in  space  that  two   measurements  are,  the  more  similar  those  measurements  are  likely  to  be.     We  can  explore  this  dependence  by  using  experimental  or  empirical  variograms:   graphical  plots  that  summarise  the  average  semi-­‐variance  (half  the  variance)   between  the  attribute  values  (e.g.  sherd  counts)  of  sampled  point-­‐pairs  as  a   function  of  the  distance  (or  spatial  lag)  between  these  pairs.    A  model  may  then   be  fitted  to  the  plot  in  order  to  interpolate  unknown  values  throughout  the   underlying  continuum.    These  fitted  curves  are  commonly  described  in  terms  of   the  range,  sill  and  nugget.    The  range  is  the  distance  at  which  the  semi-­‐variance   values  reach  a  plateau,  indicating  that  the  observed  point  pairs  have  effectively   become  spatially  independent  of  each  other,  and  the  semi-­‐variance  at  this  point   is  referred  to  as  the  sill.    The  nugget  effect  is  a  non-­‐zero  starting  semi-­‐variance  at   extremely  short  distances  that  reflects  indeterminate  local  variability  (Atkinson   and   Tate,   2000).       Here,   we   are   concerned   with   interpretation   rather   than   prediction  and  will  focus  on  the  empirical  variogram,  not  the  fitted  model.     Variograms  may  be  omnidirectional  or  directional.    The  first  type  considers  only   the   distance   between   point   pairs   (i.e.   the   range   of   spatial   autocorrelation)   (Gringarten,  2001).    Directional  variograms,  however,  examine  specific  angles   and   can   therefore   identify   directions   that   exhibit   greater   levels   of   spatial   autocorrelation  than  others  (i.e.  unusual  continuity  in  values),  and  the  spatial   scale  at  which  these  anisotropic  influences  come  into  play.    A  further  measure  of   the  strength  of  anisotropy  may  be  obtained  by  calculating  the  ratio  of  the  ranges   for   the   primary   direction   (major   axis)   of   anisotropy   and   the   perpendicular   direction  (minor  axis),  and  typically  this  is  one  of  the  parameters  that  is  fitted  as   part  of  a  model  variogram  and  for  subsequent  prediction  purposes  (e.g.  Atkinson   and  Lloyd,  2009:  135,163).    However,  the  original  empirical  variogram  retains   more  information  about  the  spatial  range  and  character  of  the  anisotropy  so  we   prefer  it  below.       Referring  to  our  sample  data,  the  omnidirectional  variogram  (Figure  5a)  shows   decreasing  spatial  dependence  as  the  distance  between  observations  increases,   reaching   a   plateau   around   400m,   the   distance   at   which   point   pairs   become   spatially  independent  of  each  other.    Also  visible  is  a  ‘hole-­‐effect’,  a  characteristic   dip  in  the  plot  that  can  indicate  heterogeneity  and/or  periodicity  in  the  data   (Pyrcz  and  Deutsch,  2003).    The  omni-­‐directional  variogram,  however,  provides   little  information  about  anisotropy.    This  is  reflected  more  clearly  in  the  45°   directional  variogram  (Figure  5c,  bottom  right),  in  which  the  semi-­‐variance  is   much  lower  than  in  the  omni-­‐directional  variogram,  indicating  continuity  in  that   direction.     Also   potentially   useful,   and   sometimes   easier   to   interpret,   are   variogram  maps,  in  which  the  direction  of  maximum  anisotropy  corresponds   with  the  major  axis  of  the  observed  ellipse  (in  Figure  5d,  this  appears  linear   because  of  the  prominence  of  the  35°-­‐45°  direction). The  second  analytical  method  used  in  this  paper  is  angular  wavelet  analysis   (Rosenberg,  2004).    More  commonly  used  in  fields  such  as  mathematics  and   engineering,  for  example  in  the  context  of  signal  processing,  the  procedure  has   been   recently   applied   in   ecological   contexts   to   identify   spatial   patterning   in   different  types  of  vegetation.    An  advantage  of  wavelet  approaches  is  that  they   are  useful  for  recovering  patterns  in  the  presence  of  noise,  for  example  of  the   kind   produced   by   time-­‐averaged,   post-­‐depositionally   transformed   and   imperfectly  recovered  archaeological  datasets.               Figure  5.  Variograms  for  sample  dataset:  a)  omnidirectional  empirical  variogram,  b)   omnidirectional  empirical  variogram  (as  points  only)  with  fitted  spherical  model  (as  grey  line),   c)  directional  variograms  (0°  indicates  the  N-­‐S  direction)  shown  as  black  points  alongside  the   omnidirectional  variogram  shown  as  a  grey  line,  and  d)  a  variogram  map.     The   method   differs   from   geostatistical   approaches   in   that   it   considers   non-­‐ valued,  or  unmarked  point  patterns  where  each  point  has  no  intrinsic  value  and   is  merely  identified  by  its  location  in  space.    To  visualise  the  method,  consider  a   spoked  wheel  placed  over  a  distribution  of  points,  and  centred  on  one  of  these   points.     Along   each   angular   transect   (i.e.   1°   spoke),   a   scalable   window,   or   ‘wavelet’,  is  fitted  that  measures  the  average  variance  in  the  angles  between point-­‐pairs  (Rosenberg  2004:  278-­‐9).    Statistical  significance  is  derived  using   Monte  Carlo  simulation,  which  also  allows  for  the  investigation  of  irregularly   shaped  datasets.    The  method  can  be  applied  either  to  a  single  point,  effectively   assessing  local  anisotropy,  or  can  be  applied  to  multiple  points  simultaneously  to   examine  directional  patterns  more  globally.    Plotted  results  represent  variance   as  a  function  of  angle  measurement  (as  opposed  to  distance)  and  peaks  in  the   graph  indicate  the  direction  of  maximum  anisotropy.     Returning  to  our  sample  data,  we  can  see  that  the  graph  of  observed  variance   (dark  line)  rises  above  the  expected  variance  (dashed  line)  by  a  statistically   significant  margin  from  about  10°  (N-­‐S  is  0°),  and  peaks  around  45°  (Figure  6).     This  suggests  that  although  the  anisotropy  is  the  strongest  in  a  SW-­‐NE  direction,   several  trends  are  present,  although  the  noise  in  the  data,  and  the  similar  bearing   of  each  ‘line’  of  points,  obscures  each  individual  trend.    It  is  worth  noting  an   individual  spike  towards  50°  as  well,  which  is  not  so  apparent  visually  but  may   reflect  additional  influence  in  the  right-­‐most  diagonal  line.    Spikes  in  the  eight   cardinal  and  intermediate  directions  (i.e.  N,  NE,  etc.)  are  artefacts  of  the  gridded   pattern  (i.e.  at  shorter  distances,  fewer  angles  are  possible  between  points).         Figure  6.  Angular  wavelet  graph  for  the  sample  dataset.     The  above  dummy  example  suggests  that  each  analytical  method  may  provide   useful  insights  and  might  be  deployed  to  make  sense  of  far  more  noisy,  real   world  datasets.  The  following  analysis  proceeds  by  highlighting  the  directional   trends   that   may   be   perceived   by-­‐eye,   first   examining   the   underlying   geomorphology  and  subsequently  the  distribution  of  surface  material.    Once   these  have  been  articulated,  the  two  methods  discussed  above  will  be  used  to   provide  an  integrated  assessment  of  anisotropy  in  the  Murghab  archaeological   landscape.     4.  Data  Analysis  and  Results   4.1  Variography     A  visual  assessment  of  the  northern  Murghab  landscape  reveals  two  prevailing   directional  trends.    The  first  is  the  ridged  topography  of  the  sand  dunes,  broadly   orientated  north-­‐south.    A  second  is  the  geomorphology  of  the  palaeodelta  itself,   which  tends  more  towards  the  northwest.    Relict  channels  often,  but  not  always,   follow  a  SSE-­‐NNW  trajectory,  influenced  by—but  not  directly  following—this   underlying  geomorphology  of  the  delta  fan.    A  third  anisotropic  influence  is

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.