ebook img

Directed Algebraic Topology and Concurrency PDF

171 Pages·2016·3.422 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Directed Algebraic Topology and Concurrency

Lisbeth Fajstrup · Eric Goubault Emmanuel Haucourt · Samuel Mimram Martin Raussen Directed Algebraic Topology and Concurrency Directed Algebraic Topology and Concurrency Lisbeth Fajstrup Eric Goubault (cid:129) Emmanuel Haucourt Samuel Mimram (cid:129) Martin Raussen Directed Algebraic Topology and Concurrency 123 Lisbeth Fajstrup Samuel Mimram Department ofMathematical Sciences ÉcolePolytechnique Aalborg University Palaiseau Aalborg France Denmark Martin Raussen EricGoubault Department ofMathematical Sciences ÉcolePolytechnique Aalborg University Palaiseau Aalborg France Denmark EmmanuelHaucourt ÉcolePolytechnique Palaiseau France ISBN978-3-319-15397-1 ISBN978-3-319-15398-8 (eBook) DOI 10.1007/978-3-319-15398-8 LibraryofCongressControlNumber:2015960769 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Foreword Computersciencehasaruggedtraditionofappropriatingconceptsandmechanisms from classical mathematics, concepts once proudly considered pure and useless, andadaptingthoseconceptstodescribeandanalyzephenomenathatoncecouldnot have been imagined. Today, the most abstract discoveries of number theory form thefoundations of moderncryptography and finance, graph theory lies attheheart of communication networks, social networks, and search structures, and advanced probability has myriad of everyday applications. This book, too, presents novel adaptations and applications of basic concepts fromcombinatorialandalgebraictopology:inthiscase,pathsandtheirhomotopies. The intuition is appealing: one can visualize an execution of a concurrent, two-process program as a path winding its way through a planar region, where progress by one process nudges the arrow along the x-axis, and progress by the other along the y-axis. Certain regions of the plane are forbidden: they correspond tozonesofmutualexclusion.Twoexecutionsareconsidered equivalentifonecan be continuously deformed to the other without crossing a forbidden zone, and the different ways in which paths can snake around these zones define the different ways synchronization mechanisms can shape computation. Thesepaths,liketimeitself,cannotrunbackwards,sotheclassictheoryofpaths andtheirhomotopiesmustbeadaptedtoincorporatearelentlesssenseofdirection, yieldinganewtheoryofdirectedtopology.Thistheoryleadstonovelformulations of program semantics, new algorithmic techniques, and a rich description in the language of category theory, itself another area with few prior concrete applica- tions. In the tradition of theoretical computer science, this book takes classic mathematical ideas, shapes them to new and unforeseen applications, and from these ingredients produces a new mathematics. Providence Maurice Herlihy June 2015 v Preface Fascinating links between the semantics of concurrent programs and algebraic topology have been discovered and developed since the 1990s, motivated by the hopethateachfieldcouldenrichtheother,byprovidingnewtoolsandapplications. Soonenough,itturnedoutthatthisinteractionhadtoevolveintosomethingricher than a simple dictionary: topological spaces were not exactly the right notion (theymustberefinedinordertoincorporatethedirectionoftime).Thealgorithms for verifying concurrent programs resulting from topological semantics were not easytoinventwhileachievingreasonablecomplexity.Today,wethinkthatenough material has been understood to justify a book on the topic. We felt the urge for a coherent,exhaustive,andyetintroductorypresentationofthesubject,sothatitcan gain a larger audience and constitute a panorama of the current knowledge upon which future developments will be built. The topic makes it natural to address both computer scientists and mathemati- cians. We have done our best to write the book with this mixed audience in mind. Except for the last chapters, we have tried to require few prerequisites, while keeping a reasonable size for the text: only a general knowledge of semantics of programminglanguagesisrequired,aswellasbasicnotionsof(algebraic)topology and category theory. We thank Thibault Balabonski, Uli Fahrenberg, Eric Finster, Philippe Gaucher, RobvanGlabeek,MarcoGrandis,TobiasHeindel,MauriceHerlihy,KathrynHess Bellwald, Mateusz Juda, Philippe Malbos, Nicolas Ninin, Sergio Rajsbaum, Christine Tasson, Krzysztof Worytkiewicz, and Krzysztof Ziemiański for the stimulating discussions without which this book could certainly not have been written, and especially Jérémy Dubut, Sanjeevi Krishnan, and Tim Porter for a carefulproofreadingofthebookandmanycomments.Wewouldalsoacknowledge support from AS CNRS TAPESC, ACI project GEOCAL, ANR projects INVAL, CHOCO, and CATHRE, and from the ESF research networking program ACAT. Paris Samuel Mimram September 2015 vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 A Toy Language for Concurrency . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 A Toy Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Semantics of Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 The Transition Graph. . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Verifying Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Correctness Properties . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 Reachability in Concurrent Programs. . . . . . . . . . . . . . . 21 3 Truly Concurrent Models of Programs with Resources . . . . . . . . . 25 3.1 Modeling Resources in the Language. . . . . . . . . . . . . . . . . . . . 25 3.1.1 Taming Concurrency. . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Extending the Language with Resources. . . . . . . . . . . . . 27 3.2 State Spaces for Conservative Resources . . . . . . . . . . . . . . . . . 29 3.2.1 Conservative Programs. . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.2 Transition Graphs for Conservative Programs . . . . . . . . . 31 3.3 Asynchronous Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1 Toward True Concurrency . . . . . . . . . . . . . . . . . . . . . . 36 3.3.2 Asynchronous Semantics . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.3 Coherent Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.4 Programs with Mutexes Only . . . . . . . . . . . . . . . . . . . . 46 3.4 Cubical Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.1 Precubical Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.2 The Geometric Realization. . . . . . . . . . . . . . . . . . . . . . 54 3.5 Historical Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ix x Contents 4 Directed Topological Models of Concurrency . . . . . . . . . . . . . . . . 57 4.1 Directed Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 A Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.1.2 Limits and Colimits. . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.3 Directed Geometric Semantics. . . . . . . . . . . . . . . . . . . . 61 4.1.4 Simple Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Homotopy in Directed Algebraic Topology. . . . . . . . . . . . . . . . 67 4.2.1 Classical Homotopy Theory . . . . . . . . . . . . . . . . . . . . . 67 4.2.2 Homotopy Between Directed Paths in Dimension 2. . . . . 68 4.2.3 Dihomotopy and the Fundamental Category . . . . . . . . . . 70 4.2.4 Simple Programs with Mutexes. . . . . . . . . . . . . . . . . . . 76 4.2.5 D-Homotopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 Constructions on the Fundamental Category . . . . . . . . . . . . . . . 80 4.3.1 The Seifert–Van Kampen Theorem . . . . . . . . . . . . . . . . 80 4.3.2 The Universal Dicovering Space. . . . . . . . . . . . . . . . . . 81 4.4 Historical Notes and Other Models . . . . . . . . . . . . . . . . . . . . . 89 5 Algorithmics on Directed Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.1 The Boolean Algebra of Cubical Regions. . . . . . . . . . . . . . . . . 92 5.2 Computing Deadlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3 Factorizing Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6 The Category of Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1 Weak Isomorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.1.1 Systems of Weak Isomorphisms . . . . . . . . . . . . . . . . . . 108 6.1.2 A Maximal System . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.1.3 Quotienting by Weak Isomorphisms . . . . . . . . . . . . . . . 111 6.1.4 Other Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2 Examples of Categories of Components . . . . . . . . . . . . . . . . . . 117 6.2.1 Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2.2 Cubical Regions in Dimension 2. . . . . . . . . . . . . . . . . . 118 6.2.3 The Floating Cube and Cross . . . . . . . . . . . . . . . . . . . . 119 6.3 Computing Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.3.1 The Case of One Hole. . . . . . . . . . . . . . . . . . . . . . . . . 120 6.3.2 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.3.3 The Seifert–Van Kampen Theorem . . . . . . . . . . . . . . . . 124 6.4 Historical Notes, Applications, and Extensions . . . . . . . . . . . . . 125 6.4.1 Categories with Loops. . . . . . . . . . . . . . . . . . . . . . . . . 126 6.4.2 Past and Future Components. . . . . . . . . . . . . . . . . . . . . 127 7 Path Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.1 An Algorithm for Computing Components of Trace Spaces . . . . 130 7.1.1 Path Spaces for Simple Programs . . . . . . . . . . . . . . . . . 130 7.1.2 The Index Poset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.1.3 Determination of Dipath Classes. . . . . . . . . . . . . . . . . . 134 7.1.4 An Efficient Implementation. . . . . . . . . . . . . . . . . . . . . 138 Contents xi 7.2 Combinatorial Models for Path Spaces. . . . . . . . . . . . . . . . . . . 139 7.2.1 Contractibility of Restricted Path Spaces . . . . . . . . . . . . 139 7.2.2 Presimplicial Sets and the Nerve Theorem . . . . . . . . . . . 141 7.2.3 Path Space as a Prod-Simplicial Complex. . . . . . . . . . . . 146 8 Perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Chapter 1 Introduction Concurrentprogramsconsistofmultipleprocessesrunninginparallel.Theirusehas become more and more widespread in order to efficiently exploit recent architec- tures(processorswithmanycores,clouds,etc.),buttheyarenotoriouslydifficultto designandtoreasonabout:onehastoensurethattheprogramwillnotgowrong, regardlessofthewaythedifferentprocessesconstitutingtheprogramarescheduled. Inprinciple,inordertoachievethistaskwiththehelpofacomputer,wecouldapply traditional verification techniques for sequential programs on each of the possible executions of the program. But this is not feasible in practice because the number of those executions, or schedulings, may grow exponentially with the size of the program. Fortunately, it can be observed that many of the schedulings are equiva- lentinthesensethatonecanbeobtainedfromtheotherbypermutingindependent instructions:suchequivalentexecutionswillalwaysleadtothesameresult.Hence, ifoneofthoseexecutionscanbeshownnottoleadtoanerror,neitherwillanyother executionwhichisequivalenttoit. Thissuggeststhatamodelforconcurrentprogramsshouldincorporatenotonly thepossibleexecutionsoftheprogram(asintraditionalinterleavingsemantics),but alsothecommutationsbetweeninstructions,followingtheprincipleofwhatisnow calledtrueconcurrency.Interestingly,theresultingmodelsarealgebraicstructures whichcanbeinterpretedgeometrically:roughlyastopologicalspacesinwhichpaths correspondtoexecutionsandtwoexecutionsareequivalentwhenthecorresponding paths are homotopic, i.e., connected by a continuous deformation from one to the other.Inordertomakethisconnectionprecise,itturnsoutthattopologicalspaces arenotexactlytherightnotionforourpurposes.Oneneedstouseadirectedvariant, i.e.,toincorporateanotionofirreversibletime. Mutatis mutandis, starting from very practical motivations (the verification of concurrentprograms),questionsofamoretheoreticalnaturearise.Whatisagood notionofadirectedspace,andhowdoclassicaltechniquesfromalgebraictopology apply to this setting? What is the geometry of concurrent programs? How can a geometricallyrefinedunderstandingofconcurrencybeusedinordertodesignnew ©SpringerInternationalPublishingSwitzerland2016 1 L.Fajstrupetal.,DirectedAlgebraicTopologyandConcurrency, DOI10.1007/978-3-319-15398-8_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.