Nuclear Physics B Proceed- ings NuclearPhysicsBProceedingsSupplement00(2015)1–6 Supple- ment Direct probes of neutrino mass R.G.HamishRobertson CenterforExperimentalNuclearPhysicsandAstrophysics 5 and 1 Dept.ofPhysics,UniversityofWashington,SeattleWA98195,USA 0 2 n a J 1 Abstract 3 Thediscoveryofneutrinooscillationshasshownthatneutrinos,incontradictiontoapredictionoftheminimalstandardmodel, ] have mass. Oscillations do not yield a value for the mass, but do set a lower limit of 0.02 eV on the average of the 3 known x eigenmasses.Moreover,theymakeitpossibletodetermineorlimitall3massesfrommeasurementsofelectron-flavorneutrinosin e - betadecay. Thepresentupperlimitfromsuchmeasurementsis2eV.Wereviewthestatusoflaboratoryworktowardclosingthe l remainingwindowbetween2and0.02eV,andmeasuringthemass. c u Keywords: Neutrinomass,betadecay,tritium,electronspectroscopy n [ 1. Introduction conservationintheweakinteractionin1956[6]andthe measurementofthehelicityoftheneutrinoin1958[7] 1 Themassoftheneutrinohasbeenatopicofspecula- madeplausibletheideathattheneutrinowasmassless, v 4 tionandresearchsincethetheoryofbetadecaywasfor- andmasslessneutrinosweresubsequentlybuiltintothe 4 mulatedbyFermi[1]. Neutrinomassaffectstheshape standard model. A decade-long hiatus in searches for 1 of the beta spectrum, and even with the limited data neutrino mass followed. A second kind of neutrino, 0 available at the time, Fermi was able to conclude that the muon neutrino, was discovered in 1962 [8], and 0 themassoftheneutrinomustbe“eitherzero,orinany a third, the tau neutrino, was found to exist in 1975 . 2 caseverysmall,incomparisontothemassoftheelec- [9]. Interest in direct searches for neutrino mass re- 0 tron”[2]. ThediscoverybyAlvarezandCornog[3]in vived once it was realized that neutrinos were not re- 5 1939 that tritium was radioactive and had a small Q- sponsible for parity violation because the neutral cur- 1 : valuewasimportantbecausetheeffectofneutrinomass rent [10] also violated parity [11]. A flurry of excite- v is relatively greater in that case. Moreover, tritium has ment pervaded the neutrino-mass community when in i X asimpleatomicstructure,auniquelyvaluableproperty 1981Lyubimovetal.[12]reportedthattheelectronan- r asthesensitivityof neutrinomassexperimentshasad- tineutrino had a mass of 30 eV, a value that closes the a vancedovertheyears. Seventy-fiveyearslater, tritium universegravitationallyandwouldexplainitsobserved remainstheisotopeofchoiceinthecontinuingquestto flatness. Unfortunately this result turned out to be in- measurethemassoftheneutrino. correct, as was shown by a group at Los Alamos [13]. Thefirstneutrinomassdeterminationsfromtheshape The Los Alamos experiment used a source of gaseous of the tritium spectrum were carried out with propor- T , because Bergkvist had observed in 1972 [14] that 2 tionalcountersin1948byHannaandPontecorvo[4]at experimentshadreachedasensitivitywhereitbecomes ChalkRiverandbyCurranetal.[5]inGlasgow. Hanna essential to consider molecular and atomic excitations and Pontecorvo were able to set a limit of 500 eV on ininterpretingthespectrum. Itwasalmostcertainlythe the neutrino mass, Curran et al. about 1 keV. Experi- complexities of the tritiated valine molecule that con- mentalworkcontinueduntilthediscoveryofparitynon- tributedtotheerroneousresultofLyubimovetal. 1 R.G.H.Robertson/NuclearPhysicsBProceedingsSupplement00(2015)1–6 2 Thediscoveryofneutrinooscillationsinatmospheric, minimalstandardmodel. Thestandardmodelisknown solar, andreactorneutrinos[15,16,17]broughtapro- to be incomplete, lacking things like gravity and dark foundchange. Neutrinoswereshowntohavemass,and matter, but until neutrinos were found to have mass, it a lower limit on the average mass of the three eigen- had never produced a disagreement with data. Under- states(0.02eV)hasbeenestablished. Allthreemasses standingtheoriginandpatternsofneutrinomassisthus arelinkedbysmalldifferences,whichmeansthatdirect of great interest, because new physics at a very high searchescanfocusontheexperimentallymostaccessi- mass scale may be responsible. Neutrinos also play a bleneutrino(theelectronantineutrino)andwillbeable significant role in the formation of the universe. They to determine the 3 masses from a single measurement areonlyasmallfractionofthedarkmatter,butbecause (withatwo-foldambiguityfromthepresentlyunknown theycoolfromrelativistictonon-relativisticatarecent hierarchy). The quantity measured in a beta decay ex- epochinthelastfewbillionyears,theyhaveinfluenced perimentisaweightedsumofeigenmasses: large-scale structure. Quantifying that influence is de- (cid:88) sirable, and a laboratory measurement would free cos- m2 = |U |2m2, (1) β ei νi mologistsfromtheneedtoincludeneutrinomassinfits i=1,3 to extract other parameters that can only be obtained where the m are neutrino eigenmasses and U is νi fromastronomicalobservation. the Maki-Nakagawa-Sakata-Pontecorvo mixing matrix In this review the status of experiments now in [18]. The absolute lower bound, which neutrino oscil- progress is considered. There are two experiments on lation measurements provide, is m ≥ 0.01 eV/c2 for β tritium. TheKATRINexperimentinKarlsruheisinthe the normal hierarchy, and m ≥ 0.05 eV/c2 for the in- β final stages of construction. A new scheme, Project 8, vertedhierarchy. Whenthemassislargerthanroughly isunderexploratorydevelopmentinSeattle. Thereare 0.1 eV/c2, the ‘quasi-degenerate’ regime, m (cid:39) m (cid:39) β ν1 alsoideasaboutusing187Reor163Hoembeddedinmi- m (cid:39) m . Figure 1 shows a steady ‘Moore’s Law’ ν2 ν3 crocalorimetersbuttheRedecayishindered,callingfor decrease in the upper limit on neutrino mass from ex- large amounts of this costly element, and the Ho spec- perimentsspanningmorethan60years. trumhasacomplexshape[21]. 1000 2. TheKATRINexperiment 100 HDM W = 1 The KArlsruhe TRItium Neutrino experiment (KA- mit, eV 10 TetRerI,Na)‘McoAupCle-Es’afiglatesreobuasseTd2osnoMurcaegntoetaiclaArgdeiasbpaeticctrCooml-- ass li 1 liismloactiaotendwoinththEelencotrrtohstcaatmicpruestaordfathtieoKn.aTrlhsreuehxepIenrsitmiteuntet m of Technology, contiguous with the prototype tritium- m b 0.1 IH lower limit handlingfacilitydevelopedfortheITERcontrolledfu- NH lower limit sionexperimentnowunderconstructioninFrance. The 0.01 apparatus concept is shown in Fig. 2. The basic op- 1950 1960 1970 1980 1990 2000 2010 2020 eration of the experiment begins with gaseous molec- Year ular tritium recirculated through the WGTS at a tem- peratureof27Kmaintainedbyatwo-phaseneoncool- ing loop. A solenoidal field guides electrons from the Figure1. Upperlimitsonneutrinomassobtainedfromtritiumbeta sourcethroughseveralstagesofpumpingandintoapre- decayexperimentsvs.year.Thepointwitherrorbarsisthenon-zero valuereportedbyLyubimovetal.[12]. AlsoindicatedbyHDMis spectrometerthatrejectsallbutthelast100eVorsoof themassthatwouldclosetheuniverseintheabsenceofothercontri- thespectrum. Electronsthatsurmounttheprespectrom- butions,andthelowerboundssetbyoscillationsfortheinvertedand eterpotentialenterthemainspectrometer,whichhasan normalhierarchies. energy resolution of 0.93 eV base width. If they also Thecurrentupperlimitonneutrinomasscomesfrom surmountthemainspectrometerpotential,theelectrons two tritium experiments, one at Mainz [19], and the aretransmittedtoamultipixelSidetectorforcounting. other at Troitsk [20]. The experiments lead to a con- Aspectrumcanbebuiltpointbypoint,bysteppingei- cordantlimitofabout2eV[18]. therthemainspectrometerpotentialorthepotentialof Neutrinomassisanimportantquestioninphysicsfor theWGTS.Acomprehensivedescriptionoftheconcept tworeasons. Itisthefirstdefinitivecontradictiontothe ofKATRINcanbefoundinRef.[22]. 2 KATRIN monthly report: Executive Summary November 2014 INTECH GmbH, Geitnerweg 21, 12209 Berlin. KIT Project Management KIT contractor for support in ProRje.cGt m.Han.aRgoebmeretnsto n/NuclearPhysicsBProceedingsSupplement00(2015)1–6 3 FigKNuIarTet io–2n Ua.nl OiRveevrsseeirtayvr coihef twCheen oStfetart tohef e othfK eB aAHdeTelmnR-hWIoNultze raAttpsesmpoabceiraartgito uanns d. Functionalunits(fromleft):Rearsystemwithcalibrationdevices(RS);differentiawlpuwmwpin.kgiste.cetiodnu (DPS1R);windowlessgaseoustritiumsource(WGTS);differentialpumpingsection(DPS1F);differentialpumpingsectionwithmagneticchicane (DPS2F);cryogenicpumpingsectionwithargonfrostat3K(CPS);prespectrometer;mainspectrometer;detector. On site and complete are the prespectrometer, main upperlimitof0.2eVat90%CLafter5calendaryears, spectrometer,anddetector.Withanelectrongunsource, oradiscoveryat5σof0.35eV. themainspectrometeranddetectorhavebeenundergo- ingcommissioningtests. ThecryogenicsfortheWGTS 3. Project8 have been built and tested: the system performs very well, with temperatures controlled to 4 mK at 27 K AsBergkvistpointedoutin1972,thefinal-statespec- [23]. The RS is nearing completion in Santa Barbara. trum in the decay of tritium bound in a molecule im- TheDPS1R,DPS1F,andWGTSmagnetsarebuiltand poses a line-broadening that must be folded with the ready for integration with the cryogenic system. The theoretical beta spectrum. The line-broadening exacts monolithicDPS2Fsysteminitiallyconstructedsuffered both statistical and systematic penalties when small afailureofquenchprotectiondiodesthatwereinacces- neutrino mass distortions are being searched for. The sibleandcouldnotberepaired. Anewsystemisbeing statistical demands are already severe: only 2×10−13 builtinKarlsruhewith5separatemagnets. TheCPSis ofdecayspopulatethelast∆E = 1eVofthespectrum, underconstructioninGenoa. andthisfractionscalesasthecubeof∆E.TheKATRIN The main spectrometer and detector operate largely experimentreachesitsultimatesensitivitywithapprox- as expected and required for a successful experiment. imatelyequalcontributionsofstatisticalandsystematic Thespectrometerhasrunatupto35kV,hasdelivered uncertainty. sub-eV energy resolution, and has shown background A new approach (dubbed ‘Project 8’) was proposed ratesofafractionof1c/s. Onesurprisewasthediscov- by Monreal and Formaggio in 2009 [25]. The statisti- eryof219Rndecayingintheactivevolumeofthespec- cal limit mentioned might be circumvented by not ex- trometers [24]. This unusual isotope in the 235U series tractingandanalyzingelectronsfromthetritiumsource isemanatingfromtheZr-richgetterstripsusedtopump gas, but instead detecting the cyclotron radiation they hydrogenisotopes,water,andair. Installationofliquid- emitwhilemovinginauniformmagneticfield B. The nitrogen-cooled baffles has greatly reduced this back- electronsfromtritiumbetadecayaremildlyrelativistic ground but necessitated a challenging design for high- (γ=1.035)andthecyclotronfrequencydependsonthe voltageinsulatorscarryingtheLNsupplyfromground kineticenergyK oftheelectron: potential. Another difficulty has been the appearance, f eB duringbakeout, ofshortcircuitsintheconnectionsbe- f ≡ c = , (2) tween grid layers that line the shell of the spectrome- γ γ γme ter.Thegridssuppresselectronbackgroundsatthewall, where e(m ) is the electron charge (mass), c is the and function best when operated at potentials differing e (cid:16) (cid:17) speed of light in vacuum, and γ = 1+K/m c2 is byafewhundredvolts. Progresshasbeenmadeinre- e the Lorentz factor. The nonrelativistic frequency f is pairingtheshorts,andworkcontinuesapace. c 2.799249110(6)×1010HzT−1. The orbiting electron Itisexpectedthatinitialoperationwithtritiumcould emits coherent electromagnetic radiation with a power begin in late 2016. The sensitivity of KATRIN is an spectrum centered at f . Due to the K dependence of γ 3 R.G.H.Robertson/NuclearPhysicsBProceedingsSupplement00(2015)1–6 4 f ,afrequencymeasurementofthecyclotronradiation K. A uniform magnetic field of 0.9467(1) T was pro- γ is sensitive to the energy of the electron, and thus pro- vided by a warm-bore superconducting magnet, and a videsanewformofspectroscopy,CyclotronRadiation weakharmonictrappingfieldwassuperimposedonthe Emission Spectroscopy (CRES). The statistical advan- uniformfieldbymeansofacircularcoppercoilwound tageistwo-fold:becausethesourcegasistransparentto onthecell.Thistrappingfieldwasnecessaryinorderto theradiation, alarge, high-activitysourcecanbeused, keepelectronsinthecelllongenoughtomakeaprecise andbecausearangeoffrequenciescanbecollectedand measurementoftheirfrequencies. Signalsweredown- analyzedatonce, thetimetoaccumulateaspectrumis converted through two stages of double-balanced mix- shorterthanwithaspectrometerthatrecordsdatapoint- ersandamplifierstoa125-MHzwideslicethatwasdig- by-point. itizedbyafree-running250-MSPSdigitizer. Anexperimentalverificationofthisconceptbeingde- Spectrogramswereformedfromthedigitizeddataby sirable,apparatuswassetupattheUniversityofWash- successive Fourier transforms every 32.8 µs. The fre- ingtontosearchforcyclotronemissionfromsingleelec- quencyaxiswasbinnedin30.52-kHzbins.Oneexpects trons orbiting in a uniform magnetic field. Somewhat asignalfromanelectrontoshowasuddenonsetofRF surprisingly, no observation of this has been reported. poweratacertainfrequencyatthemomentofthedecay Cyclotronmotionandradiationis,ofcourse,wellestab- followed by steady emission that drifts monotonically lished, but the radiation detected was either from large upinfrequencyastheelectronradiates. Eventuallythe numbersofelectronsor,wheresingleelectronswerebe- electronwillcollidewithabackgroundgasatomandbe ingstudied,involveddetectionthroughcouplingtotheir ejectedfromthetrap. axialmotioninaPenningtrap[26]. After a number of attempts success was achieved in ThepowerradiatedbyanelectronisgivenbytheLar- June2014. Aspectrogramfromthefirstsecondofdata- morformula, takingisshowninFig.3.Thetracksvisibleinthisspec- 1 2 e4 (cid:16) (cid:17) P(γ,θ)= B2 γ2−1 sin2θ, (3) 4π(cid:15) 3m2c 0 e where (cid:15) is the permittivity of free space and θ is the 0 pitchangleoftheelectron,definedastheanglebetween themomentumvectoroftheelectronandthemagnetic field. An electron with energy near the 18.6keV end- point of tritium and a pitch angle near 90o radiates ap- proximately1.2fWina1Tmagneticfield.Morepower is available at higher fields, but the electron is losing energymorequicklybyradiationandthereceivertech- nology is more difficult. At lower fields, on the other hand, the signal-to-noise ratio with respect to back- groundthermalradiationbecomesmoredifficult. The experiment [27] was carried out not with tri- tium but with 83mKr, a 1.8-hr isomeric activity that is the daughter of a much longer-lived parent, 86-d 83Rb. Not only is the Kr non-contaminating, but it Figure3. Spectrogramofcyclotronradiationfromatrapped30-keV produces a spectrum of nearly monoenergetic conver- electron. sion electrons at kinetic energies of 17830.0(5)eV, 30227(1)eV,30424(1)eVand30477(1)eV[28]. trogramhavethepredictedcharacteristics:asuddenon- The Kr was introduced into a cell made of a section set of power followed by a slow, quasi-linear increase ofWR42waveguideenclosedwith25-µmKaptonwin- in frequency. What was not expected was the persis- dows. A vacuum of order 10 µPa was maintained by tenceoftheelectroninthetrap. Severalcollisionswith getterpumps. Thecellwasconnectedbya1-mlength backgroundgasatomsareseen,leadingtojumpsinthe of waveguide to a pair of cascaded low-noise HEMT frequency, but the electron is not ejected until the sev- amplifiersmaintainedataphysicaltemperatureof50K enthorperhapseighthcollision. Evidentlythechanges by a Gifford-McMahon cryocooler. The cell tempera- inpitchangleinthecollisionofa30-keVelectronwith turewasheldat130KtopreventKrfromfreezingout. agasmoleculearetypicallyverysmall. Ahistogramof Thesystemnoisetemperaturewasmeasuredtobe145 thefrequencyjumpsfrommanysucheventsshowsthat 4 R.G.H.Robertson/NuclearPhysicsBProceedingsSupplement00(2015)1–6 5 themostprobableenergylossis14eV,consistentwith tosub-Ktemperatures. Ifthiscanbeaccomplished,the theexpectedbackgroundgasbeinghydrogen. molecular component present as a contaminant will be An energy spectrum was formed by analyzing the frozenout.Verypureatomictritiumisrequiredbecause tracks to find the lowest frequency in each event, the the endpoint of the molecular spectrum is 8 eV higher frequency at the instant the electron was emitted. The thantheatomicspectrum. spectrumisshowninFig.4. 4. Conclusions Frequency (GHz) 25.6 25.4 25.2 25 24.8 24.6 0.3 A direct measurement of the mass of the neutrino from a study of the phase space near the endpoint of eV0.25 0.3 a beta spectrum is very attractive for a number of rea- 0 per 4 0.2 00.2.25 saoDnsir.aTchoerreMisajnooradneappenardteicnlcee.oTnhwerheeitshnerotnheeendeutotrkinnoowis d on 0.15 a nuclear matrix element precisely, it serves only as a c0.15 se 0.1 normalization constant for the count rate. No complex per 0.1 0.05 phasescloudtheinterpretationofEq.1. Nocosmologi- s caldegreesoffreedomarecorrelatedwithit. nt 0 30 30.1 30.2 30.3 30.4 30.5 30.6 ou0.05 It is nevertheless an extremely difficult endeavor to C study and quantify a region of the beta spectrum that 0 ispopulatedonlywithafractionalintensityof10−13 − 16 18 20 22 24 26 28 30 32 34 Reconstructed energy (keV) 10−19. Two experimental campaigns are in progress now to reach below the presently known 2 eV level of Figure4. Spectrumofconversionlinesfrom83mKr. Theinsetisan mass sensitivity toward the lower limit set by oscilla- expandedviewofthe30-keVline.Theenergyresolutioninthisspec- tions, 0.01 eV. If 0.05 eV is reached without seeing a trumisabout160eV.(The30-keVlineisinfacta53-eVdoublet.) signal,thenthehierarchymustbenormal.TheKATRIN Theshadedregionwasnotincludedinthefrequencyrangeexplored. project,byfarthelargestandmostcomplextritiumbeta decayexperimenteverconceived,ismovingsteadilyto It is clear from these results that the basic scheme firsttritiumoperationin2016andwilleventuallyeither outlinedbyMonrealandFormaggioisaviableonefor see the mass or limit it to 0.2 eV. A new idea, Project measuringthebetaspectrumoftritium. Aplanforfur- 8, has just passed its proof-of-concept milestone, and ther development of this technique includes a small- designworkonthenextphasesisbeginning. scaletritiumexperimentwithapparatusnotgreatlydif- ferentfromtheoneusedfortheconceptualverification, andthenlarger-scaleexperimentswithincreasinglysen- 5. Acknowledgments sitivecapabilities. Whilethestatisticaladvantagesofa largesourceandspectralefficiencymaybewithinreach, Preparation of this report has been supported by the the fundamental limitation to experiments with molec- U.S. Department of Energy Office of Science, Office ular T is the final-state distribution, which has a stan- of Nuclear Physics under Award Number DE-FG02- 2 dard deviation of about 0.4 eV. The distribution is cal- 97ER41020. culabletohighaccuracy(oforder1%,althoughdifficult to quantify) but it nevertheless comes at a high price References in statistical precision. For these reasons, exploratory workonanatomictritiumsourcehasbegun. Someen- [1] E.Fermi,Tentativodiunateoriadeiraggiβ,RicercaScient.2 couragementthatthismightbepossiblecomesfromthe (1933)12. success of the ALPHA experiment trapping antihydro- [2] F.L.Wilson, Fermi’stheoryofbetadecay, AmericanJournal gen at CERN [29]. The technique involves axial trap- ofPhysics36(12)(1968)1150–1160. doi:http://dx.doi. ping by solenoidal coils, and radial trapping with Ioffe org/10.1119/1.1974382. [3] L.Alvarez,R.Cornog,Heliumandhydrogenofmass3,Phys. barsonthesurfaceofacylinderaroundthesourcevol- Rev.56(1939)613–613.doi:10.1103/PhysRev.56.613. ume. Electrons require only the axial trap but atoms [4] G.Hanna,B.Pontecorvo,Thebeta-spectrumoftritium,Phys. must also be radially confined. For atoms with a mag- Rev.75(1949)983–984.doi:10.1103/PhysRev.75.983.3. [5] S.Curran,J.Angus,A.Cockroft,Thebeta-spectrumoftritium, neticmomentof1Bohrmagnetontobetrapped,fields Phys.Rev.76(1949)853–854. doi:10.1103/PhysRev.76. of order 5T are needed and the atoms must be cooled 853. 5 R.G.H.Robertson/NuclearPhysicsBProceedingsSupplement00(2015)1–6 6 [6] T.Lee, C.-N.Yang, QuestionofParityConservationinWeak cryogenics.2013.01.001. Interactions, Phys.Rev.104(1956)254–258. doi:10.1103/ [24] F.Frankle, L.Bornschein, G.Drexlin, F.Gluck, S.Gorhardt, PhysRev.104.254. et al., Radon induced background processes in the KA- [7] M.Goldhaber,L.Grodzins,A.W.Sunyar,Helicityofneutrinos, TRIN pre-spectrometer, Astropart.Phys. 35 (2011) 128– Phys.Rev.109(1958)1015–1017. doi:10.1103/PhysRev. 134.arXiv:1103.6238,doi:10.1016/j.astropartphys. 109.1015. 2011.06.009. [8] G. Danby, J.-M. Gaillard, K. Goulianos, L. M. Lederman, [25] B.Monreal,J.A.Formaggio,RelativisticCyclotronRadiation N.Mistry, M.Schwartz, J.Steinberger, ObservationofHigh- DetectionofTritiumDecayElectronsasaNewTechniquefor Energy Neutrino Reactions and the Existence of Two Kinds MeasuringtheNeutrinoMass,Phys.Rev.D80(2009)051301. ofNeutrinos, PhysicalReviewLetters9(1962)36–44. doi: arXiv:0904.2860,doi:10.1103/PhysRevD.80.051301. 10.1103/PhysRevLett.9.36. [26] D.Hanneke,S.Fogwell,G.Gabrielse,Newmeasurementofthe [9] M. L. Perl, G. S. Abrams, A. M. Boyarski, M. Breidenbach, electronmagneticmomentandthefinestructureconstant,Phys. D.D.Briggs,F.Bulos,W.Chinowsky,J.T.Dakin,G.J.Feld- Rev.Lett.100(2008)120801. doi:10.1103/PhysRevLett. man,C.E.Friedberg,D.Fryberger,G.Goldhaber,G.Hanson, 100.120801. F.B.Heile,B.Jean-Marie,etal.,Evidenceforanomalouslep- [27] D.Asner,R.Bradley,L.deViveiros,P.Doe,J.Fernandes,etal., tonproductionine+e−annihilation,PhysicalReviewLetters35 Single electron detection and spectroscopy via relativistic cy- (1975)1489–1492.doi:10.1103/PhysRevLett.35.1489. clotronradiation.arXiv:1408.5362. [10] F. Hasert, et al., Observation of Neutrino Like Interactions [28] A. Picard, H. Backe, J. Bonn, B. Degen, R. Haid, A. Her- Without Muon Or Electron in the Gargamelle Neutrino Ex- manni, P. Leiderer, A. Osipowicz, E. Otten, M. Przyrembel, periment, Phys.Lett. B46 (1973) 138–140. doi:10.1016/ M. Schrader, M. Steininger, C. Weinheimer, Precision mea- 0370-2693(73)90499-1. surementoftheconversionelectronspectrumofkr-83mwith [11] C. Prescott, W. Atwood, R. L. Cottrell, H. DeStaebler, E. L. a solenoid retarding spectrometer, Zeitschrift fur Physik A Garwin, et al., Parity Nonconservation in Inelastic Electron Hadrons and Nuclei 342 (1) (1992) 71–78. doi:10.1007/ Scattering, Phys.Lett. B77 (1978) 347–352. doi:10.1016/ BF01294491. 0370-2693(78)90722-0. URLhttp://dx.doi.org/10.1007/BF01294491 [12] V.A.Lyubimov,E.G.Novikov,V.Z.Nozik,E.F.Tretyakov, [29] G.Andresen,etal.,Confinementofantihydrogenfor1000sec- V.S.Kosik,AnEstimateoftheelectron-NeutrinoMassfromthe onds, Nature Phys. 7 (2011) 558–564. arXiv:1104.4982, betaSpectrumofTritiumintheValineMolecule,Phys.Lett.B94 doi:10.1038/nphys2025. (1980)266–268.doi:10.1016/0370-2693(80)90873-4. [13] R. G. H. Robertson, T. J. Bowles, G. J. Stephenson, D. L. Wark, J. F. Wilkerson, et al., Limit on anti-electron-neutrino mass from observation of the beta decay of molecular tri- tium, Phys.Rev.Lett. 67 (1991) 957–960. doi:10.1103/ PhysRevLett.67.957. [14] K. Bergkvist, A high-luminosity, high-resolution study of the end-point behaviour of the tritium beta-spectrum (i). basic experimental procedure and analysis with regard to neutrino massandneutrinodegeneracy,Nucl.Phys.B39(1972)317–370. doi:10.1016/0550-3213(72)90376-8. [15] Y.Fukuda,etal.,Evidenceforoscillationofatmosphericneu- trinos,Phys.Rev.Lett.81(1998)1562–1567. arXiv:hep-ex/ 9807003,doi:10.1103/PhysRevLett.81.1562. [16] Q. R. Ahmad, et al., Direct evidence for neutrino fla- vor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301. arXiv:nucl-ex/0204008, doi:10.1103/PhysRevLett.89.011301. [17] K. Eguchi, et al., First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys.Rev.Lett. 90 (2003) 021802. arXiv:hep-ex/0212021, doi:10.1103/ PhysRevLett.90.021802. [18] J.Beringer,etal.,ReviewofParticlePhysics(RPP),Phys.Rev. D86(2012)010001.doi:10.1103/PhysRevD.86.010001. [19] C.Kraus,etal.,Finalresultsfromphaseiiofthemainzneutrino masssearchintritiumbetadecay,Eur.Phys.J.C40(2005)447– 468.arXiv:hep-ex/0412056. [20] V. Aseev, et al., An upper limit on electron antineutrino massfromTroitskexperiment,Phys.Rev.D84(2011)112003. arXiv:1108.5034,doi:10.1103/PhysRevD.84.112003. [21] R. G. H. Robertson, Can neutrino mass be measured in low- energyelectroncapturedecay?arXiv:1411.2906. [22] J. Angrik, et al., Katrin design report 2004FZKA-7090, http://www-ik.fzk.de/katrin/. [23] S.Grohmann,etal.,Thethermalbehaviorofthetritiumsource inKATRIN,Cryogenics55-56(2013)5–11.doi:10.1016/j. 6