ebook img

Direct probes of neutrino mass PDF

0.65 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Direct probes of neutrino mass

Nuclear Physics B Proceed- ings NuclearPhysicsBProceedingsSupplement00(2015)1–6 Supple- ment Direct probes of neutrino mass R.G.HamishRobertson CenterforExperimentalNuclearPhysicsandAstrophysics 5 and 1 Dept.ofPhysics,UniversityofWashington,SeattleWA98195,USA 0 2 n a J 1 Abstract 3 Thediscoveryofneutrinooscillationshasshownthatneutrinos,incontradictiontoapredictionoftheminimalstandardmodel, ] have mass. Oscillations do not yield a value for the mass, but do set a lower limit of 0.02 eV on the average of the 3 known x eigenmasses.Moreover,theymakeitpossibletodetermineorlimitall3massesfrommeasurementsofelectron-flavorneutrinosin e - betadecay. Thepresentupperlimitfromsuchmeasurementsis2eV.Wereviewthestatusoflaboratoryworktowardclosingthe l remainingwindowbetween2and0.02eV,andmeasuringthemass. c u Keywords: Neutrinomass,betadecay,tritium,electronspectroscopy n [ 1. Introduction conservationintheweakinteractionin1956[6]andthe measurementofthehelicityoftheneutrinoin1958[7] 1 Themassoftheneutrinohasbeenatopicofspecula- madeplausibletheideathattheneutrinowasmassless, v 4 tionandresearchsincethetheoryofbetadecaywasfor- andmasslessneutrinosweresubsequentlybuiltintothe 4 mulatedbyFermi[1]. Neutrinomassaffectstheshape standard model. A decade-long hiatus in searches for 1 of the beta spectrum, and even with the limited data neutrino mass followed. A second kind of neutrino, 0 available at the time, Fermi was able to conclude that the muon neutrino, was discovered in 1962 [8], and 0 themassoftheneutrinomustbe“eitherzero,orinany a third, the tau neutrino, was found to exist in 1975 . 2 caseverysmall,incomparisontothemassoftheelec- [9]. Interest in direct searches for neutrino mass re- 0 tron”[2]. ThediscoverybyAlvarezandCornog[3]in vived once it was realized that neutrinos were not re- 5 1939 that tritium was radioactive and had a small Q- sponsible for parity violation because the neutral cur- 1 : valuewasimportantbecausetheeffectofneutrinomass rent [10] also violated parity [11]. A flurry of excite- v is relatively greater in that case. Moreover, tritium has ment pervaded the neutrino-mass community when in i X asimpleatomicstructure,auniquelyvaluableproperty 1981Lyubimovetal.[12]reportedthattheelectronan- r asthesensitivityof neutrinomassexperimentshasad- tineutrino had a mass of 30 eV, a value that closes the a vancedovertheyears. Seventy-fiveyearslater, tritium universegravitationallyandwouldexplainitsobserved remainstheisotopeofchoiceinthecontinuingquestto flatness. Unfortunately this result turned out to be in- measurethemassoftheneutrino. correct, as was shown by a group at Los Alamos [13]. Thefirstneutrinomassdeterminationsfromtheshape The Los Alamos experiment used a source of gaseous of the tritium spectrum were carried out with propor- T , because Bergkvist had observed in 1972 [14] that 2 tionalcountersin1948byHannaandPontecorvo[4]at experimentshadreachedasensitivitywhereitbecomes ChalkRiverandbyCurranetal.[5]inGlasgow. Hanna essential to consider molecular and atomic excitations and Pontecorvo were able to set a limit of 500 eV on ininterpretingthespectrum. Itwasalmostcertainlythe the neutrino mass, Curran et al. about 1 keV. Experi- complexities of the tritiated valine molecule that con- mentalworkcontinueduntilthediscoveryofparitynon- tributedtotheerroneousresultofLyubimovetal. 1 R.G.H.Robertson/NuclearPhysicsBProceedingsSupplement00(2015)1–6 2 Thediscoveryofneutrinooscillationsinatmospheric, minimalstandardmodel. Thestandardmodelisknown solar, andreactorneutrinos[15,16,17]broughtapro- to be incomplete, lacking things like gravity and dark foundchange. Neutrinoswereshowntohavemass,and matter, but until neutrinos were found to have mass, it a lower limit on the average mass of the three eigen- had never produced a disagreement with data. Under- states(0.02eV)hasbeenestablished. Allthreemasses standingtheoriginandpatternsofneutrinomassisthus arelinkedbysmalldifferences,whichmeansthatdirect of great interest, because new physics at a very high searchescanfocusontheexperimentallymostaccessi- mass scale may be responsible. Neutrinos also play a bleneutrino(theelectronantineutrino)andwillbeable significant role in the formation of the universe. They to determine the 3 masses from a single measurement areonlyasmallfractionofthedarkmatter,butbecause (withatwo-foldambiguityfromthepresentlyunknown theycoolfromrelativistictonon-relativisticatarecent hierarchy). The quantity measured in a beta decay ex- epochinthelastfewbillionyears,theyhaveinfluenced perimentisaweightedsumofeigenmasses: large-scale structure. Quantifying that influence is de- (cid:88) sirable, and a laboratory measurement would free cos- m2 = |U |2m2, (1) β ei νi mologistsfromtheneedtoincludeneutrinomassinfits i=1,3 to extract other parameters that can only be obtained where the m are neutrino eigenmasses and U is νi fromastronomicalobservation. the Maki-Nakagawa-Sakata-Pontecorvo mixing matrix In this review the status of experiments now in [18]. The absolute lower bound, which neutrino oscil- progress is considered. There are two experiments on lation measurements provide, is m ≥ 0.01 eV/c2 for β tritium. TheKATRINexperimentinKarlsruheisinthe the normal hierarchy, and m ≥ 0.05 eV/c2 for the in- β final stages of construction. A new scheme, Project 8, vertedhierarchy. Whenthemassislargerthanroughly isunderexploratorydevelopmentinSeattle. Thereare 0.1 eV/c2, the ‘quasi-degenerate’ regime, m (cid:39) m (cid:39) β ν1 alsoideasaboutusing187Reor163Hoembeddedinmi- m (cid:39) m . Figure 1 shows a steady ‘Moore’s Law’ ν2 ν3 crocalorimetersbuttheRedecayishindered,callingfor decrease in the upper limit on neutrino mass from ex- large amounts of this costly element, and the Ho spec- perimentsspanningmorethan60years. trumhasacomplexshape[21]. 1000 2. TheKATRINexperiment 100 HDM W = 1 The KArlsruhe TRItium Neutrino experiment (KA- mit, eV 10 TetRerI,Na)‘McoAupCle-Es’afiglatesreobuasseTd2osnoMurcaegntoetaiclaArgdeiasbpaeticctrCooml-- ass li 1 liismloactiaotendwoinththEelencotrrtohstcaatmicpruestaordfathtieoKn.aTrlhsreuehxepIenrsitmiteuntet m of Technology, contiguous with the prototype tritium- m b 0.1 IH lower limit handlingfacilitydevelopedfortheITERcontrolledfu- NH lower limit sionexperimentnowunderconstructioninFrance. The 0.01 apparatus concept is shown in Fig. 2. The basic op- 1950 1960 1970 1980 1990 2000 2010 2020 eration of the experiment begins with gaseous molec- Year ular tritium recirculated through the WGTS at a tem- peratureof27Kmaintainedbyatwo-phaseneoncool- ing loop. A solenoidal field guides electrons from the Figure1. Upperlimitsonneutrinomassobtainedfromtritiumbeta sourcethroughseveralstagesofpumpingandintoapre- decayexperimentsvs.year.Thepointwitherrorbarsisthenon-zero valuereportedbyLyubimovetal.[12]. AlsoindicatedbyHDMis spectrometerthatrejectsallbutthelast100eVorsoof themassthatwouldclosetheuniverseintheabsenceofothercontri- thespectrum. Electronsthatsurmounttheprespectrom- butions,andthelowerboundssetbyoscillationsfortheinvertedand eterpotentialenterthemainspectrometer,whichhasan normalhierarchies. energy resolution of 0.93 eV base width. If they also Thecurrentupperlimitonneutrinomasscomesfrom surmountthemainspectrometerpotential,theelectrons two tritium experiments, one at Mainz [19], and the aretransmittedtoamultipixelSidetectorforcounting. other at Troitsk [20]. The experiments lead to a con- Aspectrumcanbebuiltpointbypoint,bysteppingei- cordantlimitofabout2eV[18]. therthemainspectrometerpotentialorthepotentialof Neutrinomassisanimportantquestioninphysicsfor theWGTS.Acomprehensivedescriptionoftheconcept tworeasons. Itisthefirstdefinitivecontradictiontothe ofKATRINcanbefoundinRef.[22]. 2 KATRIN monthly report: Executive Summary November 2014 INTECH GmbH, Geitnerweg 21, 12209 Berlin. KIT Project Management KIT contractor for support in ProRje.cGt m.Han.aRgoebmeretnsto n/NuclearPhysicsBProceedingsSupplement00(2015)1–6 3 FigKNuIarTet io–2n Ua.nl OiRveevrsseeirtayvr coihef twCheen oStfetart tohef e othfK eB aAHdeTelmnR-hWIoNultze raAttpsesmpoabceiraartgito uanns d. Functionalunits(fromleft):Rearsystemwithcalibrationdevices(RS);differentiawlpuwmwpin.kgiste.cetiodnu (DPS1R);windowlessgaseoustritiumsource(WGTS);differentialpumpingsection(DPS1F);differentialpumpingsectionwithmagneticchicane (DPS2F);cryogenicpumpingsectionwithargonfrostat3K(CPS);prespectrometer;mainspectrometer;detector. On site and complete are the prespectrometer, main upperlimitof0.2eVat90%CLafter5calendaryears, spectrometer,anddetector.Withanelectrongunsource, oradiscoveryat5σof0.35eV. themainspectrometeranddetectorhavebeenundergo- ingcommissioningtests. ThecryogenicsfortheWGTS 3. Project8 have been built and tested: the system performs very well, with temperatures controlled to 4 mK at 27 K AsBergkvistpointedoutin1972,thefinal-statespec- [23]. The RS is nearing completion in Santa Barbara. trum in the decay of tritium bound in a molecule im- TheDPS1R,DPS1F,andWGTSmagnetsarebuiltand poses a line-broadening that must be folded with the ready for integration with the cryogenic system. The theoretical beta spectrum. The line-broadening exacts monolithicDPS2Fsysteminitiallyconstructedsuffered both statistical and systematic penalties when small afailureofquenchprotectiondiodesthatwereinacces- neutrino mass distortions are being searched for. The sibleandcouldnotberepaired. Anewsystemisbeing statistical demands are already severe: only 2×10−13 builtinKarlsruhewith5separatemagnets. TheCPSis ofdecayspopulatethelast∆E = 1eVofthespectrum, underconstructioninGenoa. andthisfractionscalesasthecubeof∆E.TheKATRIN The main spectrometer and detector operate largely experimentreachesitsultimatesensitivitywithapprox- as expected and required for a successful experiment. imatelyequalcontributionsofstatisticalandsystematic Thespectrometerhasrunatupto35kV,hasdelivered uncertainty. sub-eV energy resolution, and has shown background A new approach (dubbed ‘Project 8’) was proposed ratesofafractionof1c/s. Onesurprisewasthediscov- by Monreal and Formaggio in 2009 [25]. The statisti- eryof219Rndecayingintheactivevolumeofthespec- cal limit mentioned might be circumvented by not ex- trometers [24]. This unusual isotope in the 235U series tractingandanalyzingelectronsfromthetritiumsource isemanatingfromtheZr-richgetterstripsusedtopump gas, but instead detecting the cyclotron radiation they hydrogenisotopes,water,andair. Installationofliquid- emitwhilemovinginauniformmagneticfield B. The nitrogen-cooled baffles has greatly reduced this back- electronsfromtritiumbetadecayaremildlyrelativistic ground but necessitated a challenging design for high- (γ=1.035)andthecyclotronfrequencydependsonthe voltageinsulatorscarryingtheLNsupplyfromground kineticenergyK oftheelectron: potential. Another difficulty has been the appearance, f eB duringbakeout, ofshortcircuitsintheconnectionsbe- f ≡ c = , (2) tween grid layers that line the shell of the spectrome- γ γ γme ter.Thegridssuppresselectronbackgroundsatthewall, where e(m ) is the electron charge (mass), c is the and function best when operated at potentials differing e (cid:16) (cid:17) speed of light in vacuum, and γ = 1+K/m c2 is byafewhundredvolts. Progresshasbeenmadeinre- e the Lorentz factor. The nonrelativistic frequency f is pairingtheshorts,andworkcontinuesapace. c 2.799249110(6)×1010HzT−1. The orbiting electron Itisexpectedthatinitialoperationwithtritiumcould emits coherent electromagnetic radiation with a power begin in late 2016. The sensitivity of KATRIN is an spectrum centered at f . Due to the K dependence of γ 3 R.G.H.Robertson/NuclearPhysicsBProceedingsSupplement00(2015)1–6 4 f ,afrequencymeasurementofthecyclotronradiation K. A uniform magnetic field of 0.9467(1) T was pro- γ is sensitive to the energy of the electron, and thus pro- vided by a warm-bore superconducting magnet, and a videsanewformofspectroscopy,CyclotronRadiation weakharmonictrappingfieldwassuperimposedonthe Emission Spectroscopy (CRES). The statistical advan- uniformfieldbymeansofacircularcoppercoilwound tageistwo-fold:becausethesourcegasistransparentto onthecell.Thistrappingfieldwasnecessaryinorderto theradiation, alarge, high-activitysourcecanbeused, keepelectronsinthecelllongenoughtomakeaprecise andbecausearangeoffrequenciescanbecollectedand measurementoftheirfrequencies. Signalsweredown- analyzedatonce, thetimetoaccumulateaspectrumis converted through two stages of double-balanced mix- shorterthanwithaspectrometerthatrecordsdatapoint- ersandamplifierstoa125-MHzwideslicethatwasdig- by-point. itizedbyafree-running250-MSPSdigitizer. Anexperimentalverificationofthisconceptbeingde- Spectrogramswereformedfromthedigitizeddataby sirable,apparatuswassetupattheUniversityofWash- successive Fourier transforms every 32.8 µs. The fre- ingtontosearchforcyclotronemissionfromsingleelec- quencyaxiswasbinnedin30.52-kHzbins.Oneexpects trons orbiting in a uniform magnetic field. Somewhat asignalfromanelectrontoshowasuddenonsetofRF surprisingly, no observation of this has been reported. poweratacertainfrequencyatthemomentofthedecay Cyclotronmotionandradiationis,ofcourse,wellestab- followed by steady emission that drifts monotonically lished, but the radiation detected was either from large upinfrequencyastheelectronradiates. Eventuallythe numbersofelectronsor,wheresingleelectronswerebe- electronwillcollidewithabackgroundgasatomandbe ingstudied,involveddetectionthroughcouplingtotheir ejectedfromthetrap. axialmotioninaPenningtrap[26]. After a number of attempts success was achieved in ThepowerradiatedbyanelectronisgivenbytheLar- June2014. Aspectrogramfromthefirstsecondofdata- morformula, takingisshowninFig.3.Thetracksvisibleinthisspec- 1 2 e4 (cid:16) (cid:17) P(γ,θ)= B2 γ2−1 sin2θ, (3) 4π(cid:15) 3m2c 0 e where (cid:15) is the permittivity of free space and θ is the 0 pitchangleoftheelectron,definedastheanglebetween themomentumvectoroftheelectronandthemagnetic field. An electron with energy near the 18.6keV end- point of tritium and a pitch angle near 90o radiates ap- proximately1.2fWina1Tmagneticfield.Morepower is available at higher fields, but the electron is losing energymorequicklybyradiationandthereceivertech- nology is more difficult. At lower fields, on the other hand, the signal-to-noise ratio with respect to back- groundthermalradiationbecomesmoredifficult. The experiment [27] was carried out not with tri- tium but with 83mKr, a 1.8-hr isomeric activity that is the daughter of a much longer-lived parent, 86-d 83Rb. Not only is the Kr non-contaminating, but it Figure3. Spectrogramofcyclotronradiationfromatrapped30-keV produces a spectrum of nearly monoenergetic conver- electron. sion electrons at kinetic energies of 17830.0(5)eV, 30227(1)eV,30424(1)eVand30477(1)eV[28]. trogramhavethepredictedcharacteristics:asuddenon- The Kr was introduced into a cell made of a section set of power followed by a slow, quasi-linear increase ofWR42waveguideenclosedwith25-µmKaptonwin- in frequency. What was not expected was the persis- dows. A vacuum of order 10 µPa was maintained by tenceoftheelectroninthetrap. Severalcollisionswith getterpumps. Thecellwasconnectedbya1-mlength backgroundgasatomsareseen,leadingtojumpsinthe of waveguide to a pair of cascaded low-noise HEMT frequency, but the electron is not ejected until the sev- amplifiersmaintainedataphysicaltemperatureof50K enthorperhapseighthcollision. Evidentlythechanges by a Gifford-McMahon cryocooler. The cell tempera- inpitchangleinthecollisionofa30-keVelectronwith turewasheldat130KtopreventKrfromfreezingout. agasmoleculearetypicallyverysmall. Ahistogramof Thesystemnoisetemperaturewasmeasuredtobe145 thefrequencyjumpsfrommanysucheventsshowsthat 4 R.G.H.Robertson/NuclearPhysicsBProceedingsSupplement00(2015)1–6 5 themostprobableenergylossis14eV,consistentwith tosub-Ktemperatures. Ifthiscanbeaccomplished,the theexpectedbackgroundgasbeinghydrogen. molecular component present as a contaminant will be An energy spectrum was formed by analyzing the frozenout.Verypureatomictritiumisrequiredbecause tracks to find the lowest frequency in each event, the the endpoint of the molecular spectrum is 8 eV higher frequency at the instant the electron was emitted. The thantheatomicspectrum. spectrumisshowninFig.4. 4. Conclusions Frequency (GHz) 25.6 25.4 25.2 25 24.8 24.6 0.3 A direct measurement of the mass of the neutrino from a study of the phase space near the endpoint of eV0.25 0.3 a beta spectrum is very attractive for a number of rea- 0 per 4 0.2 00.2.25 saoDnsir.aTchoerreMisajnooradneappenardteicnlcee.oTnhwerheeitshnerotnheeendeutotrkinnoowis d on 0.15 a nuclear matrix element precisely, it serves only as a c0.15 se 0.1 normalization constant for the count rate. No complex per 0.1 0.05 phasescloudtheinterpretationofEq.1. Nocosmologi- s caldegreesoffreedomarecorrelatedwithit. nt 0 30 30.1 30.2 30.3 30.4 30.5 30.6 ou0.05 It is nevertheless an extremely difficult endeavor to C study and quantify a region of the beta spectrum that 0 ispopulatedonlywithafractionalintensityof10−13 − 16 18 20 22 24 26 28 30 32 34 Reconstructed energy (keV) 10−19. Two experimental campaigns are in progress now to reach below the presently known 2 eV level of Figure4. Spectrumofconversionlinesfrom83mKr. Theinsetisan mass sensitivity toward the lower limit set by oscilla- expandedviewofthe30-keVline.Theenergyresolutioninthisspec- tions, 0.01 eV. If 0.05 eV is reached without seeing a trumisabout160eV.(The30-keVlineisinfacta53-eVdoublet.) signal,thenthehierarchymustbenormal.TheKATRIN Theshadedregionwasnotincludedinthefrequencyrangeexplored. project,byfarthelargestandmostcomplextritiumbeta decayexperimenteverconceived,ismovingsteadilyto It is clear from these results that the basic scheme firsttritiumoperationin2016andwilleventuallyeither outlinedbyMonrealandFormaggioisaviableonefor see the mass or limit it to 0.2 eV. A new idea, Project measuringthebetaspectrumoftritium. Aplanforfur- 8, has just passed its proof-of-concept milestone, and ther development of this technique includes a small- designworkonthenextphasesisbeginning. scaletritiumexperimentwithapparatusnotgreatlydif- ferentfromtheoneusedfortheconceptualverification, andthenlarger-scaleexperimentswithincreasinglysen- 5. Acknowledgments sitivecapabilities. Whilethestatisticaladvantagesofa largesourceandspectralefficiencymaybewithinreach, Preparation of this report has been supported by the the fundamental limitation to experiments with molec- U.S. Department of Energy Office of Science, Office ular T is the final-state distribution, which has a stan- of Nuclear Physics under Award Number DE-FG02- 2 dard deviation of about 0.4 eV. The distribution is cal- 97ER41020. culabletohighaccuracy(oforder1%,althoughdifficult to quantify) but it nevertheless comes at a high price References in statistical precision. For these reasons, exploratory workonanatomictritiumsourcehasbegun. Someen- [1] E.Fermi,Tentativodiunateoriadeiraggiβ,RicercaScient.2 couragementthatthismightbepossiblecomesfromthe (1933)12. success of the ALPHA experiment trapping antihydro- [2] F.L.Wilson, Fermi’stheoryofbetadecay, AmericanJournal gen at CERN [29]. The technique involves axial trap- ofPhysics36(12)(1968)1150–1160. doi:http://dx.doi. ping by solenoidal coils, and radial trapping with Ioffe org/10.1119/1.1974382. [3] L.Alvarez,R.Cornog,Heliumandhydrogenofmass3,Phys. barsonthesurfaceofacylinderaroundthesourcevol- Rev.56(1939)613–613.doi:10.1103/PhysRev.56.613. ume. Electrons require only the axial trap but atoms [4] G.Hanna,B.Pontecorvo,Thebeta-spectrumoftritium,Phys. must also be radially confined. For atoms with a mag- Rev.75(1949)983–984.doi:10.1103/PhysRev.75.983.3. [5] S.Curran,J.Angus,A.Cockroft,Thebeta-spectrumoftritium, neticmomentof1Bohrmagnetontobetrapped,fields Phys.Rev.76(1949)853–854. doi:10.1103/PhysRev.76. of order 5T are needed and the atoms must be cooled 853. 5 R.G.H.Robertson/NuclearPhysicsBProceedingsSupplement00(2015)1–6 6 [6] T.Lee, C.-N.Yang, QuestionofParityConservationinWeak cryogenics.2013.01.001. Interactions, Phys.Rev.104(1956)254–258. doi:10.1103/ [24] F.Frankle, L.Bornschein, G.Drexlin, F.Gluck, S.Gorhardt, PhysRev.104.254. et al., Radon induced background processes in the KA- [7] M.Goldhaber,L.Grodzins,A.W.Sunyar,Helicityofneutrinos, TRIN pre-spectrometer, Astropart.Phys. 35 (2011) 128– Phys.Rev.109(1958)1015–1017. doi:10.1103/PhysRev. 134.arXiv:1103.6238,doi:10.1016/j.astropartphys. 109.1015. 2011.06.009. [8] G. Danby, J.-M. Gaillard, K. Goulianos, L. M. Lederman, [25] B.Monreal,J.A.Formaggio,RelativisticCyclotronRadiation N.Mistry, M.Schwartz, J.Steinberger, ObservationofHigh- DetectionofTritiumDecayElectronsasaNewTechniquefor Energy Neutrino Reactions and the Existence of Two Kinds MeasuringtheNeutrinoMass,Phys.Rev.D80(2009)051301. ofNeutrinos, PhysicalReviewLetters9(1962)36–44. doi: arXiv:0904.2860,doi:10.1103/PhysRevD.80.051301. 10.1103/PhysRevLett.9.36. [26] D.Hanneke,S.Fogwell,G.Gabrielse,Newmeasurementofthe [9] M. L. Perl, G. S. Abrams, A. M. Boyarski, M. Breidenbach, electronmagneticmomentandthefinestructureconstant,Phys. D.D.Briggs,F.Bulos,W.Chinowsky,J.T.Dakin,G.J.Feld- Rev.Lett.100(2008)120801. doi:10.1103/PhysRevLett. man,C.E.Friedberg,D.Fryberger,G.Goldhaber,G.Hanson, 100.120801. F.B.Heile,B.Jean-Marie,etal.,Evidenceforanomalouslep- [27] D.Asner,R.Bradley,L.deViveiros,P.Doe,J.Fernandes,etal., tonproductionine+e−annihilation,PhysicalReviewLetters35 Single electron detection and spectroscopy via relativistic cy- (1975)1489–1492.doi:10.1103/PhysRevLett.35.1489. clotronradiation.arXiv:1408.5362. [10] F. Hasert, et al., Observation of Neutrino Like Interactions [28] A. Picard, H. Backe, J. Bonn, B. Degen, R. Haid, A. Her- Without Muon Or Electron in the Gargamelle Neutrino Ex- manni, P. Leiderer, A. Osipowicz, E. Otten, M. Przyrembel, periment, Phys.Lett. B46 (1973) 138–140. doi:10.1016/ M. Schrader, M. Steininger, C. Weinheimer, Precision mea- 0370-2693(73)90499-1. surementoftheconversionelectronspectrumofkr-83mwith [11] C. Prescott, W. Atwood, R. L. Cottrell, H. DeStaebler, E. L. a solenoid retarding spectrometer, Zeitschrift fur Physik A Garwin, et al., Parity Nonconservation in Inelastic Electron Hadrons and Nuclei 342 (1) (1992) 71–78. doi:10.1007/ Scattering, Phys.Lett. B77 (1978) 347–352. doi:10.1016/ BF01294491. 0370-2693(78)90722-0. URLhttp://dx.doi.org/10.1007/BF01294491 [12] V.A.Lyubimov,E.G.Novikov,V.Z.Nozik,E.F.Tretyakov, [29] G.Andresen,etal.,Confinementofantihydrogenfor1000sec- V.S.Kosik,AnEstimateoftheelectron-NeutrinoMassfromthe onds, Nature Phys. 7 (2011) 558–564. arXiv:1104.4982, betaSpectrumofTritiumintheValineMolecule,Phys.Lett.B94 doi:10.1038/nphys2025. (1980)266–268.doi:10.1016/0370-2693(80)90873-4. [13] R. G. H. Robertson, T. J. Bowles, G. J. Stephenson, D. L. Wark, J. F. Wilkerson, et al., Limit on anti-electron-neutrino mass from observation of the beta decay of molecular tri- tium, Phys.Rev.Lett. 67 (1991) 957–960. doi:10.1103/ PhysRevLett.67.957. [14] K. Bergkvist, A high-luminosity, high-resolution study of the end-point behaviour of the tritium beta-spectrum (i). basic experimental procedure and analysis with regard to neutrino massandneutrinodegeneracy,Nucl.Phys.B39(1972)317–370. doi:10.1016/0550-3213(72)90376-8. [15] Y.Fukuda,etal.,Evidenceforoscillationofatmosphericneu- trinos,Phys.Rev.Lett.81(1998)1562–1567. arXiv:hep-ex/ 9807003,doi:10.1103/PhysRevLett.81.1562. [16] Q. R. Ahmad, et al., Direct evidence for neutrino fla- vor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301. arXiv:nucl-ex/0204008, doi:10.1103/PhysRevLett.89.011301. [17] K. Eguchi, et al., First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys.Rev.Lett. 90 (2003) 021802. arXiv:hep-ex/0212021, doi:10.1103/ PhysRevLett.90.021802. [18] J.Beringer,etal.,ReviewofParticlePhysics(RPP),Phys.Rev. D86(2012)010001.doi:10.1103/PhysRevD.86.010001. [19] C.Kraus,etal.,Finalresultsfromphaseiiofthemainzneutrino masssearchintritiumbetadecay,Eur.Phys.J.C40(2005)447– 468.arXiv:hep-ex/0412056. [20] V. Aseev, et al., An upper limit on electron antineutrino massfromTroitskexperiment,Phys.Rev.D84(2011)112003. arXiv:1108.5034,doi:10.1103/PhysRevD.84.112003. [21] R. G. H. Robertson, Can neutrino mass be measured in low- energyelectroncapturedecay?arXiv:1411.2906. [22] J. Angrik, et al., Katrin design report 2004FZKA-7090, http://www-ik.fzk.de/katrin/. [23] S.Grohmann,etal.,Thethermalbehaviorofthetritiumsource inKATRIN,Cryogenics55-56(2013)5–11.doi:10.1016/j. 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.