ebook img

Direct photon production and jet energy-loss in small systems PDF

0.36 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Direct photon production and jet energy-loss in small systems

Nuclear Physics A NuclearPhysicsA00(2016)1–4 www.elsevier.com/locate/procedia TheXXVthInternationalConferenceonUltrarelativisticNucleus-Nucleus Collisions Direct photon production and jet energy-loss in small 6 1 systems 0 2 n Chun Shena, Chanwook Parka, Jean-Franc¸ois Paqueta,b, Gabriel S. a J Denicola,c, Sangyong Jeona, Charles Gale1a 2 1 aDepartmentofPhysics,McGillUniversity,3600UniversityStreet,Montreal,QC,H3A2T8,Canada bDepartmentofPhysics&Astronomy,StonyBrookUniversity,StonyBrook,NY11733,USA ] cPhysicsDepartment,BrookhavenNationalLaboratory,Upton,NY11973,USA h p - p e h Abstract [ Twotypesofpenetratingprobes,directphotonandQCDjets,areinvestigatedinthebackgroundofasmall 1 and rapidly expanding droplet of quark-gluon plasma. The additional thermal electromagnetic radiation v resultsina∼50%enhancementofthedirectphotons. Inhighmultiplicityp+Pbcollisions,jetscanlosea 0 sizeablefractionoftheirinitialenergy,leadingtoachargedhadronR of∼0.8atatransversemomentum 7 pA around10GeV.Thosetwoproposedmeasurementscanhelpunderstandtheapparentcollectivebehaviour 0 observedinsmallcollisionsystems. 3 0 Keywords: Directphotons,jetenergyloss,smallcollisionsystems . 1 0 6 1. Introduction 1 : Signaturesusuallyassociatedwithhydrodynamicbehaviourhavebeenrecentlyobservedin v high and intermediate multiplicity proton-nucleus (p+Pb) collisions at the Large Hadron Col- i X lider[1,2,3]. Eventhoughthosemeasurementsaresuggestiveofthecreationofastronglycou- r pledquark-gluonplasma(QGP),additionalconfirmationinvolvingcomplementaryobservables a needstobepursued. Inthiscontributionwecalculatethethermalphotonradiationproducedbyasmallandrapidly expandingQGPdroplet,andweevaluatetheenergylossofhighenergyQCDjets. Wefindthata 1Speaker. C.Shenelal./NuclearPhysicsA00(2016)1–4 2 significantamountofelectromagneticradiationisemitted,withthermalphotonsaccountingfor ∼50% of the direct photons produced in high multiplicity p+Pb collisions at low p . Further- T more, we show that in spite of the small system size, jets still lose a sizeable fraction of their initial energy, leading to a charged hadron R of 0.8 at a transverse momentum of ∼10GeV. AA Shouldthesetwomeasurementsbewithinreachofthecurrentgenerationofexperiments, they would serve as additional evidence that a strongly coupled QGP is being produced in proton- nucleuscollisionsattheLHC.Tocompletetheanalysis,wealsostudydirectphotonproduction inothersmallsystems,suchas(p,d3He)+AucollisionsattopRHICenergy. 2. Directphotons √ In Pb+Pb collisions at s = 2.76TeV, the measured direct photon yield shows a large NN enhancement over the photon spectra measured in pp collisions scaled by N , the number of coll binarycollisions[4,5]. ThisisusuallyquantifiedbythenuclearmodificationfactorR (p ) ≡ AA T dNAA/(N dNpp ). Direct photon R in Pb+Pb collisions are shown in Figs.1a-b, where it is dydpT colldydpT AA seen that most of this enhancement - if not all - can be attributed to thermal radiation from the bulk medium [6]. Similarly, if a smaller medium achieves near-equilibrium, it will radiate thermal photons during its evolution. We investigated the thermal photon radiation from p+Pb √ √ collisionsat s =5.02TeVand(p,d,3He)+Auat s =200GeVusingthepubliclyavail- NN NN ableiEBE-VISHNUframework[7,8].Event-by-eventhydrodynamicsimulationswithfluctuating Monte-CarloGlauberinitialconditionswereused. Additionalcollision-by-collisionfluctuations wereconsideredintheinitialenergydensityprofiles,whichledtoabetterdescriptionofcharge hadron multiplicity distributions for these small collision systems[7]. The collision centrality wasdeterminedbytheinitialtotalentropy,dS/dy,whichservesasagoodapproximationofthe chargedhadronmultiplicity[9]. 12.0 0.08 γRAA102468.....00000 (a) 0-20% Pb+aAPrLXbICi vE@: 1d 5a20t.9a7.066 T7e38V RRpPbpAu02200221111...........00055550055 ((cd)) pp++PAbu @@ 52.0002 GpmTeQeiVnV00C.--D 21b0%ia%s vSPvSP22000000'“'“....0..000000.4466022 0(0(gh--12))%0% pp++APub @@ 250.002 G TeeVV 0.0 0.0 0.0 γRAA2468....0000 (b) 20-40% Pb+PbA L@IC E2 d.7a6ta TeV RR3dAuHeAu02200221111...........00055550055 ((ef)) d3+HAeu+ A@u 2@00 2 G0Pm0Hei VnEG.N ebIVXia s vSPvSP33000000'“'“0......000000.0331122 0(0(ij--))12%0% 3Hed++AAuu @@ 220000 GGeeVV 0.0 0.0 0.0 1.0 1.5 2.0 2.5 3.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 pT (GeV) pT (GeV) pT (GeV) Fig.1. Panel(a)-(b): DirectphotonRγ inPb+PbcollisionsatLHCenergy. Panel(c)-(f): Thenuclearmodification AA factorofdirectphotonsincentralandminimumbiascollisionsinsmallsystems. Panel(g)-(j): Theanisotropicflow coefficientsv2,3SP(scalar-productmethod)fordirectphotonsin0-1%and0-20%centralitybins. In Figs.1c-f, we consider the direct photon signals below p < 3GeV, and find that the T thermal enhancement was about 50% in minimum bias collisions, and increased up to ∼150% for collisions in the 0-1% centrality class. Even though the space-time volumes of the proton- induced collisions are 20 times smaller than those in Pb+Pb collisions, the thermal signal is C.Shenelal./NuclearPhysicsA00(2016)1–4 3 only smaller by about a factor of 2. The direct photon measurements in minimum bias d+Au collisionsstillcontainsubstantialstatisticalandsystematicuncertainties[10]. Currently,noneof theoptions-withorwithoutthermalenhancement-areexcludedbythedata. Thedirectphoton √ Rγ increase as a function of p is faster for central collisions in p+Pb at s = 5.02TeV AA √ T NN and p+Au at s = 200GeV than in (d, 3He)+Au collisions at the top RHIC energy, owing NN tothefactthatthenumberoffluctuatingsourcesissmallerforp+Athanfor(d,3He)+A.Event- by-eventfluctuationsaremorepronouncedandwillleadtohighertemperaturesincentralp+A collisions. Bycorrelatingdirectphotonwithchargedhadrons,thedirectphotonanisotropicflow coefficients,v {SP},in0-1%and0-20%centralitybinsareshowninFig.1g-j.Thedirectphoton 2,3 anisotropicflowinp+Pbcollisionsat5.02TeVisthelargestamongthefoursystemsconsidered, becauseoflargerpressuregradientsandlongerfireballlifetime. 3. Jetenergyloss Unlike direct photons that penetrate the fireball unscathed, high-energy partonic jets are stronglyinteractingprobes. TheylosesomeoftheirenergypassingthroughtheQGP.Weesti- √ matetheamountofjetenergy-lossinp+Pbcollisionsat s =5.02TeVusingtheMonte-Carlo NN event generator MARTINI[11]. Initial jets were generated using Pythia[12] with the standard tune settings[13]. Partons inside the proton were sampled from the parton distribution func- tion (PDF), CTEQ6[14]. For the Pb nucleus, additional cold nuclear effects were included by using EPS09 nuclear PDF[15]. These energetic partons were then evolved against the event- by-eventhydrodynamicmedium. Medium-inducedradiation,elasticcollisions,andpathlength dependenceeffectsweretakenintoaccountinthemodelsimulations[11,16,17]. Becausethe medium temperature is lower than perturbative scale, we choose a fixed strong coupling con- stantα = 0.27betweenjetsandmediuminteraction. Thestrongcouplingconstantassociated s withmedium-inducedradiationissettoberunningaccordingtothejetmomentum. Allthepar- tonswereevolvedtoT = 165MeVandthenhadronizedaccordingtothestringfragmentation c schemegermanetoPythia. 1.2 1.2 0-1% p+Pb @ 5.02 A TeV 1.0 1.0 0.8 0.8 RpA0.6 0-100% p+Pb @ 5.02 A TeV RpA0.6 0.4 0.4 pPb cold nuclear effect (EPS09) pPb cold nuclear effect (EPS09) 0.2 pPb ebe αs=0.27 0.2 pPb ebe αs=0.27 ALICE |ηCM|<0.3 pPb smooth αs=0.27 0.0 0.0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 pT (GeV) pT (GeV) F√ig.2.Thenuclearmodificationfactorofchargedhadron,RpA,inminimumbiasand0-1%centralityp+Pbcollisionsat sNN=5.02TeV.ResultsinminimumbiascollisionsarecomparedwiththeALICEmeasurement[18]. In Fig.2, charged hadron R in minimum bias and 0-1% centrality p+Pb collisions are pA shownfor10 < p <100GeV.Inminimumbiascollisions,theeffectofenergylossisfoundto T benegligiblefor p > 40GeV;onlyamodestmountofsuppressionisobservedfor10 < p < T T 40GeV.Bothcalculations-withandwithoutenergyloss-areconsistentwiththecurrentALICE C.Shenelal./NuclearPhysicsA00(2016)1–4 4 data[18]. Ontheotherhand, asizeablejetenergylossinthe0-1%centralcollisionsisshown in the right panel of Fig.2. Charged hadron R is suppressed to ∼0.8 for p ∼ 10−20GeV, pA T and increases to ∼ 1 around p = 100GeV. We also find that energy loss calculations with a T smoothevent-averagedhydrodynamicmediumyieldresultsforchargedhadronR verysimilar pA tothoseobtainedwithmorerealisticevent-by-eventsimulations. Theeffectsofevent-by-event fluctuationsonchargedhadronR islimited,forp+PbcollisionsattheLHC.Thisisbecause pA the size of the entire fireball in the event-averaged hydrodynamic simulation is comparable to thetypicaltotalsizeofthehotspotsinafluctuatingmediumforp+Pbcollisions. Thecharged hadronR doesnothavetheresolutiontomakesuchadistinction. pA Acknowledgement This work was supported by the Natural Sciences and Engineering Research Council of Canada. ComputationsweremadeontheGuilliminsupercomputeratMcGillUniversity,man- agedbyCalculQue´becandComputeCanada. References √ [1] B.B.Abelev,etal.,Long-rangeangularcorrelationsofπ,Kandpinp-Pbcollisionsat sNN=5.02TeV,Phys. Lett.B726(2013)164–177.arXiv:1307.3237,doi:10.1016/j.physletb.2013.08.024. [2] V. Khachatryan, et al., Evidence for Collective Multiparticle Correlations in p-Pb Collisions, Phys. Rev. Lett. 115(1)(2015)012301.arXiv:1502.05382,doi:10.1103/PhysRevLett.115.012301. √ [3] G.Aad,etal.,Measurementoflong-rangepseudorapiditycorrelationsandazimuthalharmonicsin sNN =5.02 TeVproton-leadcollisionswiththeATLASdetector,Phys.Rev.C90(4)(2014)044906.arXiv:1409.1792. √ [4] J.Adam,etal.,DirectphotonproductioninPb-Pbcollisionsat sN√N=2.76TeV,arXiv:1509.07324. [5] B.Sahlmueller,DirectphotonmeasurementinPb-Pbcollisionsat sNN=2.76TeVwithALICE,2015. arXiv: 1512.04230. [6] J.-F.Paquet, C.Shen, G.S.Denicol, M.Luzum, B.Schenke, S.Jeon, C.Gale, Theproductionofphotonsin relativisticheavy-ioncollisions,arXiv:1509.06738. [7] C.Shen,Z.Qiu,H.Song,J.Bernhard,S.Bass,U.Heinz,TheiEBE-VISHNUcodepackageforrelativisticheavy- ioncollisions,arXiv:1409.8164. [8] C.Shen,J.F.Paquet,G.S.Denicol,S.Jeon,C.Gale,Thermalphotonradiationinhighmultiplicityp+Pbcollisions attheLargeHadronCollider,arXiv:1504.07989. [9] C.Shen,Z.Qiu,U.Heinz,ShapeandflowfluctuationsinultracentralPb+Pbcollisionsattheenergiesavailable attheCERNLargeHadronCollider,Phys.Rev.C92(1)(2015)014901.arXiv:1502.04636. √ [10] A.Adare,etal.,Directphotonproductionind+Aucollisionsat sNN =200GeV,Phys.Rev.C87(2013)054907. arXiv:1208.1234,doi:10.1103/PhysRevC.87.054907. [11] B.Schenke,C.Gale,S.Jeon,MARTINI:AnEventgeneratorforrelativisticheavy-ioncollisions,Phys.Rev.C80 (2009)054913.arXiv:0909.2037,doi:10.1103/PhysRevC.80.054913. [12] T.Sjstrand,S.Ask,J.R.Christiansen,R.Corke,N.Desai,P.Ilten,S.Mrenna,S.Prestel,C.O.Rasmussen,P.Z. Skands,AnIntroductiontoPYTHIA8.2,Comput.Phys.Commun.191(2015)159–177.arXiv:1410.3012. [13] P.Skands,S.Carrazza,J.Rojo,TuningPYTHIA8.1:theMonash2013Tune,Eur.Phys.J.C74(8)(2014)3024. arXiv:1404.5630,doi:10.1140/epjc/s10052-014-3024-y. [14] P.M.Nadolsky,H.-L.Lai,Q.-H.Cao,J.Huston,J.Pumplin,D.Stump,W.-K.Tung,C.P.Yuan,Implicationsof CTEQglobalanalysisforcolliderobservables,Phys.Rev.D78(2008)013004.arXiv:0802.0007. [15] K.J.Eskola,H.Paukkunen,C.A.Salgado,EPS09:ANewGenerationofNLOandLONuclearPartonDistribution Functions,JHEP04(2009)065.arXiv:0902.4154,doi:10.1088/1126-6708/2009/04/065. [16] S.Jeon,G.D.Moore,EnergylossofleadingpartonsinathermalQCDmedium,Phys.Rev.C71(2005)034901. arXiv:hep-ph/0309332,doi:10.1103/PhysRevC.71.034901. [17] S.Caron-Huot,C.Gale,Finite-sizeeffectsontheradiativeenergylossofafastpartoninhotanddensestrongly interactingmatter,Phys.Rev.C82(2010)064902.arXiv:1006.2379,doi:10.1103/PhysRevC.82.064902. [18] B.Abelev,etal.,Transversemomentumdistributionandnuclearmodificationfactorofchargedparticlesinp-Pb √ collisionsat sNN =5.02TeV,Phys.Rev.Lett.110(8)(2013)082302.arXiv:1210.4520.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.