ebook img

Direct observational evidence for a large transient galaxy population in groups at 0.85 PDF

1.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Direct observational evidence for a large transient galaxy population in groups at 0.85

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed11January2011 (MNLATEXstylefilev2.2) Direct observational evidence for a large transient galaxy population 0.85 < z < 1 in groups at 1 Michael L. Balogh1, Sean L. McGee1,2, David J. Wilman3, Alexis Finoguenov3,4, 1 0 Laura C. Parker5, Jennifer L. Connelly3, John S. Mulchaey6, Richard G. Bower2, 2 Masayuki Tanaka7, Stefania Giodini8 n a 1DepartmentofPhysicsandAstronomy,UniversityofWaterloo,Waterloo,Ontario,N2L3G1,Canada J 2DepartmentofPhysics,UniversityofDurham,Durham,UK,DH13LE 0 3Max–Planck–Institutfu¨rextraterrestrischePhysik,Giessenbachstrasse85748GarchingGermany 1 4CSST,UniversityofMaryland,BaltimoreCounty,1000HilltopCircle,Baltimore,MD21250,USA 5DepartmentofPhysicsandAstronomy,McMasterUniversity,Hamilton,Ontario,L8S4M1Canada ] 6ObservatoriesoftheCarnegieInstitution,813SantaBarbaraStreet,Pasadena,California,USA O 7InstituteforthePhysicsandMathematicsoftheUniverse,UniversityofTokyo,Kashiwa2778582,Japan C 8LeidenObservatory,LeidenUniversity,POBox9513,2300RALeiden,theNetherlands . h p - 11January2011 o r t s a ABSTRACT [ We introduce our survey of galaxy groups at 0.85 < z < 1, as an extension of the Group EnvironmentandEvolutionCollaboration(GEEC).Herewepresentthefirstresults,basedon 2 GeminiGMOS-Snod-and-shufflespectroscopyofsevengalaxygroupsselectedfromspectro- v scopicallyconfirmed,extendedXMMdetectionsinCOSMOS.Weusephotometricredshifts 9 to select potential groupmembersfor spectroscopy,and targetgalaxies with r < 24.75. In 0 5 totalwe have over100confirmedgroupmembers,andfourof the groupshave> 15 mem- 5 bers. The dynamicalmass estimates are in goodagreementwith the masses estimated from 1. theX–rayluminosity,withmostofthegroupshaving13 < logMdyn/M⊙ < 14.We com- pute stellar masses by template-fitting the spectral energy distributions; our spectroscopic 1 0 sampleisstatisticallycompleteforallgalaxieswithMstar >∼ 1010.1M⊙,andforbluegalax- 1 ies we sample masses as low as Mstar ∼ 108.8M⊙. The fraction of total mass in galaxy : starlight spans a range of 0.25–3per cent, for the six groupswith reliable mass determina- v tions.Like lower-redshiftgroups,these systemsare dominatedby redgalaxies,atallstellar Xi massesMstar > 1010.1M⊙.Fewgroupgalaxiesinhabitthe“bluecloud”thatdominatesthe surroundingfield;instead,wefindalargeandpossiblydistinctpopulationofgalaxieswithin- r a termediatecolours.The“greenvalley”thatexistsatlowredshiftisinsteadwell-populatedin thesegroups,containing∼30percentofthegalaxies.Thesedonotappeartobeexceptionally dusty galaxies, and about half show prominentBalmer-absorption lines. Furthermore, their HSTmorphologiesappeartobeintermediatebetweenthoseofred-sequenceandblue-cloud galaxiesof the same stellar mass. Unlike red-sequencegalaxies, most of the green galaxies have a disk component, but one that is smaller and less structured than disks found in the bluecloud.Wepostulatethattheseareatransientpopulation,migratingfromthebluecloud to the red sequence, with a star formation rate that declines with an exponential timescale 0.6Gyr < τ < 2Gyr. Such galaxiesmay not be exclusive to the groupenvironment,as we findexamplesalsoamongstthenon-members.However,theirprominenceamongthe group galaxypopulation,andthemarkedlackofblue,star-forminggalaxies,providesevidencethat thegroupenvironmenteitherdirectlyreducesstarformationinmembergalaxies,oratleast preventsitsrejuvenationduringthenormalcycleofgalaxyevolution. Keywords: galaxies:clusters 1 INTRODUCTION Galaxy evolution since about z ∼ 2 is characterized gener- ally by the cessation of star formation. On average, the star 2 Baloghet al. formation rate density in the Universe has declined by a fac- clustersislowerthanitwasinthepast(e.g.Ellingsonetal.2001; tor ∼ 10 since that time (e.g. Lillyetal. 1996; Hopkins 2004; McGeeetal. 2009), and recently accreted galaxies will represent Gilbanketal. 2010). The rate of decline appears to depend on asmallfractionoftheentirepopulationwhichhasbuiltupovera both stellar mass (e.g. Cowieetal. 1996; Juneauetal. 2005; Hubbletime. Sothere islessopportunity tocatch galaxiesinthe Noeskeetal.2007;Belletal.2007;Gilbanketal.2010)andenvi- actoftransformation,ifsuchaprocessoccurs. ronment(e.g.Poggiantietal.2006;Cooperetal.2008;Maieretal. Thus,thebestplacetoobserveenvironmentally–drivenevolu- 2009; Iovinoetal. 2010; Vulcanietal. 2010; Pengetal. 2010; tion in action is in gas-rich, low–mass galaxies inhabiting small Cucciatietal. 2010; Sobraletal. 2010; McGeeetal. 2010). This groups, at relatively high redshift. This was the motivation be- leadstoafairlyconsistentempiricaldescription,atleastformas- hindtheGroupEnvironmentandEvolutionCollaboration(GEEC), sivegalaxies.Thegalaxypopulationiswell-modeledbyhavingstar that began with deep Magellan LDSS3 spectroscopy of groups formation“quenched”onrelativelyshorttimescales;thisquench- at 0.3 < z < 0.55, selected from the CNOC2 survey fields ing happens first for the most massive galaxies, and later for (Wilmanetal.2005a,b).Inaseriesofpapersweshowedthatwhile lower–mass systems (e.g. Noeskeetal. 2007). This evolution is disk–dominated, star forminggalaxiesof agiven stellarmassare somewhat accelerated indenser environments (Iovinoetal.2010; lesscommoningroupsthaninthegeneralfield,thepropertiesof Vulcanietal.2010;Lietal.2010),especiallyforthelowest-mass the star–forming population itself seems independent of environ- galaxiesstudiedtodate. ment (e.g. McGeeetal. 2010). This is surprising, as it suggests However, welackaclearunderstanding ofthephysical pro- thateitherthetransformationisveryrapid,orthenumberofgalax- cesses driving this evolution. It appears that the dependence on iesundergoingtransformationattheepochofobservationissmall. stellar–mass and environment are separable (Baldryetal. 2006), Atthesametime,groupgalaxieslookmuchmorelikethegeneral and likely point to different mechanisms. Recently, Pengetal. fieldinmostrespectsthanisthecaseatlowerredshift(McGeeetal. (2010)haveproposedaninterestingempirical descriptionofthis, 2010).Thissuggeststhatevolutioningroupsisarelativelyrecent wherethequenching rateisdescribedbyonetermthatispropor- phenomenon(seealso Luetal.2009). tionaltostarformationrate,andanotherthatisrelatedtothelocal Nonetheless,groupsatz ∼ 1andbeyondstillshowalarger density.Thisworkssurprisinglywell,butstilldoesn’tlenditselfto population of passively–evolving galaxies than the surrounding aclearphysicalinterpretation. field (e.g. Cooperetal. 2010). Interestingly, however, there is in- Galaxy formation models are too complex and under- creasing evidence that those galaxies that are forming stars, are constrained to provide an unequivocal answer at this time. How- doing so at a higher rate than field galaxies of similar stellar ever, they do indicate that parametric treatments of energy input mass (Elbazetal. 2007; Muzzinetal. 2008; Cooperetal. 2008; duetosupernova andsupermassiveblackholeaccretioncandoa Ideueetal.2009;Sobraletal.2010;Lietal.2010;Kocevskietal. reasonable jobof explaining themass–dependent quenching (e.g. 2010). It may be at thisepoch that dense environments stimulate Crotonetal.2006;Boweretal.2008).Theenvironmental termis starformation,leadingtoarapidconsumption ofgasandleading accountedfortosomeextentintheso–called“halomodel”,where to the dominant old population at z = 0. The joint density- and the central galaxy of a given dark matter halo is treated some- mass-dependenceofthiseffectisnicelyillustratedbySobraletal. how differently from the satellites (e.g. Gilbank&Balogh 2008; (2010).Thehigheraccretionrate,andyoungerageoftheUniverse, Skibba&Sheth 2009; McGeeetal. 2009). Such a distinction is hasledustopredictthattherewillbemorediversityamonggalaxy expected at some level, since the hot gas that is thought to fill a groupsatthisredshift(McGeeetal.2009). common halo should, for the most part, cool and condense only ontothecentralgalaxy.Muchofthehotgasassociatedwithsatel- Wehavethusembarked onanambitiousspectroscopic cam- litegalaxieswilllikelygettidallystripped,ram-pressurestripped, paign,usingtheGMOSspectrographsonGeminiNorthandSouth or shock heated until it becomes part of the common halo (e.g. to study the galaxy populations in ∼ 20 groups, mostly selected McCarthyetal.2008;Kawata&Mulchaey2008;Fontetal.2008). withintheCOSMOS(Scovilleetal.2007b)surveyfields.Thedeep Thispicturereliesonanumberofuntestedassumptions,however, spectroscopy achieves twomaingoals.First,wecanstudygalax- and simpleimplementations of thisdo not doa verygood jobof ieswithlowstellarmass;oursampleiscompleteforredgalaxies predictingtheobservedstarformationhistoriesofgroupedgalax- 1.0magfainterthanthezCOSMOS10ksurvey(Lillyetal.2007), ies(Weinmannetal. 2006; Gilbank&Balogh 2008; Baloghetal. 0.65magfainterthanDEEP2(Cooperetal.2008)and∼0.25mag 2009). fainterthanEDisCSatthisredshift(Hallidayetal.2004);forblue galaxieswearecompletetoevenfaintermagnitudes.Thisdepthis Thestudyofgalaxyevolutionindenseenvironmentshasbeen vitalforstudying environmental effects,whichappear tobemost hampered by several observational difficulties. The easiest place importantforthelowest–massgalaxies(Cucciatietal.2010).Sec- to look is in the cores of rich clusters at relatively low redshift (e.g.Baloghetal.1997;Poggiantietal.1999;Baloghetal.2002; ondly,thedepthallowsustoobtain∼ 20spectroscopicmembers pergroup,whichissufficienttoestimatethedynamicalmass,and Lewisetal. 2002; Gomezetal. 2003; Luetal. 2009, and many dynamical state,ofeachgroup(Houetal.2009).Moreover, ital- others). But the cores of rich clusters are extreme environments lowsustoconsiderthegalaxypopulationofindividualgroups,or where, for example, ram-pressure stripping can remove even the subsetsofgroups. Thus,wecanattempttolinktransientgalaxies coldgasfromdisks(e.g.Quilisetal.2000;Koopmann&Kenney tothedynamicsorrecentaccretionhistoryofthelarger–scaleen- 2004),andgalaxyinteractionseffectivelydistortgalaxymorpholo- vironment. gies (Mooreetal. 1996). These are interesting processes, but are unlikelytobetheexplanationfortrendsobservedinlower–density Wepresentourdata,includingafulldescriptionofthegroup environments(e.g.Baloghetal.2004).Moreover,lowredshiftsys- andspectroscopic selection, in§2. Thebasicanalysisof redshift tems provide additional challenges. Galaxies at low redshift are andstellarmassmeasurements,anddeterminationofgroupdynam- generally older and more gas poor, due to normal evolution, so icalmasses,ispresentedin§3.Ourmainresults,onthestellarfrac- there is less potential for environment to disrupt star formation. tionandthediscoveryofadominantgrouppopulationofgalaxies Also, the accretion rate of new, relatively gas–rich galaxies, into withintermediatecolours,spectraltypeandmorphology, arepre- Transientgalaxiesin groupsatz = 1 3 sented in § 4. Finally, we discuss the implications of our results, 2.2 Galaxygroupselection andsummarizeourconclusions,in§5. Foroursurvey,weareinterestedinthelowest-massgroupsthatare Throughout the paper, we assume a cosmology with Ωm = robustlyidentified,andwithintheredshiftrange0.85<z<1.We 0.3,ΩΛ = 0.7andh = H◦/(100km/s/Mpc) = 0.7.Allmagni- consideredallgroupsintheFinoguenovetal.(inprep)catalogue, tudesareontheABsystem. thatliewithinthisredshiftrange,haveatleast3spectroscopically- determined members, and were considered secure identifications. Specifically, we consider groups that are either category 1 (good detection,withawell-determinedX–raycentre)orcategory2(se- curedetection,butwithanunreliableX–raycentre).Thereare21 groupssatisfyingthisselection.Ofthese,wehavegivenpreference 2 DATA tothelowest–mass,highestredshiftsystems,andhaveavoidedtar- getsthatalreadyhave>10redshiftsusedintheidentification.The 2.1 Theparentcatalogues latterselectionismadeinparttoavoidmassiveclusters,andtoen- sureourspectroscopy increasesthetotalnumber ofgroupsinthe Our survey targets galaxy groups within the COSMOS field fieldwithlarge,spectroscopically-confirmedmembership. (Scovilleetal.2007b).Thisfieldbenefitsfromawiderangeofpub- Ourfirstobservations,describedin§2.3,targetedsixofthese liclyavailable,deep,multiwavelengthphotometry.Thebackboneis groups.TheirpropertiesaretabulatedinTable1. thewidestHubbleSpaceTelescope(HST)surveyeverundertaken, covering ∼ 2 square degrees with the F814W filter on the Ad- vancedCameraforSurveys(Scovilleetal.2007a).Inaddition,we willmakeuseofthedeepX-rayobservationsobtainedwithXMM 2.3 GeminiObservations (Hasingeretal. 2007) and Chandra (Elvisetal. 2009); 3.6µm – 2.3.1 Spectroscopictargetselection 24µmdatafromSpitzerIRACandMIPS(Sandersetal.2007),and ground-basedopticalandnear-infraredphotometryfromavariety Acrucialpartofourstrategyistheuseofphotometricredshiftsto ofsources(Capaketal.2007). selectpotentialgroupmembers.Wegivehighestprioritytogalax- OursurveyisbuiltonthreeimportantcontributionstoCOS- ies that have 21.5 < r < 24.75, and a redshift within 2σzphot MOS. First are the exquisite photometric redshifts, derived from of the estimated group redshift, where σzphot is the 68 per cent thephotometry of 30broad, intermediate andnarrow-band filters confidence level on the photometric redshift1. Secondary prior- (Ilbertetal.2009).Thesearederivedusingatemplate-fittingtech- ity slits are allocated to galaxies with 15 < r < 24.75 and nique, andcalibratedbasedonlargespectroscopic samples. Even 0.7<zphot <1.5. for the faintest galaxies in our sample, most of the objects have We designed 3–4 GMOS masks on each target, using the photometric redshifts determined to better than 10 per cent (see GMMPSsoftware.Oneachmaskweareabletoallocate40–50slits. §2.3.1).Secondly,weusethe10KreleaseofthezCOSMOSspec- Typically, well over half the slits on the first mask are allocated troscopic survey (Lillyetal. 2007, 2009), from which we obtain toour toppriority objects. Thisfraction decreases on subsequent redshiftsformoderately brightgalaxies(IAB < 22.5) over most masks,asweuseupthesetargets.Inmostcases,withthreemasks ofthesurveyarea.Thisisasparsely–sampledredshiftsurvey,with weareabletotargetatleast40ofthesehighprioritygalaxies.All ∼40percentsamplingcompleteness. masks for a given target use the same alignment stars and are at Thethirdpillarofoursurveycomesfromanalysisofthedeep thesamepositionangle; thusasmallfractionoftheCCDareais X-raydata(Finoguenovetal.2007).Usinganestablishedwavelet unusableregardlessofthenumberofmasksobtained. technique (e.g. Finoguenovetal. 2009, 2010) it has become pos- sible to detect extended X-ray emission from groups of galaxies out to z ∼ 1. Identification of group redshifts is done using all 2.3.2 Observations availablespectroscopy,includingbutnotlimitedtothe10KzCOS- MOS survey. The combination of X–ray and redshift data pro- Weobtained40hoursworthofobservations onGeminiSouth,in videsarobust catalogueofgroupsandclusters,toenablefollow- theBand1queueduringsemester10A.Thisreturnedsciencedata up(Finoguenovetal.,inprep).MassesareestimatedfromX–ray of2hourson-sourceexposure, for14masksin5fields,covering scaling relations (e.g. Rykoffetal. 2008), and calibrated from a sixgroups(twoofthegroupsarelocatedwithinthesameGMOS stackedweak-lensinganalysis(Leauthaudetal.2010).Catalogues field). All science observations were obtained in clear conditions basedonredshiftonly(e.g.Gerkeetal.2005;Knobeletal.2009) withseeing0.8arcsecorbetterini.Thenumberofmasksactually arepowerfultoolswithwhichtoprobetheevolutionintheaverage observedisgiveninTable1. properties of groups. However, such catalogues suffer from con- The spectroscopy was obtained in nod & shuffle mode tamination and projection effectswhich make it difficult tointer- (Glazebrook&Bland-Hawthorn 2001), nodding the telescope by pretstudiesofindividualsystems.Thecross-correlationwithX-ray ±0.725arcsecfromthecentreoftheslit,every60s.Thisplacesthe allowsonetoobtainamorerobustsampleofgroups. Thispoten- galaxyatthelowerendofthe3arcsecslithalfthetime,andatthe tiallyintroducesascientificallyinterestingbias,ifgroupswithX– upperendtheotherhalfofthetime.Weusedmicroshufflingmode, rayemissionhavefundamentallydifferentpopulationsfromgroups sochargewasshuffledby21pixels(3.05arcsec).Fourexposures of similar mass without such emission. However, the main dif- ferencebetween optically–andX–ray–selected samplesseemsto beprimarilyjustthatthelatterpreferentiallyselectsmoremassive 1 Atourredshift ofinterest, the average uncertainty onzphot increases systems(Jeltemaetal.2009;Finoguenovetal.2009;Baloghetal. fromσzphot ∼ 0.007forthebrightestgalaxiestoσzphoto ∼ 0.04for 2010).Wethususethiscatalogueasthebasisofourgroupselec- thoseatourlimitofr=24.75.Evenforthesefaintestobjects,90percent tion,whichwedescribeinthefollowingsubsection. ofthegalaxieshavezphotuncertaintiesoflessthanσzphot<0.07. 4 Baloghet al. Group RA Dec zmed Nmask Nmem σ Rrms Mdyn deg(J2000) (km/s) Mpc (1013M⊙) 40 150.41991 1.85265 0.97225 2 16 765±124 0.32±0.03 12.84±5.50 130 150.02586 2.20367 0.93828 3 26 403±48 0.63±0.06 7.12±2.40 134 149.65073 2.20932 0.94729 3 21 384±60 0.92±0.07 9.44±3.69 150 149.97472 2.31654 0.93428 4 20 209±31 0.75±0.07 2.29±0.90 161 149.95776 2.34531 0.94330 4 9 372±56 0.45±0.07 4.36±2.01 213 150.39697 2.49136 0.87990 2 7 281±120 0.70±0.07 3.85±3.69 213a 150.42715 2.49992 0.92650 2 6 44±17 0.49±0.10 - Table1.Properties oftheseven galaxy groupsobserved withGMOSinsemester 10A.Theposition, median redshift zmed,velocity dispersion, andthe numberofgroupmembersaredeterminedfromourGMOSspectroscopy(combinedwithavailablezCOSMOS10kdata),asdescribedinthetext.Thenumber ofGMOSmasksobservedineachfieldisgivenbyNmask;notethatgroups150and161liewithinthesamefield,asdogroups213and213a(aserendipitous discoveryinthebackground).Rrmsisthermsprojecteddistanceofallgroupmembersfromthecentre.Thedynamicalmassiscomputedasdescribedinthe text,fromσandRrms.Wedonotcomputeamassforgroup213a,sincethevelocitydistributionisunresolvedandthemembershipispoor. of30mineachweretaken,withsmalldithersinthespectraldirec- ulatedvalues.Thisisappliedtothefinal1Dand2Dobjectspectra, tionforthepurposeofremovingbadpixelsandinterpolatingover togiveflux-calibratedspectra. thechipgaps. Our final step isto correct for telluricabsorption. This isof Slits were 1 arcsec wide, and we use the R600 grism with particularimportancesincetheH&Kabsorptionlinesingalaxiesat OG515 order blocking filter. The detector was binned 2×2, re- ourtargetredshiftz ∼ 0.95lierightontopoftheA-bandtelluric sulting in a pixel scale of 0.146 arcsec/pix, and a dispersion of line.Weuseourstandardstarobservationtoextractspectralregions 0.93A˚/pix. The resulting spectral resolution is limited by the slit aroundA-band(7500<λ/A˚<7700)andB-band(6850<λ/A˚< width,∼6.4A˚. 6900). A smooth continuum issubtracted, and weuse the IRAF ScienceobservationswereinterspersedwithGCALflats.Cal- taskTELLURICtoapplythecorrectiontoeachspectrumaccording ibrationexposuresforeachmaskconsistedofCuArarclampob- totheairmassintheimageheader. servationsandtwilightflats.Inaddition,weobservedthestandard starLTT6248witha1arcsec,longslit,forfluxcalibration. 2.3.4 RedshiftDetermination Redshifts were measured by adapting the ZSPEC software, kindly provided by R. Yan, used by the DEEP2 redshift survey 2.3.3 Datareduction (Davisetal.2003,2007).Thisperformsacross-correlationonthe All data were reduced in IRAF, using the GEMINI packages with 1Dextractedspectra,usinglinearcombinationsoftemplatespectra. minormodifications.SlitswerefirstidentifiedfromtheGCALflat Thecorrespondingvariancevectorsdescribedin§2.3.3areusedto exposures.AbadpixelmaskwascreatedusingtheroutineGBPM, weightthecross-correlation. andasetofsixlong-andthreeshort-exposureimageflats.Pixelsin Weusetemplatesofabsorptionlineandemissionlinegalaxies thechipgaps,andoutsidethespectroscopicfieldofview,arealso only,andforeachgalaxyZSPECreturnsashortlistofpossiblered- markedasbadpixels. shifts,withassociatedχ2andR(Tonry&Davis1979)values.Ev- A biasframewassubtracted fromallsciencedata. Skysub- eryspectrumisvisuallyinspected,bothinthe1Dand2Dformat. tractionisdonesimply,usingtheGNSSKYSUBroutine,bysubtract- Particularlyvaluableisinspecting the2Dimageprior tocombin- ingfromeachscienceframeacopyofitself,shiftedby21binned ingthepositive-andnegative-fluxobjects.Realemissionlinesare pixels.Thisresultsinapositive-fluxobjectspectruminonehalfof clearlyidentifiedbytheirdipolesignature,andfalsepeaksdueto theslit,andanegative-fluxspectrumintheotherhalf. cosmicraysorothereffectsareeasilyremoved.Generally,the1D Togenerateanoisevectorweusethesametechnique,butadd spectraareboxcarsmoothedto∼10A˚ pixelsforvisualinspection. theshiftedimages.Thisgivespixels,atthelocationofthegalaxy, Weadoptasimple,four-classmethodtoquantifyourredshift that include object flux and twice the sky flux, which is equal to quality. Quality class 4 is assigned to galaxies with certain red- theexpectedPoissonvariance.Weaddtothistwicethereadnoise shifts.Generallythisisreservedforgalaxieswithmultiple,robust squared,toobtainthefinalvariancespectrum. features.Withour(unbinned)spectralresolution,weareabletojust Eachsky-subtractedscienceimageisthencleanedofcosmic resolvethe[OII]doublet;inthiscase,acleardetectionofthedou- rays,flat-fielded,andcutintoindividualslits.Correspondingarcs bletalonewouldwarrantaclass4redshift.Qualityclass3arealso areextractedandwavelengthcalibrated;thiscalibrationisthenap- veryreliableredshifts,andweexpectmostofthemtobecorrect. plied to each science frame. The four exposures are added, after Theseinclude galaxieswithagood match toCaH&K for exam- applyingashifttoaccountforthespectralditherandignoringbad ple, but no obvious corroborating feature. Similarly, single emis- pixelsidentifiedinthebadpixelmask,whichhasbeenpropagated sionlineswhereadoubletisnotconvincingaregenerallyassumed through thesamereduction procedures asthescience frame.The to be [OII] and given quality class 3. We would also use this in sameisdoneforthe“noise”framedescribedabove. cases where H&K are detected ina region of telluricabsorption, The negative-flux spectrum is then subtracted from its posi- butthereisatleastoneotherlikelymatchtoanabsorptionfeature. tive counterpart, for each spectrum, using by default a 3.5 pixel Wetake particular care not to assign class 3 or 4 to a galaxy for wide aperture (this is tweaked in a few cases, where necessary). whichH&Karetheonlyidentifiablefeatures,andlieonatelluric Awavelength-dependent sensitivityfunctionisdeterminedbyex- absorptionline. tractingthestandardstarspectrum,andcomparingthefluxtotab- Class2objectscorrespond to“possible”redshifts. Thesein- Transientgalaxiesin groupsatz = 1 5 tional∼0.5magdepthrelativetotheI−selectedzCOSMOSand EDisCSsurveys. 3 ANALYSIS 3.1 SpectroscopicandRedshiftcompleteness WefirstconsiderthesamplingcompletenessofourGMOStargets, defined as the fraction of potential targets for which we actually obtainedaspectrum.Here,wedefinethecompletesampletobeall priority1galaxies(i.e.all21.5 < r < 24.75galaxiesthathavea photometricredshiftwithin2σoftheestimatedgroupredshift)that are withinthe GMOS fieldof view. Note that 100 per cent com- pleteness in this sense could never have been achieved, because someofthefieldofviewispermanentlyinaccessibleduetotheac- quisitionstarsand,inafewcases,guiderarm.Wecharacterizeour samplingcompletenessintermsoftheIRAC[3.6µm]magnitude, since this is more closely related to galaxy stellar mass than the r band magnitude on which our selection was based. Weinclude galaxiesfromthezCOSMOS10Kspectroscopiccataloguehereas Figure 1. The colour-magnitude distribution for all galaxies with spec- well, which mostly includes galaxies brighter than IAB = 22.5. troscopy (from either GEEC or zCOSMOS) that lie within our GMOS Althoughourtargetselectiondoesnotexplicitlydependongalaxy fields,andhave0.8 < zphot < 1.5,withintheir1σ uncertainties. Red colour,therelianceonphotometricredshiftuncertaintypotentially pointsrepresentGEECtargetswithsecureredshifts(quality3or4),while introduces a colour-dependence. Thus we consider our sampling blue points indicate secure zCOSMOS 10k redshifts (quality > 2). The completenessasafunctionofboth[3.6µm]magnitudeand(V−z) remaining, black points, are therefore those with a spectrum and 0.8 < colour. Specifically, we divide this colour-magnitude plane into zphot<1.5,butwithoutasecureredshift. several binsandcalculatethecompleteness ineachbin.Foreach colour bin we define a completeness function by fitting a line to thecompletenessasafunctionof[3.6µm]magnitude.Wefindthat, clude some spectra that are reasonably likely to be correct (e.g. regardlessofhowwedothis,ourcompletenessisremarkablyuni- H&Kontopofatelluriclineandnoothercorroboratingfeatures); form; it ranges from ∼ 0.6 to ∼ 0.75 with little dependence on butalsosomethatarelittlemorethanguesses.Class1isreserved colourormagnitude.Thismaybepartlybecausethesampleistoo for“junk”,withnochanceofobtainingaredshift. smallyettodefinetheselectionfunctionwithhighenoughpreci- In this analysis we only consider galaxies with class 3 or 4 sion,andwewillrevisitthiswhenthesurveyiscomplete. qualityredshifts. Anotherpotentialsourceofincompletenessisfailuretoobtain redshiftsfortargetedgalaxies.Wecharacteriseourredshiftsuccess 2.4 zCOSMOSObservationsandfinalcatalogue rateasafunctionofIAB magnitude, sincethiscorresponds most closely to the wavelength of features (like Ca H&K) commonly Wealsoincludeinour analysisredshiftsfromthe10K releaseof usedforredshiftidentificationatz ∼0.9.Thissuccessrate,shown zCOSMOS(Lillyetal.2009).Weincludeallgalaxieswithredshift inFigure2,isdefinedasthefractionofpriority1,targetedgalax- qualitygreaterthan2.0,whichhaveahighprobability(> 90per iesfor whichweobtained a redshift withquality 3or 4. Wefind cent)ofbeingcorrect(notethezCOSMOSqualityflagsaredefined aremarkably highsuccessrateof > 80per cent, forIAB < 24. differentlyfromourown).Theseprovideanicecomplementtoour Thisisatestament in part to thehigh-quality spectra obtained at observations,bydesign,astheyarerestrictedtothebrightergalax- Gemini, and in particular the success of the nod & shuffle tech- iesthatarenotgivenpriorityinourtargetselection. nique, which results in near-perfect sky subtraction in a spectral Figure 1 shows our final sample in colour-magnitude space. regiondominatedbyskyemissionlines.Moreover,wearehelped Allopticalcoloursandmagnitudesarecomputedwithina3′′diam- bytheexquisitephotometricredshifts,whichmeansourpriority1 eteraperture,onpsf–matchedimages,asdescribedinCapaketal. listcontainslittlecontaminationfromhigherredshift galaxiesfor (2007). The galaxies plotted here are all those with an available whichredshiftsaredifficulttoobtain. spectrum,lyingwithinourGMOSfields,andwith0.8<z <1 Weshow,asthebluepoints,theredshiftsuccessofthezCOS- phot withintheir1σ uncertainties.Wechoosethe(V −z)colourasit MOS10ksample,restrictedtotheregionscoveredbyourGMOS bracketsthe4000A˚ breakatz ∼0.95,andtheIAB magnitudefor observations.Herethesuccessrateisdefinedasthefractionofse- comparison withzCOSMOS. Red points represent GEEC targets cure(quality>2)redshiftsfromallzCOSMOStargetswithinour with secure redshifts, while blue points indicate zCOSMOS 10k GMOSfieldsofview.Thesuccessrateisalsoveryhighhere,>70 galaxieswithsecureredshifts.Distinctsequences ofredandblue per cent for IAB < 22.5, which is their nominal completeness galaxiesareapparent,andourredshiftsuccessrateisveryhighat limit.Wehavealsocheckedforacolourdependenceonthesesuc- all colours (see §3.1). Our GEEC spectra probe red galaxies up cessrates,andfindnosignificanttrend,asisvisuallyapparenton to 1.0 mag fainter than found in the 10k survey (IAB < 22.5), Figure1.Thus,bothzCOSMOSandGEECarehighlysuccessful 0.65magfainterthanDEEP2(Cooperetal.2008,r < 24.1) and at obtaining secure redshifts even for red, absorption-only galax- ∼ 0.25 mag fainter than EDisCS at this redshift (Hallidayetal. ies.Manyofthese“failures”areinfactlikelytobehigherredshift 2004,IVega <23,orIAB<∼23.3).Forbluegalaxieswegainaddi- galaxies, inwhich case they do not affect the success rate in our 6 Baloghet al. Figure2.Top:Thehistogramshowsthenumberofpriority1,GEECspec- Figure3.Spectroscopicredshiftsarecomparedwithphotometricredshifts tra,asafunctionofIAB magnitude.Bottom:Theredshiftsuccessrateof andtheiruncertainties.Allgalaxieswithasecureredshiftareshown.Red GEEC,definedasthefractionofpriority1galaxies withgood(quality3 pointsarethoseGEECgalaxieswithpriority1,whicharethosethathave or4)redshifts, isshownastheblackpoints. Theblue points represent a zphotwithin2σofthegroupredshift;blackpointsrepresentGEECgalax- similarquantityforthezCOSMOS10ksamplewithinourfield;hereitis ieswithlowerpriority.BluepointsarezCOSMOS10kspectrawithinthe thefractionofallgalaxiesinourGMOSfieldswithazCOSMOSspectrum samefields.Ourspectragreatlyincreasethecompletenessanddepthofthe thathavearedshiftqualityof>2.0.Thevertical,dottedlineatIAB rep- 10ksurveyattheredshiftofthesegroups. resents thenominal, zCOSMOScompleteness limit.WithGEEC,weare highlycompleteforgalaxiesupto1.5magfainterthanthis. limitedredshiftrangeofinterest.Wethereforeapplynofurthercor- rectionsforredshift incompleteness; theonlyweight comesfrom thesamplingfraction. InFigure3wecompare ourspectroscopic redshiftswiththe correspondingphotometricredshiftanditsuncertainty.Redpoints represent secure redshifts for priority1 galaxies inGEEC.These all,bydefinition,haveazphotwithin2σzphotofthegroupredshift (0.88<z<0.97forthissample).Effectively,thisselectsgalaxies thateitherhavez closetothegroupredshift,orgalaxieswith phot poorlydeterminedz ,whichhavelargeerrorbars.Weseethat phot notonlydothespectroscopicandphotometricredshiftsagreevery well,butthatourpreselectionallowsustobeefficientattargeting potentialgroupmembers.Thebluepointsrepresentsecureredshifts inthezCOSMOS10ksample. During mask design, we preferentially target galaxies with photometricredshiftswithin2σofthemeangroupredshift.Since we account for the uncertainty in z , we do not expect to be phot strongly biased against galaxies for which z is poorly deter- phot mined due, for example, to a lack of strong features in the spec- trum.However,wearepotentiallybiasedagainst“catastrophicfail- Figure 4. For confirmed group members with 0.7 < zphot < 1.5 we showthedifferencebetweenspectroscopicandphotometricredshifts,asa ures”.Toaddressthis,inFigure4weshowthedifferencebetween functionof(V −z)colour. Asymmetricerrorbars are68percentconfi- thespectroscopicandphotometricredshiftforallconfirmedgroup denceintervalsonzphot.Filledsymbolsarequalityclass4,whichmeans members(seeSection3.3)withsecurespectroscopicredshiftsand thespectroscopicredshiftiscertain,whileopensymbolsareclass3andthus 0.7<zphot <1.5,asafunctionoftheir(V−z)colour.Redpoints generallyreliable(andusedthroughoutthisanalysis).Theredpointsiden- identify“priority2”galaxies,whicharethoselowerprioritytargets tifythosefewgroupgalaxiesthatwereallocatedlowerpriorityduringmask withzphotmorethan2σawayfromthegroupredshift.Thesemake designbecausetheirzphotismorethan2σawayfromthemeangroupred- uponly∼6percentofthesample,withnomeasureablecolourde- shift.Thesemakeuponly∼6percentofthetotalgrouppopulation,with pendence.Thereisalsonostrongdependenceonthequalityofthe noobviouscolourdependence. spectroscopic redshift; the fraction of priority 2 galaxies that are actuallygroupmembersissimilaramongstquality3andquality4 Transientgalaxiesin groupsatz = 1 7 cerncouldbetheomissionofthermally-pulsingAGBstars,which becomeincreasinglyimportantathigherredshifts(Marastonetal. 2006). This will be more relevant when considering comparison with z = 0 observations, which we defer to after completion of thesurvey.Forourpurposeshere,weareinterestedincomparing groupgalaxieswiththeirfieldcounterparts.Systematiceffectslike thisonthemassestimatesarenotlikelytobeverydifferentforthe two populations. Thus we expect our conclusions to be robust to thisandsimilarassumptionsaboutIMFanddustgeometry. We k-correct all colours to z = 0.9, the redshift of in- terest for our survey, using the KCORRECT IDL software of Blanton&Roweis(2007).Wedenote thesecolours as,for exam- ple,(V −z)0.9. InFigure5weshowourderivedstellarmassesasafunction ofrmagnitude(ourselectionband),forboththephotometricfield sample(smallpoints)andourspectroscopicsample,within0.8 < z < 1.0. Thepointsareseparatedintothebluest galaxies,(V − z)0.9 < 1.5, and the reddest galaxies, (V − z)0.9 > 2.7. Our selectionlimitofr <24.75impliesweare100percentcomplete aboveamasslimitofMstar >∼1010.5M⊙;however,wearemostly completeforMstar >∼1010.1M⊙,missingonlysomeofthereddest galaxies.Wewillthereforetreatthisasournominalcompleteness Figure5.Thestellarmasses,computedforaChabrier(2003)massfunction limitthroughoutthepaper.Notethatthebluegalaxiesarecomplete andbasedonBruzual&Charlot(2003)models,areshownasafunctionof r magnitude forarandom subset ofthe photometric fieldsample (small for Mstar >∼ 109.6M⊙, and weprobe massesas low asMstar <∼ points)andourspectroscopicsample(large,filledpoints),for0.8 < z < 108.8M⊙. 1.0.Thereddestgalaxies,(V−z)0.9>2.7,areshownasredpoints,while thebluestgalaxies(V−z)0.9<1.5areshowninblue(theremainingblack pointsarethoseofintermediatecolour).Ourselectionlimitofr < 24.75 3.3 Groupmassesandmembership imposesacolour–dependent masslimit,ofMstar < 1010.1M⊙ forred galaxies,andMstar<108.8M⊙forthebluest. Foreachgroup,weinspectthespatialandredshiftdistributionof thegalaxies.Fullresultswillbepresentedforallgroups,aftercom- pletionofthesurvey. redshifts. We conclude therefore that our z preselection does Westartbyconsideringallgalaxieswithinr = 1Mpcofthe phot notintroducealargebias,thoughwewillbeabletotestthismore nominalX–raygroupcentrefromFinoguenovetal.(inprep).The robustlyattheendofthesurvey. velocitydispersionofthesegalaxiesisdeterminedusingthegap- Atthisearlystageofoursurvey,wehavefewduplicateobser- perestimate(Beersetal.1990).Wealsocomputethe(unweighted) vationswithwhichtocheckourspectroscopicredshiftsanddeter- meanspatialpositionofthegalaxies,andthermsprojectedsepa- minearobustuncertainty.Wedohaveeightgoodqualityredshifts ration from this centre, which we call Rrms. We then iteratethis forgalaxiesthathaveanexisting,goodqualityzCOSMOSredshift. process, typically clipping galaxies with velocities > 1.5σ from Fromthese,thereappearstobeasmallbiasinthesensethatour themedianredshift,andpositionsr>2Rrmsfromtherecomputed redshiftsaresmallerby7.72×10−4,correspondingtoarest-frame centre2.Thisconvergesafterafewiterations,andweadoptthefinal velocityshift of ∼ 120 km/sat theredshift of interest.Although σandRrms.Groupmembersarethendefinedasthosewithin3σof thisshould betreatedasapreliminaryoffset,wecorrectour red- themedianredshift,andwithin2Rrmsofthecentre.Uncertainties shifts for it here. Weuse the same eight galaxies to estimate our onσandRrmsarethencomputedusingajackknifemethod,iterat- redshiftuncertaintyandfindσz ∼4.1×10−4,correspondingtoa ingonlyoverthislistofgroupmembers.Thus,theseuncertainties rest-framevelocityuncertaintyof∼65km/satz=0.9. donotincludesystematicuncertaintiesduetotheclippingprocess, which are likely to be at least ∼ 15 per cent (e.g. Wilmanetal. 2005a). 3.2 Stellarmassmeasurementsandk-corrections We show how our sample compares with other, related sur- veys,inFigure6.Pointsshowthevelocitydispersionofeachgroup, We fit the spectral energy distribution for each galaxy, us- as a function of redshift, for our present survey (filled circles), ing all available photometry, following the method described in our previous GEEC sample at 0.3 < z < 0.6 (open triangles), McGeeetal.(2010).Briefly,thisisdonebycomparingwithavery and the EDisCS cluster and group sample Hallidayetal. (2004); largegridoftemplateBruzual&Charlot(2003)models,covering Poggiantietal.(2006,opencircles).Themedianredshifts,veloc- awiderangeofparameters,assumingaChabrier(2003)massfunc- itydispersions, and number of members ineach of our groups is tion.TheprocedureisbasedonthatofSalimetal.(2007),andas- giveninTable1. sumesthestarformationhistoryofagalaxycanberepresentedby anexponentialmodelwithsuperposedbursts. Stellar mass estimates are quite robust to the details of the 2 The clipping parameters were tweaked for group 161, which is very fits, inpart because of theavailability of Spitzer IRAC data. The close to group 150 in redshift and position. For this group we exclude mainassumptionsthatcouldleadtosystematicerrorsaretheini- galaxies with velocities > 1.4σ from themedian redshift, andpositions tialmass function(IMF),the dust model (weuse Charlot&Fall r>1.6Rrmsfromtherecomputedcentre.Theproperties(dynamicaland 2000),andthechoiceofgalaxyevolutionmodel.Ofparticularcon- stellarmass)ofthisparticulargrouparequitesensitivetothischoice. 8 Baloghet al. Figure6.Thevelocitydispersion,asafunctionofredshift,forthreesam- Figure7.Left:ThecorrelationbetweenMdynandX–rayluminosity,LX, ples of groups and clusters with high spectroscopic completeness. The is shown for the six targeted groups in our sample (i.e. excluding 213a, present group sample is shown as filled circles, while our lower-redshift whichisnotdetectedinX–rays).Right: Hereweshowthesamedata,butas GEECsampleisshownwithopentriangles.Theopencirclesrepresentthe afunctionofM200,XasdetermineddirectlyfromLX assumingascaling groupsandclustersoftheEDisCSsurvey(Hallidayetal.2004). relationandcalibratedfromstackedweaklensinganalysis(Leauthaudetal. 2010). Weestimateadynamicalmass,fromthevelocitydispersionσ 4 RESULTS andtheradiusRrms, 4.1 Dynamicsandstellarfractions 3 Mdyn = Rrmsσ2. (1) With at least ∼ 15 spectroscopic members for most groups, we G are able to make reasonable estimates of the dynamical mass, as Theuncertaintyisdeterminedbypropagatingthejackknifeuncer- describedin§3.3.InFigure7wecomparethesemasseswiththe taintiesonσ and Rrms.Thefactor 3inthisequation isbased on X–rayluminosity(leftpanel)andwiththevirialmassM200,X es- theassumptionofisotropicorbitsandanisothermalpotential,but timatedfromthisluminosity(rightpanel).M200,X isestimatedas- isonlyweaklydependentonthoseassumptions(Łokas&Mamon sumingascalingrelationandcalibratedbasedonastacked weak 2001). lensinganalysis(Leauthaudetal.2010). Groups150and161arelocatedwithinthesameGMOSfield. Thedynamicalmassuncertaintiesaregenerallylarge,butthe It is clear that group 161 is dynamically and spatially separated masses agree remarkably well with those estimated from the X– from group 150, but they are very close, separated by less than rayemission.Theoneoutlier,whichhasarelativelylowdynamical 1Mpc and1000km/s(restframe).Thustheymaybepart ofthe massforitsX–rayemission,isgroup150;thisgroupisclosetoand same,interactingsystem.Theassignmentofmemberstoonegroup likelyassociatedwith161.Itspositiononthisplotisquitesensitive ortheotherisnotentirelyobvious,andourclippingalgorithmwas totheprecisemembershipassigned;thatis,thesystematicuncer- tunedtoachieveareasonable–lookingseparation. taintyduetothechoiceofclippingparametersarelikelydominant Finally, themembership of group 213 isquite poor, and our overthestatisticaluncertainties. completeness in thisfield isworse than elsewhere. Wedid, how- Total stellar masses can often be determined with much ever,detectaserendipitousgroup(named213a)athigherredshift, greaterprecision,withthedominant statisticalnoisetermcoming z = 0.9254.Thisgrouphassixmembers,andanominalvelocity from the uncertainty in the radius Rrms within which the stellar dispersionofonly44±17km/s,restframe—smallerthanwould massissummed.Thetotalstellarmassiscomputedoverallgalax- beexpectedfromredshiftuncertaintiesalone,andlikelydominated ies in the sample; since we are incomplete for red galaxies with bysystematicuncertainty.Thegroup’spositionissignificantlyoff- M <1010.1M⊙,thisisactuallyalowerlimit.Forthebluegalax- set from the X–ray detection, which is likely still correctly iden- ies, about 75 per cent of the stellar mass is at M > 1010.1M⊙. tified with the lower redshift system. We include both groups in Assumingthistobetruefortheredpopulationaswell,weestimate ouranalysis;however,wedonotattempttodetermineadynamical thatourstellarmassesunderestimatethetruetotalbylessthan10 mass of group 213a since the velocity dispersion is clearly unre- percent.Thestatisticaluncertaintyiscalculatedfromthejackknife solved. uncertaintiesinRrms andσ.Inseveralcases,thegroupmembers Ourobservationsconfirmthatthesearealllow-masssystems, withr < Rrms and|∆z| < 3σ donot change withintheuncer- asexpectedfromtheirX–rayfluxes.Thedynamicalmassesofthe taintiesonthesequantities,whichleadstoastellarmassestimate targetedgroupsrangefrom2.3±0.9×1013M⊙ to1.3±0.5× with,formally,zerouncertainty.Wethereforeimposeanarbitrary, 1014M⊙. minimumuncertaintyof10percentontotalstellarmasses. Transientgalaxiesin groupsatz = 1 9 Figure9.Left:Thecolours(k-correctedtoz =0.9)andstellarmassesofgalaxiesareshownfortwosamples.Thesmall,blackpointsaregalaxiesfromthe fullCOSMOSphotometriccatalogue,withr < 24.75and0.8 < zphot < 1.0.Weonlyshowarandom10%ofthepoints,forlegibility.Thisrepresents theparentdistributionfromwhichourspectroscopicsurveys(overamuchsmallerfield)aredrawn.Thelarge,filledpointsrepresentgalaxieswithsecure, spectroscopicredshiftsat0.8 < z < 1,thatliewithinourGMOSfieldsbutarenotassignedtoagroupinoursurvey.Werefertotheseas“non-Xgroup” environmentgalaxies,todistinguishthemfromthegeneralfield(representedbythesmallpoints)whichcontainsgalaxiesinallenvironments.Thepoints circledinredindicategalaxieswith24µmdetections.Notetheabsenceoflow-mass,red-sequencegalaxiesinthenon-Xgroupgalaxies,andthedominanceof thebluesequenceforMstar<1010.6M⊙.Forillustrationpurposesonly,thelargeredandblueellipsesapproximatelyidentifythe“redsequence”and“blue cloud”populations.Thesolidlineindicatesourapproximatecompletenesslimitimposedbyther > 24.75selection.Right:Thesame,butnowthefilled pointscorrespondtogroupmembers.Here,thefaintendoftheredsequence,visibleintheparentphotometricredshiftcatalogue,isfilledinwithconfirmed groupmembers.Moreover,thereappearstobeaprominentthirdpopulation,thatliesbetweentheblueandredsequencesat(V −z)0.9∼2. InFigure8weshowtherelationshipbetweendynamicaland stellarmass,forallsixtargetedgroups.Weexcludetheserendipi- tousgroup213a,sincethevelocitydispersionisunresolved; with onlysixmemberswecannotdetermineareliabledynamicalmass. Fortheremainder,thestellarfractionsrangefrom∼0.25percent to ∼ 3 per cent, similar to what is observed both locally (e.g. Baloghetal.2010)andathigherredshift(Giodinietal.2009).The groupwiththehigheststellarfractionisgroup150which,asmen- tionedpreviously,hasalargersystematicuncertaintyonitsdynam- ical mass due to its close proximity to 161. The membership of group161itselfisverysensitivetothechoiceofRrms,andtheun- certaintyinthisquantityleadstoalargeuncertaintyinstellarmass. Thus,althoughtherearehintsofrealdiversityinthestellarfraction amongstourgroups,thesampleistoosmallatthistimetodrawany strongconclusions. 4.2 Galaxypopulations Ourmainresultfromthesefirstdataisshown inFigure9,asthe correlationbetween(V−z)0.9colourandstellarmassforthegroup andnon-Xgroupsamples.Thesmall,blackpointsrepresentgalax- Figure8.Weshowthemeasureddynamicalmassasafunctionoftotalstel- iesintheentireCOSMOSphotometric redshift catalogue, within larmass,foreachofourgroupsexcepttheserendipitousgroup213a.The 0.8 < z < 1.0andrestrictedtor < 24.75,theGEECselec- phot stellarmassisthesumofallspectroscopically confirmedgroupmembers tionlimit.Intheright panel, thelargepointscorrespond tospec- withinaradiusRrms.Thedottedlineindicatesaconstantstellarfractionof troscopically confirmed group members, as defined in § 3.3. On 1percent;thesolidlinesoneithersiderepresentfractionsof0.25percent theotherhand,largepointsintheleftpanelrepresentallgalaxies and3percent,asindicated. withsecureredshifts0.8<zspec <1thatareunassociatedwitha groupinourcatalogue.Wewillrefertothisspectroscopicsample as“non-Xgroup”galaxies,sincetheyareconfirmednon-members 10 Baloghet al. Figure10.Left:Thedistributionof(V −z)0.9coloursareshown,forallgalaxieswithMstar>1010.1M⊙.Thesolid,blacklinerepresentsthedistribution ofourspectroscopic,non-groupgalaxysample,whichwesuggestrepresentsthe“non-Xgroup”environment.Itshowsthewell-knownbimodaldistribution, consistingofredandbluegalaxypopulations.Thered,dashedhistogramrepresentsourspectroscopicgroupsample;therearefewbluegalaxiesand,instead thepopulationisdominatedbyred-sequencegalaxies,andanapparentlydistinctpopulationofintermediate-colour(“green”)galaxies.Finally,thethin,dotted blackhistogramisthedistributionofallgalaxiesinCOSMOS,with0.8<zphot<1.0,r<24.75andMstar >1010.1M⊙;thishasbeenrenormalizedto matchtheareaoftheredhistogram.Thisrepresentstheglobal,“field”populationofgalaxies.Right:Thesame,butwherethegroupsampleisnowweighted forsamplingincompleteness,andtheCOSMOScomparisonsampleisappropriatelyrescaled. ofourX–raygroupsample.Wecannotexcludethepossibilitythat tobeconsiderablyredder,populatingtheredenvelopeoftheblue thissamplestillcontainsgalaxiesthataremembersofothergroups, cloud,andthegreenvalleyitself. notidentifiedinX-rayemission.ThesolidlineinFigure9indicates The population of galaxies between the red and blue galax- ourcolour-dependent completenesslimit,asaconsequenceofthe ies is of particular interest, as it may represent a transient phase. r > 24.75magselection.Thisiscomputedbysimplylookingat To explore this further, we show the distribution of colours, for theaveragestellarmassofgalaxiesnearthemagnitudelimit,asa all galaxies with Mstar > 1010.1M⊙, in Figure 10. The black, functionofcolour. solid histogram represents the distribution for our “non-Xgroup” spectroscopic sample; while the sample size is small, it shows Wefirstnotetheusualstructureinthiscolour-magnitudedia- thewell-known bimodal distributionof colours, witha minimum gram,witha“redsequence”and“bluecloud”population.Weshow around (V − z)0.9 ∼ 2.3. This is statistically consistent3 with the approximate locations of these populations with red and blue the colour distribution of the full COSMOS “field” sample (for ellipses,respectively.Theredsequenceinthegroupsiswellpopu- 0.8 < z < 1.0)inthesamestellarmassrange,shownasthe latedatallmassesaboveourcompletenesslimit,M >1010.1M⊙. thin,dottpehdotline.Thered,dottedhistogramrepresentsourspectro- In fact, there is some indication that the lowest-mass (M < scopicgroupsample.Theleftpanelshowsthesedataunweighted 1010.5M⊙),redgalaxiesappearonlyingroups,astheyareabsent forcompleteness,whiletherightpanelincludesthecompleteness inthe“non-Xgroup” sample. However thesampleistoosmallto corrections. In both cases, the groups show a marked deficit of bedefinitiveaboutthis,andwewilldeferafullanalysisofthelu- bluegalaxies,whiletheintermediate-colour population isatleast minosityfunctionshapestotheendofthesurvey. asabundantasinthegeneralfield. The second interesing observation from Figure 9 is that the Remarkably, the distribution suggests that this intermediate blue sequence appears to be very underpopulated amongst group populationmaybedistinctfromboththeredpeakandbluecloud. galaxies,compared withthefield,forM >∼ 1010.2M⊙.Theblue Unfortunately the sample is not yet quite large enough to unam- galaxiesthatdoexistheretendtolieattherededgeofthecloud; biguouslyidentifythese“green”galaxieswiththegroupenviron- moreover, the “green valley” between the two sequences is well- ment; a KS test on the unweighted distributions inFigure 9con- populated,apointwewillreturntobelow. firmsthatthegroupdistributionhasa∼ 1percentprobabilityof beingdrawnfromthesamedistributionastheparent,fieldpopula- We have matched our redshift catalogue with the deep tion;ora∼ 2.5percentchanceofbeingdrawnfromthespectro- Spitzer MIPS catalogue, which has a 5σ detection limit of 0.071 scopic,“non-Xgroup”sample.Itisalsointerestingthatthe“green” mJy (Sandersetal. 2007). Using the calibration of Riekeetal. population(with1.9<(V −z)0.9 <2.4)makesupasimilarfrac- (2009), this limit corresponds to a star formation rate of SFR∼ tionofthetotalinthegeneralfield(∼25percent)asinthegroups 11.8M⊙yr−1 atz ∼ 1.These24µmdetectionsarecircledinred inFigure9.Thenon-Xgroupsamplehasalargepopulationofmas- sive,bluegalaxieswith24µmdetections,indicatingsubstantialstar 3 AKStestshowsthereisa38percentprobabilitythatthetwodistribu- formationrates. Inthegroups, themassive24µm detections tend tionsaredrawnfromthesameparentpopulation.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.