Diplomarbeit Analysis of full-waveform airborne laser scanning data for the improvement of DTM generation Ausgeführtam Institut für Photogrammetrie und Fernerkundung, Technische Universität Wien unterderAnleitungvon Dipl.-Ing. Dr.techn. Markus Hollaus und Dipl.-Ing. Dr.techn. Christian Briese und Univ.Prof. Dipl.-Ing. Dr.techn. Norbert Pfeifer durch Werner Mücke Stadtplatz 40, Top 17 4600 Wels Wien, September 2008 ............................ Contents Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Listofacronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 1 Introduction 1 1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Structureofthiswork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 State of the art 5 2.1 Airbornelaserscanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 ComponentsandcharacteristicsofanALSsystem . . . . . . . . . . . . . . . . 5 2.1.2 Measurementprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Analysisofthefull-waveforminformation . . . . . . . . . . . . . . . . . . . . . 10 2.2 Segmentationofpointclouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Model-drivensegmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Data-drivensegmentationbyclustering . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 DTMderivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Morphologicalfilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 ProgressiveDensification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.3 Surface-basedfilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.4 Segmentation-basedfilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Previoususageoffull-waveformdataforDTMgeneration . . . . . . . . . . . . . . . . 27 3 Study Area and Data 29 3.1 StudyArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Dataacquisitionandprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 TestSite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Methods 34 i 4.1 Radiometriccalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 Point-baseddataanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 Segmentation-baseddataanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.4 Usageoffull-waveforminformationforimprovedDTMgeneration . . . . . . . . . . 39 5 Results 44 5.1 Point-basedanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.1.1 Amplitudeandechowidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.1.2 Backscattercrosssection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 Segmentation-basedanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3 ImprovedDTMgenerationusingfull-waveformobservables . . . . . . . . . . . . . . . 52 5.4 ComparisonofDTMsandqualityassessment . . . . . . . . . . . . . . . . . . . . . . . . 52 6 Discussion 59 6.1 Lackofgroundtruth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 Improvementpossibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3 Conceptsfortheintegrationoffull-waveforminformationinpresentmethods . . . 61 7 Conclusion 62 Literature 63 WWW references 67 ii Acknowledgements I wish to extend my gratitude to my colleagues at the Institute of Photogrammetry and Remote Sensing, who provided me with the best learning and working atmosphere a student can think of. Above all I would like to thank Dr. Markus Hollaus, Dr. Christian Briese and Prof. Dr. Norbert Pfeifer, for their continuous support and advice in many different matters concerning this thesis. Furthermore, Dr. Bernhard Höfle, who provided components of the utilized software andDipl.Ing. AndreasRoncat,whoreviewedpartsofthemanuscript. Last but not least I would like to express my gratefulness to my family, especially my mother Maria and my grandfather Johann for their continuous mental and financial support throughout my studies. Also particular my girlfriend Marlene, we went through a lot together! Next time I willdobetter! ;-)Thanksforsupportingandbelievinginme! iii Abstract This thesis deals with the potential of full-waveform airborne laser scanning for improved digi- tal terrain model generation. The additional observables amplitude, echo width and backscatter crosssectionfromthisnewscanningtechniqueareseparatelyanalysedtoassesstheirdiscrimina- tory power for classifying airborne laser scanner point clouds into terrain and off-terrain points. Basedontheresultsoftheexploratorydataanalysis,threedifferentapproachesfortheextraction ofterrainpointsarepresentedandtestedinapracticalapplication. Ontheonehand,hardthresh- oldsforthefull-waveformobservablesareappliedonthesinglepointstodiscriminateintoterrain and off-terrain. On the other hand, the full-waveform information is used to derive weights for thesinglepoints,describingtheprobabilityforbelongingtotheclass"terrain". Properprobability and weight functions are introduced. The third method is segmentation-based. A seeded region growing algorithm is used to gather points with equal full-waveform attributes. A pragmatic concept for the extraction of segments representing terrain is described. Digital terrain models are computed from each of the three classified terrain point clouds. A comparison of these three models with a conventional terrain model, computed without the additional observables, points outthepotentialforimprovementbyintegratingfull-waveformmeasurements. Inareasofdense vegetation with poor penetration rates of the laser measurement an enhancement in computing performance,aswellasinadequacyoftheresultingdigitalterrainmodelscouldbeobserved. Zusammenfassung Diese Diplomarbeit beschäftigt sich mit der Nutzung von Full-Waveform Airborne Laser Scan- ning Daten für die Erstellung von naturgetreuen digitalen Geländemodellen. Die zusätzlichen Beobachtungen Amplitude, Echobreite und Backscatter Cross Section, die von Messungen mit dieserneuenTechnologieabgeleitetwerdenkönnen,werdenschrittweiseuntersucht. IhreTrenn- schärfe zur Unterscheidung von Laserscanner Punkten in Boden und Nicht-Boden Punkte wird analysiert. BasierendaufdenErkenntnissendieserexplorativenDatenanalysewerdendreiMeth- odenzurExtraktionvonBodenpunktenausdergesamtenPunktwolkebeschriebenundaneinem Beispieldatensatz getestet. Zum einen werden harte Grenzwerte für die Full-Waveform Attribute iv an die Einzelpunkte angebracht, um so eine Klassifizierung in Boden und Nicht-Boden vorzu- nehmen. Zum anderen werden die Einzelpunkte anhand der Full-Waveform Information mit Gewichten versehen, welche die Wahrscheinlichkeit der Zugehörigkeit eines Punktes zur Klasse "Boden" beschreiben. Die dafür verwendeten Wahrscheinlichkeits- und Gewichtsfunktionen wer- denvorgestellt. DiedritteMethodenutzteinenSeededRegionGrowingSegmentierungsalgorith- mus. Dieser wird verwendet um Punkte mit ähnlichen Full-Waveform Attributen zu einzelnen Segmenten zusammenzufassen. Ein pragmatischer Ansatz zur Identifikation von daraus resul- tierendenBodensegmentenwirdpräsentiert. UmdieVerbesserungimVergleichzuGeländemod- ellen, welche ohne die Verwendung von Full-Waveform Informationen erstellt wurden zu unter- suchen,werdenGeländemodellevonallendreimitdenzuvorgenanntenMethodenklassifizierten Punktwolkenberechnet. DieIntegrationvonFull-WaveformInformationindieErstellungderdig- ital Geländemodelle führte zu einer Steigerung der Recheneffizienz und zu einer Verbesserung der Genauigkeit des resultierenden Modelles in Bezug auf den Naturstand. Vor allem dort wo auf Grund dichter Vegetation und niedriger Durchdringungsrate des Laserstrahls nur wenige bis stellenweisekeineBodenpunktevorhandenwaren. v List of acronyms ALS Airbornelaserscanning APOS Austrianpositioningservice ASDF Averagedsquaredistancefunction DN DigitalNumbers DSM Digitalsurfacemodel DTM Digitalterrainmodel FOV Fieldofview FWF Full-waveform GPS Globalpositioningsystem IMU Inertialmeasurementunit I.P.F. InstituteofPhotogrammetryandRemoteSensing,ViennaUniversity ofTechnology LiDAR Lightdetectionandranging NASA Nationalaeronauticsandspaceadministration NIR Nearinfrared POS Positionandorientationsystem SCOP Stuttgartcontourprogram SOCS Scanner’sowncoordinatesystem SRG Seededregiongrowing VRML Virtualrealitymodelinglanguage VRS Virtualreferencestation WWW Worldwideweb vi 1 Introduction Thesamplingofsurfaceswithlasertechnologyforobtaininginformationoftheirgeometricstruc- turehasbecomeaviableandverypowerfulmethodfordataacquisitionoverthepastfewyears. The constant development of new scanner systems increases the accuracy of the measurements while the actual time for the measurement process is decreasing. Thus, an accordingly bigger amountofdatacanbegatheredwhichagainleadstohigherlevelsofdetail. Althoughairbornelaserscanning(ALS)hastocompetewithothermeasurementtechniques,such asstereo-photogrammetry,theusersofdifferentspecialfieldsoftechnologyappreciatetheadvan- tagesofthelasermethod. ALSisanactivemeasurementsystem,meaningitcanbeusedwithout the utilisation of sunlight. Therefore, it is operable during the nighttime, which is not possible with aerial photography. Furthermore, the upcoming of laser scanners produced a change of theparadigmsinphotogrammetry. Whilewithaerialphotogrammetryalwaystheviewfromtwo different perspectives is essential for the 3D reconstruction of surfaces, in laser scanning obser- vations from one direction are sufficient. Hence, ALS distinguishes itself from the traditional methods by being very effective, versatilely applicable and cost-saving at the same time [Kraus, 2007]. PointcloudsstemmingfromALSprovidethebackgroundofawideareaofdifferentapplications. Especiallythederivationofdigitalterrainmodels(DTM)pusheditselfintothecenterofattention in the recent past as more and more daughter products became dependent on it. The increased occurence of flood waters once more pointed out the necessity of adequate hydraulic modeling and flood water prevention [Mandlburger and Briese, 2007]. Stem volume estimation [Hollaus, 2006]takesacentralpositionindiscussionsaboutbiomassandrenewableenergysources,which are matters of universal concern. 3D city modeling [Rottensteiner and Briese, 2002] is also populartopicthatbenefitsfrombetterterrainestimationandservesbyitselfasstartingpointfor otherfieldsoftechnology,suchascityandregionalplanning. Thesethreeexamples,tonamebut afew,dependonhighaccuracyDTMasafundamentaldatabasis. However,thederivationofanadequateDTMisfarfromtrivial. Alreadyduringdataacquisitiona lotoflimitingeffectscanoccurandtounderstandtheseeffects,itisnecessarytoknowaboutthe physicsbehindlaserscanning. Theseprinciplescanbedescribedquitesimple,yetthedifficulties are in the details. A laser generator repetitively emits a short laser pulse that travels through different media until it finally hits an object where the pulse is partially or completely reflected 1 1 Introduction back towards the scanner and is registered by a detection unit. The round trip time of the pulse from the scanner to the object and back is measured. With the knowledge about the velocity of thetravellingpulsethedistanceitcoveredcanthenbecomputed[Wagner,2005]. A characteristic of the laser measurement is that because of the widening of the laser beam one shot might hit more than one object along its way, resulting in more than one returning signal. Current detection units are able to differentiate between such multiple echoes if they feature a certain minimum difference in their range (section 2.1). The distance to consecutive targets can thereforebedetermined. Suchsystemsarecommonlyusedinairbornelaserscanning. Hereinlies thepossibilitythatapartoftheemittedlaserbeampenetratessmallgapsofasurface(e.g. atree canopy) and is reflected by lower branches, bushes, near-ground vegetation or even the ground itself. Usingalgorithmstoseparatesuchgroundpointsfromothersmakesitpossibletocalculate aterrainmodeleveninovergrownareas[KrausandPfeifer,1998]. Hence,itcomesdowntothe task of identifying ground hits and classifying the point cloud into terrain and off-terrain points. In areas densely covered by vegetation this is mostly a very difficult matter. Often returns origi- nating in lower vegetation are by mistake classified as ground hits and have a highly disturbing effectontheestimationofaDTM,mostoftenapositiveshiftoftheresultinginterpolatedsurface with respect to the point cloud. The DTM might run through the lower vegetation instead of belowitandthereforebetoohigh[Gorteetal.,2005]. One of the latest developments in this area are systems that cannot only differentiate a first, several intermediate and a last echo, also referred to as discrete ALS systems, but are able to digitize and record an entire backscattered waveform, called full-waveform ALS systems. From theserecordedfull-waveformsmorethanonlytherangefromscannertotargetcanbecomputed. Other physical quantities can be derived from the recorded waveform, such as the width of the backscattered echo, its amplitude (intensity of the recorded signal) or, subsequently, the cross sectionofthebackscatteringtarget(section2.1.3)[Wagner,2005]. Discreteechosystemsaswell offer intensity measurement. But due to the fact that most system designers like to keep quiet abouttheirdefinitionofintensity,itsusagewithoutpriorcalibrationofthemeasurements[Höfle and Pfeifer, 2007] is not advisable. Therefore the measured intensity values from discrete scan- nersarenotusedveryoften. Using full-waveform data, the user is given the opportunity to apply self-designed or adapted al- gorithms in post processing, thus adapting the determination of echoes for his special needs and making it more robust for his type of applications. At the same time, the derivation of surface models from data gathered with full-waveform scanners is not only based on geometric princi- ples. The question of how the additional observables from full-waveform laserscanning can be usedtoimproveterrainmodelingisthemaintaskofthiswork. 2 1 Introduction 1.1 Objectives Full-waveform ALS is a rather new technology. The amount of information stored in the full- waveform carries a high potential for a derivation of more adequate products than it was ever possible with discrete echo digitization. The outlooks are promising. However, the full profit for thegenerationofDTMsisyettodiscover. Theassumptionisthattheadditionalobservablesfromfull-waveformairbornelaserscanningcan beusedtoseparateterrainfromoff-terrainpoints. Theseobservablesare 1. intensity(whichreferstotheamplitudeoftherespectiveecho)and 2. widthofbackscatteredecho. The amplitude gives information about the reflectivity of the scanned surface, whereas the echo width describes the range variations within the hit surfaces that contributed to a certain echo. The more variation takes place, the wider it becomes, e.g. on rough surfaces with respect to the laser footprint. Subsequently, the backscatter cross section (section 2.1.3), whose computation referstothetaskofcalibration,canbecomputed[Wagneretal.,2006]. As mentioned in the introduction, the detection of near-ground vegetation is a problem so far. Echoes that stem from small trees, bushes or shrubs can lead to undesired results in the final DTM. These echoes shall be identified and filtered to receive a more adequate model of the real terrainsurface. Inordertoachievethisobjectivethefollowingaimsofthisdiplomathesiscanbeformulated: • Onesubjectofanalysisistheinteractionofthelaserbeamwithdifferentlandcoverclasses. The assumption is, that some of them are very well distinguished in the above mentioned parameters while others are not. The magnitude of the appearing differences is a critical aspectandneedstobeexplored. • The knowledge about the discrimination of the point features is then exploited for the classification of the point cloud. This is done in two ways. First, hard thresholds for the full-waveform observables will be used to classify the individual points into terrain and off-terrain. Secondly, a weight function based on the correlation of amplitudes and echo widthswillbedevelopedandusedtoassignweightstotheindividualpoints. Theseweights describewhether apointis morelikelyto beaterrain pointor not. Theyarethen usedfor apre-classificationofthepointcloudinthefilteringprocess. • Another approach using a segmentation algorithm based on seeded region growing will be tested. The aim is to find out whether this method is able to gather points with equal attributesrepresentingterrainandoff-terrainpoints. • To examine if the obtained classification of the ALS point cloud is useful for the purpose of generating an improved DTM, the results of the different approaches are compared. 3
Description: