UNIVERSITA’ DEGLI STUDI DI MILANO DIPARTIMENTO DI SCIENZE FARMACEUTICHE DOCTORATE SCHOOL IN CHEMICAL SCIENCES AND TECHNOLOGIES Doctorate course in Pharmaceutical Sciences – XXVII Cycle AREA 03 SCIENZE CHIMICHE SSD-CHIM/06 -AMINO ACIDS AS TOOL FOR THE PREPARATION OF FOLDAMERS AND NANOMATERIALS Ph.D. Thesis presented by: Andrea BONETTI R09727 SUPERVISOR: Prof.ssa Maria Luisa GELMI COORDINATOR: Prof. Ermanno VALOTI Anno Accademico 2013-2014 1 Possano le tue scelte riflettere le tue speranze, non le tue paure. N. Mandela 2 Table of contents Abbreviations ........................................................................................................................................ 5 Chapter 1 –General Introduction ............................................................................................................ 7 1 Beta Aminoacids, Beta Peptides and Hybrid Peptides: Synthesis, Conformational Analisys and Applications. .................................................................................................................................................. 8 1.1 Acyclic-Amino Acids Nomenclature and conformational properties ............................................. 9 1.2 Conformational Properties of cyclic-Amino Acids .............................................................................. 12 1.3 StandardSynthetic Methodologies for the preparation of -Amino Acids ........................................... 13 1.4 -Oligopeptides and -Hybrid Oligopeptides Conformation overview ............................................ 16 1.4.1 -Oligopeptides Secondary Structures. ......................................................................................... 17 1.4.2 -Hybrid OligopeptidesFoldamers: Secondary Structures. ........................................................ 22 1.5 Applications of -peptides or -Foldamers ...................................................................................... 26 1.5.1 Biological and Pharmaceutical Applications .................................................................................. 26 1.5.2 Nanomaterial Applications ............................................................................................................. 29 1.6 Aim of my Ph.D thesis ............................................................................................................................ 30 Chapter 2 – syn/anti Switching by Specific Heteroatom–Titanium Coordination in the Mannich-Like Synthesis of 2,3-Diaryl-β-amino Acid Derivatives .................................................................................. 41 2. Introduction ............................................................................................................................................. 42 2.1 Results ................................................................................................................................................... 43 2.2 Discussion .............................................................................................................................................. 52 2.3 1H NMR discussion for 2,3-Diaryl--aminoesters 3 and 4 ..................................................................... 54 2.4 Complete set of NMR data for the Mannich-like reaction of 1d and 1i with imine 2c ......................... 55 2.5. Conclusions ........................................................................................................................................... 68 2.6 Reference ............................................................................................................................................... 69 Chapter 3 – 2,3-Diaryl-β-amino acid for the preparation of Foldamers and Nanomaterials ............... 88 3. Introduction ............................................................................................................................................. 89 3.1 Result and Discussion ............................................................................................................................ 90 3.1.1 Chemistry ........................................................................................................................................ 90 3.2 Dipeptides 3a-(D1) and 3b-(D2) characterization. ................................................................................ 93 3.2.1 Solid state (X-ray analysis). ............................................................................................................. 93 3.2.2 In solution characterization ............................................................................................................ 95 3.3 Self organization studies on Dipeptides 3a-D1 and 3b-D2 .................................................................... 98 3.3.1 Proteolytic and Thermal stability of 3b-D2 Nanotubes .................................................................. 99 3.4 NMR Characterization of tetrapeptides and hexapeptides of D1 and D2 series. ............................... 100 3.4.1 Tetrapeptides 6a-(D1) and 6b-(D2) .............................................................................................. 101 3 3.4.2 Characterization of hexapeptides 8a-(D1) and 8b-(D2) ............................................................... 107 3.5.Conclusion ........................................................................................................................................... 113 3.6 References ........................................................................................................................................... 115 Chapter 4 –Tetrahydroisoquinoline-4-carboxylic acid/-Alanine, a -Peptide Reverse Turn that Promotes Hairpin formation .............................................................................................................................. 133 4.Introduction ............................................................................................................................................ 134 4.1 Results and discussion ......................................................................................................................... 136 4.1.1 Synthesis of amino acid 1 and its N-Boc derivative 5. .................................................................. 136 4.2 Studies on enzymatic resolution of N-Boc derivative 5. ...................................................................... 137 4.2.1 Pronase ......................................................................................................................................... 141 4.3 Preparation of model tetrapeptides. Fmoc-NH-(L)Ala-TIC-Ala-(L)Val-OBn and Ac-NH-(L)Ala-TIC-Ala- (L)Val-NH . ................................................................................................................................................. 144 2 4.4 NMR Characterization ......................................................................................................................... 147 4.5 References ........................................................................................................................................... 153 Chapter 5 – Rhodium catalyzed transformation of -(-diazo carbonyl)-piperidine derivatives ............ 170 5.Introduction ............................................................................................................................................ 171 5.1 Rhodium catalysts: an overview on their synthetic applications ........................................................ 171 5.1.1 H-CR1R2R3 insertion ....................................................................................................................... 174 5.1.2 H-NR1R2 insertion .......................................................................................................................... 175 5.1.3 Ylide Formation and Subsequent Reactions ................................................................................. 176 5.1.4. Reactions with Aromatics: Benzene and Its Derivatives ............................................................. 177 5.1.5. Chemoselectivity and regioselectivity ......................................................................................... 179 5.2 Aim of the work ................................................................................................................................... 179 5.3 Results and Discussion ......................................................................................................................... 180 5.3.1 Starting materials preparation. .................................................................................................... 180 5.3.3 Discussion ..................................................................................................................................... 190 5.3 Reference ............................................................................................................................................. 195 4 Abbreviations AA. amino acid Ac. acetyl ACC. aminocyclopropanecarboxylic acid ACHC. 2-aminocyclohexanecarboxylic acid ACPC. aminocyclopentanecarboxylic acid Aib. Aminoisobutyric acid Ala. alanine APC. aminopyrrolidinecarboxylic acid Bn. benzyl Boc. tert-butyloxycarbonyl Cbz. benzyloxycarbonyl CD. circular dichroism COSY. correlation spectroscopy DBU. 1,8-Diazabicyclo[5.4.0]undec-7-ene DCHC. 2,5-diaminocyclohexanecarboxylic acid DCM. dichloromethane DIPEA. diisopropylethylamine DMAP. N,N-dimethylaminopyridine DMF. N,N-dimethylformamide DMSO. dimethylsulfoxide ee. enantiomeric eccess eq. equivalents ESI.electrosprayionisation Fmoc.Fluorenylmethyloxycarbonyl hAla. Homoalanine HMBC. Heteronuclear Multiple Bond Correlation HOAc.acetic acid HSQC. Heteronuclear Single Quantum Coherence hVal. Homovaline iBu.isobutyl IR.infra-red Me. methyl 5 MS. mass spectrometry Nip. Nipecotic acid NMM. N-methylmorpholine NMR.nuclear magnetic resonance NOE.nuclearOverhauser effect NOESY.nuclearOverhauser effectspectroscopy Nt. Nanotube PBS. Phosphate buffer solution pfb. perfluorobutirrate Ph. phenyl Ppm. parts per million Pro. proline ROESY.rotating frame NOESY Rt. room temperature SPPS.solid phase peptide synthesis Bu.tert-butyl t TEA. Triethyamine TEM.transmission electronmicroscopy TFA.trifluoroacetic acid THF.tetrahydrofurane TIC. tetrahydroisoquinoline TOCSY.total correlationspectroscopy tpa. tetraphenylacetate Val. valine 6 Chapter 1 –General Introduction 7 1 Beta Aminoacids, Beta Peptides and Hybrid Peptides: Synthesis, Conformational Analisys and Applications. -Amino acids are analogues of -amino acids (AAs) in which the amino group is linked to the beta-carbon instead of the alpha-carbon (Figure 1). Figure 1. Alpha and Beta amino acids Differently from proteinogenicamino acids, that are costituent of all enzymes which control the metabolism in living matter and are thus an essential prerequisite for life, amino acids are present in few natural products, such as peptides, cyclopeptides, glycopeptides, alkaloids or terpenoids. Therefore, these compounds are often characterized by potent biological and physiological activities that are often crucially based on their structures. As a consequence, many natural products with aamino acids (AAs) moiety are potential lead structures for the development of new drugs (Figure 2). Figure 2. Bio-active compounds containing -amino acids moiety 8 Moreover, the incorporation of amino acids into peptides instead of amino acids increases the stability against degradation by mammalian peptidases. This enhanced stability is caused by a lack of enzymes which induce the cleavage of peptidic bond. Therefore amino acids are important tools in the development of drugs as single molecules or for the preparation of peptides capable of withstanding hydrolytic degradation for prolonged periods of time. For all these reasons, in recent years,the focus on the synthesis of new amino acids is exponentially increased, making this field of great interest and strong expansion (Figure 3). Figure 3 1.1 Acyclic-Amino Acids Nomenclature and conformational properties The nomenclature for -AAs generaly takes in consideration three types of acyclic amino acids, depending on whether the sobstitution of side chain takes place, (i.e.C C or both). Recently, Seebach and co-workers 1 proposed the terms and amino acids, where the numbers indicate the position of the side chain substitution with respect to the carboxylic function, in order to distinguish positional isomer (Figure 4).As regards as aminoacidscarringsubstitutionat bothC andC () the number of possibleregioandstereoisomers becomesgreaterthan and -AAswhere only enantioisomersare possible. -AAs, may exist as apair of diastereisomers generally namedsynandantidepending on the stereoisomeric relationshipof the substituents (Figure 4). Furthermore, position C2 and C3can be doubly substituted, giving rise to more complex and constrained-AAs. 9 Figure 4 Concerning the use of -AAs in peptide synthesis, it is of relevance to analyze the amino acid conformation in terms of the main chain torsional angles assigned as φ, θ, and ψ according to the convention of Balaram2(Figure 5). Figure 5 The effects of the substituents on the local conformation of a -amino acidare summarized in Figure 6. The unsubstituted-amino acid, (i.e. -alanine), is highly flexible, as for Glycine in the -amino acids. Substituents at position 2 or 3 favor a gauche conformation around the C2-C3 bond3. Figure 6. Effects of the substituents on the local conformation of a -amino acid 10
Description: