ebook img

dimensional Abelian Higgs model PDF

35 Pages·2003·0.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview dimensional Abelian Higgs model

NuclearPhysicsB666[FS](2003)361–395 www.elsevier.com/locate/npe Kosterlitz–Thouless-like deconfinement mechanism + in the (2 1)-dimensional Abelian Higgs model Hagen Kleinerta, Flavio S. Nogueiraa, Asle Sudbøb aInstitutfürTheoretischePhysik,FreieUniversitätBerlin,Arnimallee14,D-14195Berlin,Germany bDepartmentofPhysics,NorwegianUniversityofScienceandTechnology,N-7491Trondheim,Norway Received17September2002;accepted16May2003 Abstract We point out that the permanent confinement in a compact (2+1)-dimensional U(1) Abelian Higgs model is destroyed by matter fields in the fundamental representation. The deconfinement transitionisKosterlitz–Thouless-like.Thedualtheoryisshowntodescribeathree-dimensionalgas of point charges with logarithmic interactions which arises from an anomalous dimension of the gaugefieldcausedbycriticalmatterfieldfluctuations.Thetheoryisequivalenttoasine-Gordon-like theory in(2+1)-dimensions withananomalous gradient energy proportional tok3.TheCallan– Symanzikequationisusedtodemonstratethatthistheoryhasamasslessandamassivephase.The renormalizationgroupequationsforthefugacityy(l)andstiffnessparameterK(l)ofthetheoryshow thattherenormalizationofK(l)inducesananomalousscalingdimensionηy ofy(l).Thestiffness parameterofthetheoryhasauniversaljumpatthetransitiondeterminedbythedimensionalityand ηy. Asa byproduct of our analysis, we relate the critical coupling of thesine-Gordon-like theory toanaprioriarbitraryconstantthatentersintothecomputationofcriticalexponentsintheAbelian Higgs model at the charged infrared-stable fixed point of the theory, enabling a determination of thisparameter.Thisfacilitatesthecomputationofthecriticalexponentν atthechargedfixedpoint inexcellentagreementwithone-looprenormalizationgroupcalculationsforthethree-dimensional XY model,thusconfirmingexpectationsbasedondualitytransformations. 2003ElsevierB.V.Allrightsreserved. PACS:11.15.Ha;74.20.Mn;64.70.-p Keywords:Gaugetheories;Confinement;Kosterlitz–Thoulesstransition E-mailaddresses:[email protected](H.Kleinert),[email protected] (F.S.Nogueira),[email protected](A.Sudbø). 0550-3213/$–seefrontmatter 2003ElsevierB.V.Allrightsreserved. doi:10.1016/S0550-3213(03)00453-X 362 H.Kleinertetal./NuclearPhysicsB666[FS](2003)361–395 1. Introduction Gauge theories in d =2+1 dimensions are often considered as effective theories of stronglycorrelatedsystemsintwospatialdimensionsatzerotemperature[1–3].Prominent examples of systems to which such theories are hoped to be applicable are the high-T c cuprates in the underdoped or undoped regime. In the undoped regime it is known that spinorQED isaneffectivelowenergytheoryforthequantumHeisenbergantiferromagnet 3 (QHA)[1].Itishopedthatoneeffectivelycanaccountfordopingbycouplingthegauge theorytoascalar bosonrepresentingtheholonpart(chargepart)ofcompositeHubbard- operators describing projected electrons, which however do not satisfy simple fermion commutationrelations.Similareffectivetheorieshavealonghistoryasusefultoy-models inhigh-energyphysics[4–6],andhaverecentlybeensuggestedtodescribeneuralnetworks [7]. Ofparticularinterestinthephysicsofstronglycorrelatedsystemsisthecompactversion of the (2+1)-dimensional Abelian Higgs model with matter fields in the fundamental representation.Thisisthe modelwe shallbe concernedwith inthispaperandforwhich weshallfindtheresultssummarizedintheabstract. 1.1. Preliminaryremarks OurstartingpointisthefollowingAbelianeuclideanfieldtheoryofascalarmatterfield coupledtoamasslessgaugefield (cid:1)(cid:2) (cid:3) (cid:1) L =(cid:1) ∂ −iA0 φ (cid:1)2+m2|φ |2+ u0|φ |4, (1) b µ µ 0 0 0 2 0 wherethesubscriptzerodenotesbarequantities.ItcorrespondstoatheorywithaMaxwell term 1 L = F0 2, (2) M 4e2 µν 0 where F0 =∂ A0 −∂ A0, in which the gauge coupling e goes to infinity. This limit µν µ ν ν µ 0 ↔ impliestheconstraintjbµ=0,wherejbµ=φ0∗ ∂ µφ0 isthebosoncurrent. When deriving effective theories for the t–J model we arrive naturally at a compact U(1) lattice gauge field [2]. For QHA, the gauge symmetry is larger and given by the gaugegroupSU(2)[3].However,inthiscaseareducedU(1)formulationisalsopossible [1]. Since this U(1) is a subgroupof SU(2), which is a compactgroup, the U(1) gauge theoryofQHAisnecessarilyacompactAbeliangaugetheory. It is well known that a compact U(1) theory of the pure Maxwell type in three dimensionsconfineselectricchargespermanently[8].Intheliterature[9]itisalsoargued that this permanent confinement should be present if an additional fermionic field ψ coupledtothegaugefieldbyaLagrangian (cid:4)N (cid:2) (cid:3) L = ψ¯ ∂ −iA0 ψ . (3) f i µ µ i i=1 H.Kleinertetal./NuclearPhysicsB666[FS](2003)361–395 363 Thismeansthattheparticlesrepresentedbythefieldsψ andφ neverhaveanindependent 0 dynamics. In the context of many-body theory, the Dirac fermion ψ could represent a spinon, while φ represents a holon. If electric test charges were permanently confined in the model, then the spinon and the holon would only appear as composite particles. In this case it would be impossible to fractionalize the electron, i.e. spin and charge wouldalwaysremainattachedtoeachother.Spin-chargeseparationisknowntooccurin 1+1 dimensions [10]. There fermions can be transmuted into bosons via the so-called Jordan–Wigner transformation. In 2+1 dimensions the situation is less clear, but for matterfieldsinthefundamentalrepresentationthereisonecircumstancewherespin-charge separationisknownrigorouslytooccur,namelythechiralspinliquidstate[11].However, thestatisticsofparticlescanbechangedasin1+1dimensions.Inthechiralspinliquid, spinons have anyonic statistics described by a Chern–Simons term [12] in the effective gaugetheory,whichreflectsthebreakingofparityandtimereversalsymmetry. The lack of consensus about spin-charge separation in (2+1)-dimensional compact U(1) matter-coupledgaugetheorieswith matter fields in the fundamentalrepresentation initiated investigations of other gauge theories for strongly correlated electron systems. One of the most promising candidates is a Z gauge field coupled to matter fields 2 [13]. Similar ideas leading to electron fractionalizationhad earlier been presented in the condensedmatterliterature[14,15].In2+1dimensionstheZ theoryhasadeconfinement 2 transition[5].Thus,Z gaugetheoriesarepotentiallygoodcandidatesfordescribingspin- 2 chargeseparationwithoutbreakingparityandtimereversalsymmetries. The confinement properties of U(1) gauge theories for the cuprates and the relation tospin-chargeseparationwererecentlydiscussedfromvariouspointsofview[9,16–19]. Nayak[9]states thatin gaugetheoriesof the t–J modelfermionsandbosonsinteractat infinite(bare)gaugecouplingand,forthisreason,itisnecessarilyatheorywithpermanent confinementofslaveparticles.Incontrast,IchinoseandMatsui[18]havearguedthatthe couplingtomatterfieldsstronglyinfluencesthephasestructureofthesystem.InRef.[19], it is correctly pointed out that if spin-charge separation occurs, it is not necessarily tied to the notion of confinement–deconfinementof slave particles. The picture proposed in Ref.[9]in2+1dimensionsisreminiscentof1+1dimensionswherespinonsandholons are solitons and cannot be identified with the slave particles, which are not part of the spectrum [10]. Nagaosa and Lee [17] discuss a compact U(1) gauge theory coupled to bosonic matter field in the fundamentalrepresentation.They conclude that in d =2+1 this theory permanently confines electric charges, in contrast to the analysis by Einhorn andSavitonthesamemodel[4]. In a recent letter [20], we have studied the confining properties of the Lagrangian (1), as well as the case of a fermionic field ψ coupled to a gauge field, but with an added Maxwell term. The Lagrangian (1) with a Maxwell term corresponds essentially tothemodelconsideredbyNagaosaandLee[17],thoughtheseauthorshaveconsidereda frozen-amplitudeversionofthemodel.InRef.[20],itwasemphasizedthatananomalous scaling dimension of the gauge field, arising from matter-field fluctuations, changes the interaction between monopolesfrom 1/r to lnr in three dimensions. It was then argued that a monopole–antimonopole unbinding transition similar to the Kosterlitz–Thouless (KT) transition takes place, but now in three dimensions. From this, we concluded that testchargesundergoadeconfinementtransition. 364 H.Kleinertetal./NuclearPhysicsB666[FS](2003)361–395 It must be pointed out that the authors of Refs. [5,17], were looking for a transition similar to those encountered in d =3+1, namely ordinary first- or second-order phase transitions [5]. In Ref. [17], a duality transformation was performed showing that the disorderparameter (cid:8)φ (cid:9) is always differentfromzero, implyingthat (cid:8)φ(cid:9) is always zero. V ThisresultisessentiallycorrectandisperfectlyconsistentwiththescenarioinRef.[20] andexplainedfurtherinthepresentpaper. A main result in our letter [20] is that there exists a non-trivial infrared stable fixed point in the theory in d =2+1 which drives the deconfinement transition. There the anomalousdimensionofthegaugefieldisgivenbyη =1ind=2+1[21,22].Thisresult A isexactasaconsequenceofgaugeinvariance.Itimpliesthatthenon-trivialinfraredfixed point arises at an infinite bare gauge coupling. To see this, consider the boson–fermion LagrangianL=L +L +L .Duetogaugeinvariance,thegaugecouplingrenormalizes f b M toe2=Z e2,whereZ isthewavefunctionrenormalizationconstantofthegaugefield. A 0 A The renormalization group (RG) β function for the renormalized dimensionless gauge couplingα=e2/µhasthefollowingexactformin2+1dimensions (cid:5) (cid:6) ∂α β (α,g)=µ = γ (α,g)−1 α, (4) α A ∂µ where g is the renormalized dimensionless |φ|4 coupling and γ = µ∂lnZ /∂µ. Let A A us assume that there exist non-trivial infrared stable fixed points α∗ and g∗, where the β functions β and β vanish. We have explained in Ref. [20] why such fixed points α g must exist. (For similar arguments, see Ref. [23].) Moreover, large-scale Monte Carlo simulations have demonstrated explicitly the existence of such a non-trivial fixed point [22,24] (see also Ref. [25]). Its existence has long been assured theoretically by duality arguments [26,27] (see also Section 2.2). We shall not repeat the arguments and details here.Instead,wefocusonthephysicalconsequencesofthenon-trivialfixedpoint. Wewouldliketostressanimportantpoint,pertinenttod=2+1dimensions,andquite differentfromthesituationford =3+1.Asα→α∗,thebarecouplinge2 musttendto 0 infinity.Bydefinition,theaboveβ functionisgivenatfixedΛ,α ,andg .Here,Λisthe 0 0 ultravioletcutoffwhile α =e2/Λ and g =u /Λ arethe dimensionlessbarecouplings. 0 0 0 0 Thefixedpointisreachedforµ→0.Alternatively,thefixedpointisreachedforΛ→∞ ifµisheldfixed.However,sinceα isfixeditfollowsthate2→∞asΛ→∞.Thus,in 0 0 d=2+1,thefixedpointtheoryisatinfinitebaregaugecoupling.Onemightobjectthat thisinfinitegaugecouplingcannotberelevantforthecuprateswhichhaveaninfinitevalue ofe2 atallscales,notonlyinthescaleinvariantregime.Thisistrue,butirrelevantasfar 0 asthedeconfinementtransitionisconcerned,whichisdeterminedbythenon-trivialfixed point structure. The situation is analogous to the O(N) non-linear σ model as opposed totheO(N) φ4 model.Thesemodelsarequitedifferent,butagreewitheachotheratthe criticalpoint[28,29],thusbelongingtothesameuniversalityclass.Inourcase,themodel withtheMaxwelltermatthefixedpointhasthesamecorrelationfunctionsasthemodel withoutitalsoatthefixedpoint. To summarize the discussion in the above paragraph, the non-compact action with no Maxwell term has the same critical behavior as the compactone at the critical point correspondingtoanon-trivialfixedpoint,characterizedbyaninfinitebarecoupling.Had H.Kleinertetal./NuclearPhysicsB666[FS](2003)361–395 365 westartedfromaninfinitelyweakbarecoupling,theonlyfixedpointwewouldhaveany hopeofreachingford=2+1wouldbetheGaussianfixedpoint. In Ref. [20] we have pointed out that chiral symmetry breaking can destroy the deconfinementinthefermioniccase.We wanttopointoutthatforthe combinedboson– fermion model, L = L + L + L , chiral symmetry breaking does not spoil the f b M deconfinement transition. Chiral symmetry breaking occurs at a lower value of number offermionflavoursN ,whenalsobosonsarepresent.KimandLee[30]claimedthatthe f criticalvalueofN isdecreasedbyafactortwo.SincewehavetypicallyNc ∼3andthe f f physicalnumberof fermioncomponentsin the cupratesis N =2, Kim andLee argued f thatspin-chargeseparationwouldoccuratfinitedoping[30]. 1.2. Anomalousscalingandthepotentialbetweentestcharges The high-energy physics literature is usually concerned with d = 4 and use low- dimensionsonlyintoymodels.Incondensedmatterphysics,however,(2+1)-dimensional gaugetheoriesare supposedto describereal physicalphenomenasuch as the anomalous propertiesof high-T superconductors[31],or the physicsofQHA [1,32].For d ∈(2,4] c thegaugecouplingβ-functionmaybewrittenas (cid:5) (cid:6) β (α,g)= γ (α,g)+d−4 α. (5) α A Non-trivial fixed points induce an anomalous scaling behavior in the gauge field propagator.IntheLandaugaugewehavethat (cid:7) (cid:8) p p D (p)=D(p) δ − µ ν , (6) µν µν p2 withthelargedistancebehaviorgivenby 1 D(p)∼ . (7) |p|2−ηA Theanomalousscalingdimensionisgivenexactlyby[21,22] ηA≡γA(α∗,g∗)=4−d. (8) Duetotheaboveresult,thepropagator(7)inconfigurationspacebecomes 1 1 D(x)∼ ∼ , (9) |x|d−2+ηA |x|2 for all d ∈(2,4]. The potential between effective electric charges q(R), separated by a largedistanceRin(d−1)-dimensionalspaceisgivenby q2(R) V(R)∼ , (10) Rd−3 where 1−(ΛR)−ηA (ΛR)d−4−1 q2(R)∼ ∼ , (11) η d−4 A 366 H.Kleinertetal./NuclearPhysicsB666[FS](2003)361–395 andwhereΛisashortdistancecutoff.TheanomalousscalinginEq.(11)isaconsequence ofthecouplingtomatterfields.Duetoit,thepotentialV(R)behaveseffectivelylike1/R ford =3.Ford=4,itgoeslike ln(ΛR)/R, whileford=2,ithasaconfiningbehavior proportionalto R. The regime governed by the Gaussian fixed point has q2(R)=q2 = 0 const,andcorrespondstotheso-calledCoulombphase.Inthisphase,thefour-dimensional theoryhasV(R)=q2/R,whereasV(R)=q2lnR ford =3.We seethatthenon-trivial 0 0 infrared behavior induces an effective electric potential between test charges similar to that which characterizes the Coulomb phase in d =4. If we extrapolate to d =2, we obtain V(R)=q2R. Note that in d =2, we obtain a confining potential irrespective of 0 whetheranomalousscalingistakenintoaccountornot. In compact Abelian gauge theories a confined phase is realized by the formation of electric flux tubes connecting electric charges. These flux tubes are the dual analogs of themagneticfluxtubesconnectingmagneticmonopoles[33,34].ThereisaDiracrelation betweentheeffectiveelectricandmagneticcharges q(R)q (R)∼1. (12) m Letusconsidernowthepotentialbetweenthemagneticcharges q2(R) 1 V (R)∼ m ∼ . (13) m Rd−3 q2(R)Rd−3 From Eq. (11) we see that for d =4 the magnetic potential behaves like 1/[Rln(ΛR)]. However,ford=3wehave 1 V (R)∼ , (14) m R whichisself-dualwithrespecttothepotentialbetweenelectrictestcharges. TheHiggsphaseforthe electric chargescorrespondsto V(R)∼constbecauseofthe gauge field mass gap. The Higgs phase for magnetic test charges, on the other hand, is givenbyV(R)∼R.Intheelectric–magneticdualitypicture[33,34]thisHiggsphasefor magnetic charges is exchangedby the confined phase for electric charges. This scenario should be valid for matter fields in the adjoint representation. In the absence of matter fields, a compact (2+1)-dimensional gauge theory is definitely confined permanently [8]. The above result shows that if matter fields are present, a deconfined phase is also possible.However,ifthematterfieldsareinthefundamentalrepresentation,thesituation is controversial[4,9,17–20].Our recent results in Ref. [20] seem to be confirmedby the MonteCarlo workin Ref. [6].Themain purposeof thispaperis to givemoredetails on thescenarioproposedinRef.[20]andtodescribeatheoryforadeconfinementtransition inAbeliangaugetheoriescoupledtomatterfieldsinthefundamentalrepresentation. 1.3. Outlineofthepaper InSection2,weconsiderthelatticedualitytransformationstothe(2+1)-dimensional AbelianHiggslattice(AHL)model,firstthenon-compactcaseandlaterthecompactcase. Wethendiscussthepossibleordinaryfirst-orsecond-orderphasetransitionsthesemodels canhave,withmatterfieldsinthefundamentalrepresentationforthecompactcase. H.Kleinertetal./NuclearPhysicsB666[FS](2003)361–395 367 InSection3,weconstructthecontinuumeffectiveLagrangiananditsdualcounterpart forthecompact(2+1)-dimensionalAHLmodelwhenmatter-fieldshavebeenintegrated out.Becausethesearecentralresultsofthepaper,itbehoovesustoannouncethemhere. The dual field theory is given by Eq. (51). It represents a description of a three dimensional gas of point charges interacting with a logarithmic pair-potential, given by Eq. (49). We emphasize that the 3d ln-plasma action of Eq. (49) emerges from an underlyingmatter-coupledgaugetheory,Eq.(38),byintegratingoutthefluctuatingmatter fields and considering the influence of critical matter fluctuations on the gauge-field propagator. The result of this procedure is the effective theory Eq. (46). Such matter- fieldfluctuationsendowthegauge-fieldpropagatorwithananomalousscalingdimension η =4−d[21,22]whichinthree-dimensionsalterstheinteractionbetweenthemonopole A configurationsofthegauge-fieldfromaCoulomb-interaction1/RtoalnR interaction. Recallthatincontrasttothis,intheclassictreatmentbyPolyakov[8]ofcompactthree- dimensionalQEDwithnomatterfields,thestandardthree-dimensionalsine-Gordonfield theory with a quadratic gradientterm, describing the three-dimensionalCoulomb gas, is obtained.Thisactionisgivenby,inthenotationofEq.(51) (cid:9) (cid:5) (cid:2) (cid:3) (cid:6) 1 S = d3x ϕ −∂2 ϕ−2z cosϕ . (15) SG 0 2t Polyakov has demonstrated [8] that Eq. (15) has no phase transition, i.e., it is always massive.OurEq.(51)differsdrasticallyfromEq.(15),duethepresenceofananomalous gradientterm. In Section 4.1,we show using the Callan–Symanzikequations,thatthe effectivedual LagrangianEq. (51) has a massless and a massive phase separated at a critical coupling t . Hence a phase transition must exist. This does not by itself suffice to show precisely c whatsort ofphase transition the system undergoes,nor doesit allow usto constructthe correctflowdiagramofthecouplingconstantsoftheproblem.Itdoes,however,sufficeto showthattwodifferentphasesexist.Sincethepropagatoroftheproblemislogarithmicin d=2+1,aHohenberg–Mermin–Wagnertheorem[36]holds.Undersuchcircumstances, it is very natural to conjecture that any phase transition in the system, if it exists, must beofatopologicalcharacter.InSection4.2,weconstructtherenormalizationgroupflow equationsfortheproblemandshowthatthephasetransitionisofaKT-liketype. InSection5,weconsidertheconnectionbetweentherenormalizationgroupfunctions obtaineddirectly from the Abelian Higgs model, and the KT phase transition we find in Section4.Themainpointhereisthatwecanusethevalueofthecriticalcouplingofthe dual effective Lagrangian for the topologicaldefects of the gauge field to fix an a priori arbitrary constant which enters into evaluating critical exponents for the non-compact AbelianHiggsmodel. InSection6,weconcludewithasummaryandoutlook.AppendixAdiscussesanother type of sine-Gordon theory also exhibiting a KT-like transition in three dimensions. In AppendixB,wederivetheflowequationsforthestiffnessparameterandthefugacityofthe systemdefinedbyEq.(49),andofwhichEq.(51)isafieldtheoryformulation.InAppendix C,wecomputethescreenedeffectivepotentialbetweenchargesintheinsulatingphaseof the3dln-plasma.InAppendixD,forcompleteness,wederivetheexactequationofstate forad-dimensionalln-plasmawithnoshort-distancecutoff andrelatethesingularitiesin 368 H.Kleinertetal./NuclearPhysicsB666[FS](2003)361–395 thisplasma to theCallan–SymanzikapproachofSection4. InAppendixE, we consider, alsoforcompleteness,thedualitytransformationoftheAHLmodelwithaChern–Simons term added. This case is of interest in the fractional quantumHall effect [37] and chiral spinliquids[11]. 2. DualityintheAbelianHiggslatticemodel In this section we review the duality approach to the AHL model. Although this is a wellstudiedtopic[4,26,27,38,39],itisworthreviewingithereinordertoemphasizethe differences and similarities between the non-compact and compact cases. In particular, we shall discuss the extent to which these cases exhibit ordinary first- or second-order phasetransitions.TheinterestingcaseincludingaChern–Simonstermwillbediscussedin AppendixD. Theessentialpointisthatstartingfromanon-compactorcompactAHLmodel,thedual actionhasthegeneralform (cid:4) (cid:4) 1 S = h M (r −r )h −i2π l ·h , (16) dual iµ µν i j iν i i 2 i,j i where h ∈(−∞,∞) and l are integer dual link variables. In the non-compactcase l iµ i i satisfytheconstraint ∇·l =0, (17) i whereasinthecompactcase,theright-handsideisnon-zero ∇·l =Q , (18) i i duetomonopolechargesQ ∈Z.Thesymbol∇ denotesthegradientvectoronasimple i cubiclatticeofunitspacingwithcomponents∇µfi ≡fi+µˆ −fi. 2.1. Thenon-compactcaseandthe“inverted”XY transition Inthenon-compactcase,thepartitionfunctionoftheAHLmodelisgivenby (cid:4) (cid:9)π(cid:10)(cid:11) (cid:12) (cid:9)∞(cid:10)(cid:11) (cid:12) dθ Z= i dA exp(−S), (19) iµ 2π {niµ}−π i −∞ i,µ wheretheactionS isgivenbytheVillainapproximation (cid:4) (cid:4) β 1 S= (∇ θ −A −2πn )2+ (∇×A )2. (20) 2 µ i iµ iµ 2e2 i i,µ i Usingtheidentity (cid:13) (cid:4)∞ (cid:4)∞ 2π e(−t/2)m2+ixm= e(−1/2t)(x−2πn)2, (21) t m=−∞ n=−∞ H.Kleinertetal./NuclearPhysicsB666[FS](2003)361–395 369 followingdirectlyfromPoisson’sformula (cid:9)∞ (cid:4)∞ (cid:4)∞ F(n)= dxF(x)e2πimx, (22) n=−∞ m=−∞−∞ weobtain (cid:9)∞(cid:10) (cid:12) (cid:14) (cid:10) (cid:12)(cid:15) (cid:11) (cid:4) (cid:4) 1 1 Z= dAiµ δ∇·mi,0exp −2βm2ii+Ai·mi− 2e2(∇×Ai)2 . −∞ i,µ {mi} i (23) The Kronecker delta in Eq. (23) is generated by the θ integrations. Now we should i integrateoutthe gaugefield A . The easiest way of performingthis integrationis by the i introductionofanauxiliaryfieldh suchthatthepartitionfunctioncanberewrittenas i (cid:9)∞ (cid:9)∞ (cid:9)∞(cid:10) (cid:12) (cid:11) (cid:4) Z= dA dh db δ(∇·b ) iµ iµ iµ i −∞−∞−∞ i,µ {Mi} (cid:14) (cid:10) (cid:12)(cid:15) (cid:4) 1 e2 ×exp − b2+iA ·(b −∇×h )− h2+2πiM ·b , (24) 2β i i i i 2 i i i i whereasummationbypartshasbeendonetoreplaceh ·(∇×A )byA ·(∇×h ),and i i i i we haveused the Poisson formula(22)to replacethe integervariablesm by continuum i variables b , at the cost of an additional sum over integer variables M . We may now i i integrate out A to obtain a delta function δ(b −∇×h ), after which also b can be i i i i integratedoutb ,yielding i (cid:9)∞(cid:10) (cid:12) (cid:14) (cid:10) (cid:12)(cid:15) (cid:4) (cid:11) (cid:4) 1 e2 Z= dh exp − (∇×h )2+ h2−2πiM ·(∇×h ) . iµ 2β i 2 i i i {Mi}−∞ i,µ i (25) Summing the last term in the exponent by parts and going over to integer variables l =∇×M ,weobtain i i (cid:9)∞(cid:10) (cid:12) (cid:14) (cid:10) (cid:12)(cid:15) (cid:4) (cid:11) (cid:4) 1 e2 Z= dhiµ δ∇·li,0exp − 2β(∇×hi)2+ 2 h2i −2πili·hi . {li}−∞ i,µ i (26) Note that the Kronecker delta constraint above is a direct consequenceof our change to integer-valuedvariables.Ifh isintegratedoutweobtain i (cid:10) (cid:12) (cid:4) (cid:4) Z=Z0 δ∇·li,0exp −2π2β liµD(ri−rj)ljµ , (27) li i,j,µ wheretheGreenfunctionGhasthelarge-distancebehavior √ e− βe|ri−rj| D(r −r )∼ . (28) i j 4π|r −r | i j 370 H.Kleinertetal./NuclearPhysicsB666[FS](2003)361–395 The factor Z in Eq. (27) corresponds to the partition function of a free massive gauge 0 bosontheory. Eq.(27) is the dualrepresentationof the partitionfunctionforthe non-compactAHL model.Duetotheconstraint∇·l =0,theintegerlinksl formclosedloops. i i Bytakingthelimite→0inEq.(23),weobtain (cid:7) (cid:8) (cid:4) (cid:4) 1 Z|e=0= δ∇·mi,0exp −2β m2i , (29) {mi} i which is the loop gas representation of the XY model. If, on the other hand, we take the limit β → ∞ in Eq. (27), we obtain the loop gas representation of the “frozen superconductor”[38] (cid:7) (cid:8) (cid:4) 2π2(cid:4) Z|β=∞= δ∇·li,0exp − e2 l2i , (30) {li} i whichhaspreciselythesameformasinEq.(29).Therefore,theXY modelisequivalent to thefrozensuperconductor,providedthe Dirac-likerelation e2=4π2β holds.Eq.(27) isareformulationofEq.(19)intermsofthetopologicaldefectsofthemodel,whichare identifiedasinteger-valuedvortexstringsformingclosedloops. If we consider the phase diagram in the (e2–T)-plane (with T =1/β), we can use Eqs. (29)and (30)to establish the criticalpointson the axese2 and T, correspondingto T →0ande2→0limits,respectively.FromEq.(29)weseethatwhene2→0wehave a XY critical point on the T-axis. Eq. (30) has exactly the same form as Eq. (29), but correspondstothe T →0 limit. Thecriticalpointinthislimitisthereforee2=4π2/T , c c with T being the critical temperature of the XY transition as described by the Villain c approximation. This is the so-called “inverted” XY transition (IXY) [26]. From the existence of these two critical points we can establish a phase diagram where there is a criticallineconnectingthem[26].Theorderedsuperconductingphasecorrespondstothe region0<e2<e2. c 2.2. Thecompactcaseandtheabsenceofanordinaryphasetransition InthecompactAHLmodelthegaugefieldA ∈[−π,π].ThecorrespondingVillain iµ actionisnowgivenby (cid:4) (cid:4) (cid:16)S= β (∇ θ −A −2πn )2+ 1 (> ∇ A −2πN )2, (31) 2 µ i iµ iµ 2e2 µνλ ν iλ iµ i i and in the partition function we should sum over both integers n and N . Using the iµ iµ identity(21)weobtain (cid:4) (cid:4) (cid:9)π(cid:10)(cid:11) (cid:12)(cid:9)π(cid:10)(cid:11) (cid:12) dA dθ Z= iµ i exp(S(cid:24)), (32) 2π 2π {ni} {mi}−π i,µ −π i

Description:
spinor QED3 is an effective low energy theory for the quantum Heisenberg Similar effective theories have a long history as useful toy-models This means that the particles represented by the fields ψ and φ0 never have an
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.