ebook img

Diluted banded random matrices: Scaling behavior of eigenfunction and spectral properties PDF

1.3 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Diluted banded random matrices: Scaling behavior of eigenfunction and spectral properties

Diluted banded random matrices: Scaling behavior of eigenfunction and spectral properties J. A. M´endez-Bermu´dez,1 Guilherme Ferraz de Arruda,2,3 Francisco A. Rodrigues,2 and Yamir Moreno3,4,5 1Instituto de F´ısica, Benem´erita Universidad Auto´noma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico 2Departamento de Matema´tica Aplicada e Estat´ıstica, Instituto de Ciˆencias Matema´ticas e de Computa¸ca˜o, Universidade de Sa˜o Paulo - Campus de Sa˜o Carlos, Caixa Postal 668, 13560-970 S˜ao Carlos, SP, Brazil 3Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50009, Spain 4Department of Theoretical Physics, University of Zaragoza, Zaragoza 50009, Spain 5Complex Networks and Systems Lagrange Lab, Institute for Scientific Interchange, Turin, Italy 7 (Dated: January 9, 2017) 1 Wedemonstratethatthenormalisedlocalizationlengthβoftheeigenfunctionsofdiluted(sparse) 0 bandedrandommatricesfollowsthescalinglawβ =x∗/(1+x∗). Thescalingparameterofthemodel 2 n iNs disefitnheedmaastrxi∗x∝siz(eb,2efaf/nNd)δδ,∼w1h.eAredbdeiftfioisnathlley,awveerashgoewnuthmabtexr∗ofalnsoons-czaelreosethleemsepnetcstrpaelrpmroapterrixtiersowof, a the model (up to certain sparsity) characterized by the spacing distribution of eigenvalues. J 5 PACSnumbers: 89.75.Hc ] n Introductionandoutlook.–Randommatrix(RM)mod- Thus, motivated by the ample interest on banded RM n elsservetodescribestatisticalpropertiesofcomplexsys- models and the recent attention on diluted versions of - s tems and related processes: From the original Gaussian them [48–50] in this paper we study scaling properties i d ensembles of Wigner and Dyson [1, 2] (which reproduce of a diluted version of the BRM model. In particu- t. the statistics of energy levels of complex nuclei, quan- lar we demonstrate that both eigenfunction and spectral a tized chaotic systems, disordered systems, random net- properties scale with a parameter that relates the model m works, etc.) to very recent and more elaborated ensem- attributes (matrix size, bandwidth, and sparsity) in a - bles e.g. relevant to the problem of many-body localiza- highly non-trivial way. d n tion [3]. Model definition and statement of the problem.– The o Even at the early years of RM modeling, Wigner BRM ensemble is defined as the set of N ×N real sym- c himself realized the need to refine the generic Gaus- metric matrices whose entries are independent Gaussian [ sian ensembles in order to incorporate properties of re- random variables with zero mean and variance 1+δi,j 1 alistic physical systems. In this respect he introduced if |i−j| < b and zero otherwise. Hence, the bandwidth v the so-called Wigner-banded RM model [4, 5] (see also b is the number of nonzero elements in the first matrix 4 Refs. [2, 6–13]), a model including a bandwidth and an row which equals 1 for diagonal, 2 for tridiagonal, and 8 4 increasing diagonal. In particular the bandwidth, which N for matrices of the GOE. There are several numerical 1 quantifies the range of interactions, has been the main andtheoreticalstudiesavailableonthismodel,seeforex- 0 ingredient of other RM models proposed to deal with ample Refs. [16–32]. In particular, outstandingly, it has 1. explicit applications: As examples we can mention the been found [16–18, 21] that the eigenfunction properties 0 power-law banded RM model [14, 15] (used to simu- of the BRM model, characterized by the scaled localiza- 7 latetheAndersonmetal-insulatortransition),thebanded tion length β (see Eq. (6) below), are universal for the 1 randommatrix(BRM)model[16–32](introducedtoem- fixed ratio : v ulate quasi-one-dimensional disordered wires), the em- i bedded ensembles [33–35] (which take into account the X =b2/N . (1) X many-body interactions in complex nuclei and many- r More specifically, it was numerically and theoretically a body systems), system-specific banded Hamiltonian RM shown that the scaling function models [36, 37] (where the bandwidth of the Hamilto- nian matrix can be obtained by means of semiclassical ΓX arguments [7, 38]), among many others [2, 39–50]. β = , (2) 1+ΓX On the other hand, there exist several works dealing with diluted RM models, see for example Refs. [51–62]. with Γ ∼ 1, holds for the eigenfunctions of the BRM However, we know just a few RM models including, in model, see also Refs. [22–25]. It is relevant to men- addition to sparsity, an effective bandwidth: i.e. the tion that scaling (2) was also shown to be valid, when Wigner-banded RM model with sparsity [47], diluted the scaling parameter X is properly defined, for the power-law RM models [48, 49], and a diluted block- kicked-rotatormodel[21,63,64](aquantum-chaoticsys- banded RM model [50]. tem characterized by a random-like banded Hamiltonian 2 matrix), the one-dimensional Anderson model, and the ensemblesofdBRMscharacterizedbytheparametersN, Lloyd model [65]. b, and α. We perform the average (cid:104)S(cid:105) taking half of the We define the diluted BRM (dBRM) model by includ- eigenfunctions, around the band center, of each random ing sparsity, characterized by the parameter α, in the matrix. Each average is computed with 5 × 105 data BRM model as follows: Starting with the BRM model values. we randomly set off-diagonal matrix elements to zero InFig.1(a)wepresentβ asafunctionofx,seeEq.(3), such that the sparsity is defined as the fraction of the forensemblesofmatricescharacterizedbythesparsityα. N(b−1)/2 independent non-vanishing off-diagonal ma- We observe that the curves of β vs. x have a functional trix elements. According to this definition, a diagonal form similar to that for the BRM model (corresponding random matrix is obtained for α=0, whereas the BRM to α = 1). In addition, in Fig. 1(b) the logarithm of model is recovered when α=1. β/(1−β)asafunctionofln(x)ispresented. Thequantity Therefore, inspired by scaling studies of the BRM β/(1−β)wasusefulinthestudyofthescalingproperties model [16–18, 21–23, 26, 28, 30], here we propose the of the BRM model [16, 22] because β/(1 − β) = γx, study of eigenfunction and spectral properties of the which is equivalent to scaling (2), implies that a plot of dBRM model as a function of the parameter ln[β/(1−β)] vs. ln(x) is a straight line with unit slope. Even though, this statement is valid for the BRM model x=b2eff/N , beff ≡αb , (3) inawiderangeofparameters(i.e.,forln[β/(1−β)]<2) it does not apply to the dBRM model; see Fig. 1(b). In where the effective bandwidth of the dBRM model b is, eff fact,fromthisfigureweobservethatplotsofln[β/(1−β)] in analogy to the bandwidth b of the BRM model, the vs. ln(x) are straight lines (in a wide range of x) with a average number of nonzero elements per matrix row. slope that depends on the sparsity α. Consequently, we Eigenfunction properties.– A commonly accepted tool propose the scaling law to characterize quantitatively the complexity of the eigenfunctions of random matrices (and of Hamiltonians β =γxδ , (7) corresponding to disordered and quantized chaotic sys- 1−β tems) is the information or Shannon entropy S. This measures provides the number of principal components where both γ and δ depend on α. Indeed, Eq. (7) de- of an eigenfunction in a given basis. The Shannon en- scribeswellourdata,mainlyintherangeln[β/(1−β)]= tropy, which for the eigenfunction Ψl is given as [−2,2], as can be seen in the inset of Fig. 1(b) where we show the numerical data for α = 0.6, 0.8 and 1 and N (cid:88) include fittings with Eq. (7). We stress that the range S =− (Ψm)2ln(Ψm)2 , (4) n n ln[β/(1−β)]=[−2,2] corresponds to a reasonable large n=1 rangeofβvalues,β ≈[0.12,0.88],whoseboundsareindi- allows to compute the so called entropic eigenfunction catedwithhorizontaldot-dashedlinesinFig.1(a). Also, localization length, see e.g. [64], we notice that the power δ, obtained from the fittings of the data using Eq. (7), is very close to unity for all the (cid:96)N =Nexp[−(SGOE−(cid:104)S(cid:105))] , (5) sparsity values we consider here (see the upper inset of Fig. 1(b)). where S ≈ ln(N/2.07), which is used here as a ref- GOE Therefore, from the analysis of the data in Fig. 1, we erence, is the entropy of a random eigenfunction with are able to write down a universal scaling function for Gaussian distributed amplitudes (i.e., an eigenfunction the scaled localization length β of the dBRM model as of the GOE). With this definition for S when α = 0 or b=1, since the eigenfunctions of the dBRM model have β =x∗ , x∗ ≡γxδ . (8) onlyonenon-vanishingcomponentwithmagnitudeequal 1−β toone,(cid:104)S(cid:105)=0and(cid:96) ≈2.07. Ontheotherhand,when N α = 0 and b = N we recover the GOE and (cid:104)S(cid:105) = S ; TovalidateEq.(8)inFig.2(a)wepresentagainthedata GOE so, the fully chaotic eigenfunctions extend over the N forln[β/(1−β)]showninFig.1(b)butnowasafunction available basis states and (cid:96) ≈N. of ln(x∗). We do observe that curves for different values N Here, as well as in BRM model studies, we look for ofαfallontopofEq.(8)forawiderangeofthevariable thescalingpropertiesoftheeigenfunctionsofthedBRM x∗. Moreover, the collapse of the numerical data on top model through the scaled localization length ofEq.(8)isexcellentintherangeln[β/(1−β)]=[−2,2] for α≥0.5, as shown in the inset of Fig. 2(a). β =(cid:96)N/N , (6) Finally, we rewrite Eq. (8) into the equivalent, but ex- plicit, scaling function for β: which can take values in the range (0,1]. Inthefollowingweuseexactnumericaldiagonalization x∗ to obtain the eigenfunctions Ψm (m = 1...N) of large β = 1+x∗ . (9) 3 α = 0.2 1 4 α = 0.4 α = 0.6 0.8 α = 0.2 β)] αα == 01.8 2 0.6 − α = 0.4 1 0 β α = 0.6 β/( A) 0 0.4 A) α = 0.8 n[ l 0.2 α = 1 -4 -2 0 2 -2 0 -4 0 4 0 1 2 3 4 x ln(x*) 1 B) 4 1.2δ 0.8 1.1 1 β)] 1 2 0.6 β/(1− 0 0.α5 1 0 β0.4 n[ B) l -4 -2 0.2 0 -2 0 0 3 6 0 -8 -4 0 4 0 2 4 6 8 ln(x) x* FIG. 1: (Color online) (a) Scaled localization length β as FIG. 2: (Color online) (a) Logarithm of β/(1−β) as a func- a function of x = b2 /N [see Eq. (3)] for ensembles of di- tion of ln(x∗) [see Eq. (8)]. Inset: Enlargement in the range eff luted banded random matrices characterized by the sparsity ln[β/(1−β)] = [−2,2] including curves for α ∈ [0.5,1] in α. Horizontalblackdot-dashedlinesatβ ≈0.12and0.88are stepsof0.05. Greendashedlinesinmainpanelandinsetare shownasareference,seethetext. (b)Logarithmofβ/(1−β) Eq.(8). (b)β asafunctionofx∗. Inset: Dataforα∈[0.5,1] asafunctionofln(x). Upperinset: Powerδ,fromthefittings in steps of 0.05. Green dashed lines in main panel and inset ofthedatawithEq.(7),asafunctionofα. Lowerinset: En- are Eq. (9). largement in the range ln[β/(1−β)]=[−2,2] including data for α = 0.6, 0.8, and 1. Lines are fittings of the data with Eq. (7). Izrailev’s distribution [26, 66]: (cid:34) (cid:32) (cid:33) (cid:35) 1 β(cid:101) P(s)=B1zβ(cid:101)(1+B2β(cid:101)z)f(β(cid:101))exp −4β(cid:101)z2− 1− 2 z , In Fig. 2(b) we confirm the validity of Eq. (9). We (10) would like to emphasize that the universal scaling given in Eq. (9) extends outsize the range β ≈ [0.12,0.88], for where z = πs/2, f(β(cid:101)) = β(cid:101)−12β(cid:101)(1−β(cid:101)/2)−0.16874, and which Eq. (7) was shown to be valid, see the main panel theparametersB1,2 aredeterminedbythenormalization (cid:82)∞ (cid:82)∞ of Fig. 2(b). Furthermore, the collapse of the numerical conditions P(s)ds= sP(s)ds=1. We call β(cid:101)the 0 0 dataontopofEq.(9)isremarkablygoodforα≥0.5, as spectral parameter. In fact, Eq. (10) has been shown to shown in the inset of Fig. 2(b). beusefultocharacterizetheP(s)oftheBRMmodel[26], soweexpectEq.(10)withβ(cid:101)∈[0,1]toproperlydescribe Spectralproperties.–Forcompleteness,nowweanalyze the P(s) of the dBRM model. the spectral properties of the dBRM model. To this end Thus,weconstructhistogramsofP(s)foralargenum- wechooseP(s),thenearest neighbor energy-level spacing ber of combinations of the parameters of the dBRM distribution. For α = 0 or b = 1, i.e. when the dBRM model (α,b,N) and by fitting them with Eq. (10) we model produces diagonal matrices, P(s) follows the ex- extractsystematicallythecorrespondingvaluesofβ(cid:101). We ponential distribution P(s) = exp(−s); better known in always construct P(s) from half of the total unfolded [1] RM theory as Poisson distribution or the spacing rule spacings s =(Em+1−Em)/∆ around the band center, for random levels [1]. In the opposite limit, for α = 1 m where the density of states is approximately constant. and b = N, i.e. when the dBRM reproduces the GOE, Here, Em is the m-th eigenvalue and ∆ the mean level P(s) closely follows the Wigner-Dyson distribution [1]: spacing. Eachhistogramisconstructedwith5×105spac- P(s) = (π/2)sexp(−πs2/4). Then, by moving α and b ings. in the intervals (0,1) and (1,N), respectively, the P(s) In Fig. 3(a) we present the spectral parameter β(cid:101) as a of the dBRM model should have a shape in-between the functionofthescaledlocalizationlengthβ forthedBRM Poisson and Wigner-Dyson distributions. model. As in Figs. 1 and 2, here we label different spar- Here, in order to characterize the P(s) for our RM sities α with different colors (symbols). It is interesting modelweusethephenomenologicalexpressionknownas to note that even though the relation between β(cid:101) and β 4 scales the spectral properties of the dBRM model. 1 α = 0.2 While general diluted RM models have direct applica- α = 0.4 0.8 α = 0.6 0 tions to random networks (i.e. the adjacency matrices of α = 0.8 ~β 0.6 α = 1 ln complex networks are, in general, diluted random matri- ~β A) -3 ces), the dBRM model may be used to model multilayer 0.4 randomnetworkssincethebandwidthbandthesparsity α can be associated, respectively, to the size and con- -6 0.2 -6 -3 nectivity of the subnetworks composing a multilayer, see ln β 0 e.g. [50]. 0 0.2 0.4 0.6 0.8 1 Finally,wewanttorecallthatthescaling(2),validfor β the BRM model (and other disordered systems [63, 65]), 1 wasrewritteninamoreelegantwayasarelationbetween 0.8 properly-defined inverse lengths [22, 65] 1 0.6 [d(N,W)]−1 =[d(∞,W)]−1+[d(N,0)]−1 , (11) ~β 0.4 B) were d(N,W) ≡ exp[(cid:104)S(N,W)(cid:105)] and W represents b for 0.2 0 the BRM model or the localization length for the one- 0 2 4 6 dimensional Anderson model and Lloyd’s model. Here, 0 0 2 4 6 8 in the case of the dBRM model, scaling (9) can also be x* written in the “model independent” form (11) as FIG.3: (Coloronline)(a)Spectralparameterβ(cid:101)[seeEq.(10)] [d(N,b,α)]−1 =[d(∞,b,α)]−1+[d(N,N,1)]−1 , (12) as a function of the scaled localization length β for ensem- bles of diluted banded random matrices characterized by the with d(N,b,α) ≡ exp[(cid:104)S(N,b,α)(cid:105)] and d(N,N,1) = sparsityα. Inset: lnβ(cid:101)vs.lnβ forα∈[0.5,1]instepsof0.05. exp[S (N)] (the reference entropy). GOE Green dashed lines in main panel and inset are the identity. We hope our results may motivate a theoretical ap- (b) Repulsion parameter β(cid:101)as a function of x∗. Inset: Data proach to the dBRM model. for α ∈ [0.5,1] in steps of 0.05. Green dashed lines in main Acknowledgements.– This work was partially sup- panel and inset are Eq. (9). ported by VIEP-BUAP (Grant No. MEBJ-EXC17-I), Fondo Institucional PIFCA (Grant No. BUAP-CA-169), and CONACyT (Grant No. CB-2013/220624). FAR ac- is not simple, e.g. linear as reported for other disordered knowledges CNPq (Grant No. 305940/2010-4), FAPESP systems[9,64,67–69],thecurvesβ(cid:101)vs.β areindependent (Grant No. 2011/50761-2 and 2013/26416-9), and NAP of α once α > 0.4, see inset of Fig. 3(a). This allows us eScience - PRP - USP for financial support. GFA would to guess that x∗ can also serve to scale the spectral pa- like to acknowledge FAPESP (grants 2012/25219-2 and rameter β(cid:101), at least for α>0.4. Accordingly, in Fig. 3(b) 2015/07463-1) for the scholarship provided. Y. M. ac- weshowthatthecurvesofβ(cid:101)vs.x∗ falloneontopofthe knowledges support from the Government of Arag´on, other mainly for α>0.4, see the inset of the figure. Spain through a grant to the group FENOL, and by FromFig.3(b)wealsoobservethatthecurvesβ(cid:101)vs.x∗ MINECO and FEDER funds (grant FIS2014-55867-P). areaboveEq.(9),thatweincludeasdashedlines,except for very small values of x∗ where they coincide. This fact has already been reported for the BRM model in Ref. [21]. This also means that the spectral properties of the dBRM model approach the GOE limit faster than [1] M. L. Metha, Random matrices (Elsevier, Amsterdam, the eigenfunction properties. 2004). [2] TheOxfordHandbookofRandomMatrixTheory,G.Ake- Conclusions.– In this paper, by using extensive nu- mann, J. Baik, and P. Di Francesco (Eds.) (Oxford Uni- merical simulations, we demonstrate that the normal- versity Press, New York, 2011). ized localization length β of the eigenfunctions of a [3] V. E. Kravtsov, I. M. Khaymovich, E. Cuevas, and M. diluted banded random matrix (dBRM) model scales Amini, A random matrix model with localization and with the parameter x∗(N,b,α) = γ(α)[(bα)2/N]δ(α) as ergodic transitions, New J. Phys. 17, 122002 (2015). x∗/(1+ x∗), where (N,b,α) are the model parameters [4] E.P.Wigner,Characteristicvectorsofborderedmatrices with infinite dimensions, Ann. Math. 62, 548 (1955). (matrix size, bandwidth, and sparsity, respectively) and [5] E.P.Wigner,Ann.Math.65,203(1957);SIAMReview γ and δ are scaling parameters. In addition, by plot- 9, 1 (1967). ting the spectral parameter β(cid:101) (the repulsion parameter [6] M.Wilkinson,M.Feingold,andD.M.Leitner,Localiza- of Izrailev’s distribution) as a function of β we realized tion and spectral statistics in a banded random matrix that,formoderatesparsity(i.e.α>0.4),x∗(N,b,α)also ensemble, J. Phys. A: Math. Gen. 24, 175 (1991). 5 [7] M. Wilkinson, M. Feingold, and D. M. Leitner, Spectral matrix model, Phys. Rev. E 53, R5553 (1996). statisticsinsemiclasicalrandom-matrixensembles,Phys. [28] G. Casati, I. Guarneri, and G. Maspero, Landauer and Rev. Lett. 66, 986 (1991). Thoulessconductance: Abandrandommatrixapproach, [8] M.Feingold,A.Gioletta,F.M.Izrailev,andL.Molinari, J. Phys. I (France) 7, 729 (1997). Two parameter scaling in the Wigner ensemble, Phys. [29] T. Kottos, A. Politi, and F. M. Izrailev, Finite-size cor- Rev. Lett. 70, 2936 (1993). rectionstoLyapunovspectraforbandrandommatrices, [9] G.Casati,B.V.Chirikov,I.Guarneri,andF.M.Izrailev, J. Phys.: Condens. Matter 10, 5965 (1998). Band-random-matrix model for quantum localization in [30] T. Kottos, F. M. Izrailev, and A. Politi, Finite-length conservative systems, Phys. Rev. E 48, R1613 (1993). Lyapunov exponents and conductance for quasi-1D dis- [10] G.Casati,B.V.Chirikov,I.Guarneri,andF.M.Izrailev, ordered solids, Physica D 131, 155 (1999). Quantumergodicityandlocalizationinconservativesys- [31] P. Shukla, Eigenvalue correlations for banded matrices, tems: the Wigner band random matrix model, Phys. Physica E 9, 548 (2001). Lett. A 223, 430 (1996). [32] W. Wang, Localization in band random matrix mod- [11] M.Feingold,Localizationinstronglychaoticsystems,J. elswithandwithoutincreasingdiagonalelements,Phys. Phys. A: Math. Gen. 30, 3603 (1997). Rev. E 65, 066207 (2002). [12] W. Wang, Perturbative and nonperturbative parts of [33] K. K. Mon and J. B. French, Statistical properties of eigenstates and local spectral density of states: The many-particle spectra, Ann. Phys. (N.Y.) 95, 90 (1975). Wigner-band random-matrix model, Phys. Rev. E 61, [34] L.BenetandH.A.Weidenmu¨ller,Reviewofthek-body 952 (2000). embedded ensembles of Gaussian random matrices, J. [13] W. Wang, Approach to energy eigenvalues and eigen- Phys. A: Math. Gen. 36, 3569 (2003). functionsfromnonperturbativeregionsofeigenfunctions, [35] V. K. B. Kota, Embedded random matrix ensembles in Phys. Rev. E 63, 036215 (2001). quantumphysics,LectureNotesinPhysics884(Springer, [14] A.D.Mirlin,Y.V.Fyodorov,F.-M.Dittes,J.Quezada, London, 2014). and T. H. Seligman, Transition from localized to ex- [36] D. Cohen and T. Kottos, Parametric dependent Hamil- tendedeigenstatesintheensembleofpower-lawrandom tonians, wave functions, random matrix theory, and banded matrices, Phys. Rev. E 54, 3221 (1996). quantal-classical correspondence, Phys. Rev. E 63, [15] F. Evers and A. D. Mirlin, Anderson transitions, Rev. 036203 (2001). Mod. Phys. 80, 1355 (2008). [37] D. Cohen and E. J. Heller, Unification of perturbation [16] G.Casati, L.Molinari, andF.M.Izrailev, Scalingprop- theory, random matrix theory, and semiclassical consid- ertiesofbandrandommatrices,Phys.Rev.Lett.64,1851 erations in the study of parametrically dependent eigen- (1990). states, Phys. Rev. Lett. 84, 2841 (2000). [17] S.N.EvangelouandE.N.Economou,Eigenvectorstatis- [38] M. Feingold and A. Peres, Distribution of matrix ele- tics and multifractal scaling of band random matrices, ments of chaotic systems, Phys. Rev. A 34, 591 (1986). Phys. Lett. A 151, 345 (1990). [39] D. L. Shepelyansky, Coherent propagation of two inter- [18] Y. F. Fyodorov and A. D. Mirlin, Scaling properties of acting particles in a random potential, Phys. Rev. Lett. localization in random band matrices: A σ-model ap- 73, 2607 (1994). proach, Phys. Rev. Lett. 67, 2405 (1991). [40] Y. V. Fyodorov and A. D. Mirlin, Statistical properties [19] L. V. Bogachev, S. A. Molchanov, L. A. Pastur, On ofrandombandedmatriceswithstronglyfluctuatingdi- the level density of random band matrices, Mathemat- agonal elements, Phys. Rev. B 52, R11580 (1995). ical Notes 50:6, 1232 (1991). [41] Y. V. Fyodorov and A. D. Mirlin, Analytical results for [20] S. A. Molchanov, L. A. Pastur, A. M. Khorunzhii, Lim- randombandmatriceswithpreferentialbasis,Europhys. iting eigenvalue distribution for band random matrices, Lett., 32, 385 (1995). Theor. Math. Phys. 90:2, 108 (1992). [42] P. G. Silvestrov, Summing graphs for random band ma- [21] F. M. Izrailev, Scaling properties of spectra and eigen- trices, Phys. Rev. E 55, 6419 (1997). functions for quantum dynamical and disordered sys- [43] M.Disertori,H.Pinson,andT.Spencer,Densityofstates tems, Chaos Solitons Fractals 5, 1219 (1995). for random band matrices, Commun. Math. Phys. 232, [22] Y.F.FyodorovandA.D.Mirlin,Analyticalderivationof 83 (2002). thescalinglawfortheinverseparticipationratioinquasi- [44] A.KhorunzhyandW.Kirsch,Onasymptoticexpansions one-dimensionaldisorderedsystems,Phys.Rev.Lett.69, andscalesofspectraluniversalityinbandrandommatrix 1093 (1992). ensembles, Commun. Math. Phys. 231, 223 (2002). [23] A.D.MirlinandY.F.Fyodorov,Thestatisticsofeigen- [45] J. Schenker, Eigenvector localization for random band vectorcomponentsofrandombandmatrices: Analytical matrices with power law band width, Commun. Math. results, J. Phys. A: Math. Gen. 26, L551 (1993). Phys. 290, 1065 (2009). [24] Y. F. Fyodorov and A. D. Mirlin, Level-to-level fluctua- [46] S.Sodin,Thespectraledgeofsomerandombandmatri- tions of the inverse participation ratio in finite quasi 1D ces, Annals of Math. 172, 2223 (2010). disordered systems, Phys. Rev. Lett. 71, 412 (1993). [47] Y. V. Fyodorov, O. A. Chubykalo, F. M Izrailev, and [25] Y. F. Fyodorov and A. D. Mirlin, Statistical properties G. Casati, Wigner random banded matrices with sparse ofeigenfunctionsofrandomquasi1Done-particleHamil- structure: Local spectral density of states, Phys. Rev. tonians, Int. J. Mod. Phys. B 8, 3795 (1994). Lett. 76, 1603 (1996). [26] G.Casati, F.M.Izrailev, andL.Molinari, Scalingprop- [48] X.Cao,A.Rosso,J.-P.Bouchaud,P.LeDoussal,Genuine ertiesoftheeigenvaluespacingdistributionforbandran- localisation transition in a long-range hopping model, dom matrices, J. Phys. A: Math. Gen. 24, 4755 (1991). arXiv:1607.04173. [27] T. Kottos, A. Politi, F. M. Izrailev, and S. Ruffo, Scal- [49] J. A. Mendez-Bermudez, F. A. Rodrigues, and D. A. ingpropertiesofLyapunovspectraforthebandrandom Vega-Oliveros, Multifractality in random networks with 6 long-range spatial correlations. to be submitted. statistics of Erdo¨s-R´enyi graphs II: Eigenvalue spacing [50] J.A.Mendez-Bermudez,G.Ferraz-de-Arruda,F.A.Ro- andtheextremeeigenvalues,Commun.Math.Phys.314, drigues, and Y. Moreno, Scaling properties of multilayer 587 (2012). random networks, arXiv:1611.06695. [62] J. A. Mendez-Bermudez, A. Alcazar-Lopez, A. J. [51] G.J.RodgersandA.J.Bray,Densityofstatesofasparse Martinez-Mendoza, F. A. Rodrigues, and T. K. DM. random matrix, Phys. Rev. B 37, 3557 (1988). Peron, Universality in the spectral and eigenfunction [52] Y.V.FyodorovandADMirlin,Onthedensityofstates propertiesofrandomnetworks,Phys.Rev.E91,032122 of sparse random matrices, J. Phys. A: Math. Gen. 24, (2015). 2219 (1991). [63] G. Casati, I. Guarneri, F. M. Izrailev, and R. Scharf, [53] A. D. Mirlin and Y. V. Fyodorov, Universality of level Scalingbehavioroflocalizationinquantumchaos,Phys. correlation function of sparse random matrices, J. Phys. Rev. Lett. 64, 5 (1990). A: Math. Gen. 24, 2273 (1991). [64] F. M. Izrailev, Simple models of quantum chaos: Spec- [54] S. N. Evangelou, A numerical study of sparse random trum and eigenfunctions, Phys. Rep. 196, 299 (1990). matrices, J. Stat. Phys. 69, 361 (1992). [65] G.Casati,I.Guarneri,F.M.Izrailev,S.Fishman,andL. [55] A. D. Jackson, C. Mejia-Monasterio, T. Rupp, M. Molinari, Scaling of the information length in 1D tight- Saltzer, and T. Wilke, Spectral ergodicity and normal bindingmodels,J.Phys.: Condens.Matter4,149(1992). modes in ensembles of sparse matrices, Nucl. Phys. A [66] F. M. Izrailev, in Quantum Chaos, Proceedings of the 687, 405 (2001). International School of Physics “Enrico Fermi”, Course [56] O. Khorunzhy, M. Shcherbina, and V. Vengerovsky, CXIX, Varenna, 1991, edited by G. Casati, I. Guarneri, Eigenvaluedistributionoflargeweightedrandomgraphs, andU.Smilansky(North-Holland,Amsterdam,1993)p. J. Math. Phys. 45, 1648 (2004). 265. [57] R.Ku¨hn,Spectraofsparserandommatrices,J.Phys.A: [67] F.M.Izrailev,Intermediatestatisticsofthequasi-energy Math. Theor. 41, 295002 (2008). spectrum and quantum localisation of classical chaos, J. [58] S.Sodin,TheTracy-Widomlawforsomesparserandom Phys. A 22, 865 (1989). matrices, J. Stat. Phys. 136, 834 (2009). [68] S. Sorathia, F. M. Izrailev, V. G. Zelevinsky, and G. L. [59] G.SemerjianandL.F.Cugliandolo,Sparserandomma- Celardo,Fromclosedtoopenone-dimensionalAnderson trices: the eigenvalue spectrum revisited, J. Phys. A: model: Transport versus spectral statistics, Phys. Rev. Math. Gen. 35, 4837 (2002). E 86, 011142 (2012). [60] L. Erd¨os, A. Knowles, H.-T. Yau, and J. Yin, Spectral [69] J. Flores, L. Gutierrez, R. A. Mendez-Sanchez, G. Mon- statistics of Erdo¨s-R´enyi graphs I: Local semicircle law, sivais, P. Mora, and A. Morales, Anderson localization Ann. Probab. 41, 2279 (2013). in finite disordered vibrating rods, Europhys. Lett. 101, [61] L. Erd¨os, A. Knowles, H.-T. Yau, and J. Yin, Spectral 67002 (2013).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.