Digitally Calibrated Analog-to-Digital Converters in Deep Sub-micron CMOS Cheongyuen (Bill) Tsang Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2008-67 http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-67.html May 22, 2008 Copyright © 2008, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Digitally Calibrated Analog-to-Digital Converters in Deep Sub-micron CMOS by Cheongyuen William Tsang B.S. (University of Michigan, Ann Arbor) 2000 M.S. (University of California, Berkeley) 2003 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Borivoje Nikolic´, Chair Professor Robert Brodersen Professor Paul Wright Spring 2008 The dissertation of Cheongyuen William Tsang is approved: Chair Date Date Date University of California, Berkeley Spring 2008 Digitally Calibrated Analog-to-Digital Converters in Deep Sub-micron CMOS Copyright 2008 by Cheongyuen William Tsang 1 Abstract Digitally Calibrated Analog-to-Digital Converters in Deep Sub-micron CMOS by Cheongyuen William Tsang Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Borivoje Nikolic´, Chair We present and implement an adaptive digital technique to calibrate pipelined analog-to- digital converters (ADCs). Rather than achieving linearity by adjustment of analog compo- nent values, the new approach infers component errors from conversion results and applies digital postprocessing to correct those results. The scheme proposed here draws close anal- ogy to the channel equalization problem commonly encountered in digital communications. We show that, with the help of a slow but accurate ADC, the proposed code-domain adap- tive digital filter is sufficient to remove the effects of component errors including capacitor mismatch,signal-dependentfiniteop-ampgain,op-ampoffset,andsampling-switch-induced offset. The algorithm is all digital, fully adaptive, data-driven, and operates in the back- ground. StrongtradeoffsbetweenaccuracyandspeedofpipelinedADCsaregreatlyrelaxed inthisapproachwiththeaidofdigitalcorrectiontechniques. Analogprecisionproblemsare translatedintothecomplexityofdigitalsignal-processingcircuits, allowingthisapproachto 2 benefit from CMOS device scaling in contrast to most conventional correction techniques. To demonstrate the idea, a prototype has been designed and fabricated in 0.13µm with1.35Vpowersupply. ThesystemmainlyconsistsofapipelinedADC,areferenceADC, and an adaptive digital filter in FPGA. The measured results show that the SNR improves from 28.1dB before calibration to 59.4dB after calibration at 100MS/s with a 411kHz. The SFDRimprovesfrom29.8dBto67.8dB.Thetotalpowerconsumptionofthechipis448mW and the estimated power consumption of the adaptive digital filter is 7mW at 100MHz. Professor Borivoje Nikolic´ Dissertation Committee Chair i To my parents ii Contents List of Figures vi List of Tables x 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 State-of-the-Art Calibrated ADCs . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Fully Digital Background Calibration of Pipelined ADCs 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Overview of Pipelined ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Review of ADC Calibration Techniques . . . . . . . . . . . . . . . . . . . . 7 2.4 Least-Mean-Square (LMS) Equalization Method . . . . . . . . . . . . . . . 12 2.5 Code-Domain Filtering Approach . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5.1 Code-Domain Formulation of 1.5-b/Stage Pipelined ADC Architecture 13 2.5.2 Code-Domain Formulation of 2.5-b/Stage Pipelined ADC Architecture 14 2.5.3 Code-Domain Formulation of Residue Amplifier with Nonlinear Am- plifier Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5.4 Code-Domain Formulation of a Complete Pipelined ADC . . . . . . 18 2.5.5 Code-Domain Filtering Technique System Architecture . . . . . . . 21 2.6 Behavioral Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 High-Accuracy Reference ADC 32 3.1 Background Calibrated Analog-to-Digital Converter (ADC) System Overview 32 3.2 Slow-but-Accurate A/D Converters . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Integrating A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Successive Approximation A/D Converters . . . . . . . . . . . . . . . . . . 35 3.5 Algorithmic/Cyclic A/D Converters . . . . . . . . . . . . . . . . . . . . . . 36 iii 3.6 Oversampling A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.7 First-Order Sigma-Delta (Σ∆) A/D Converters . . . . . . . . . . . . . . . . 38 3.8 Second-Order Σ∆ A/D Converters . . . . . . . . . . . . . . . . . . . . . . . 39 3.9 Multi-Stage Noise Shaping (MASH) Σ∆ A/D Converters . . . . . . . . . . 40 3.9.1 2-1 MASH Σ∆ A/D Converters . . . . . . . . . . . . . . . . . . . . . 40 3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Design of Σ∆ A/D Converter 44 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 Σ∆ ADC as a DC Voltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 Reference ADC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.1 Second-Order Σ∆ Architecture . . . . . . . . . . . . . . . . . . . . . 46 4.3.2 2-1 MASH Σ∆ Architecture . . . . . . . . . . . . . . . . . . . . . . . 47 4.4 Simulink Models of Σ∆ ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4.1 Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.4.2 DC Tones and Dithering . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4.3 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4.4 Settling of Finite Impulse Response (FIR) Decimation Filter . . . . 53 4.5 Integrator Signal Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.6 Thermal Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.7 Flicker Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.8 Effects of Circuit Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.9 Matching of λ, β in 2-1 MASH Σ∆ ADCs . . . . . . . . . . . . . . . . . . . 64 4.10 Amplifier DC Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.11 Amplifier Settling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5 Circuit Implementation of Σ∆ A/D Converter Prototype 69 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 Switched-Capacitor Integrators . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.1 First Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.2 Second Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.3 Third Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3 Operational Trans-conductance Amplifiers (OTAs) . . . . . . . . . . . . . . 76 5.3.1 Main OTAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.2 N-side Boosters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.3 P-side Boosters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3.4 Switched-Capacitor Common-Mode Feedback (CMFB) Circuits . . . 82 5.4 Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.5 Latches and DACs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.6 Sampling Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.7 Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Description: