Light Engineering für die Praxis Katharina Bartsch Digitalization of design for support structures in laser powder bed fusion of metals Edited by Claus Emmelmann 123 Digitalization of design for support structures in laser powder bed fusion of metals Vom Promotionsausschuss der Technischen Universität Hamburg zur Erlangung des akademischen Grades Doktor-Ingenieurin (Dr.-Ing.) genehmigte Dissertation von Katharina Lisa Bartsch aus Hamburg 2023 Betreuer: Prof. Dr.-Ing. Claus Emmelmann 1. Gutachter: Prof. Dr.-Ing. Claus Emmelmann 2. Gutachter: Prof. Dr.-Ing. Benedikt Kriegesmann Tag der mündlichen Prüfung: 29. September 2022 Light Engineering für die Praxis Reiheherausgegebenvon ClausEmmelmann,Hamburg,Deutschland Technologie- und Wissenstransfer für die photonische Industrie ist der Inhalt dieser Buchreihe. Der Herausgeber leitet das Institut für Laser- und Anlagensystemtechnik an derTechnischenUniversitätHamburgsowiedieFraunhofer-EinrichtungfürAdditivePro- duktionstechnologien IAPT. Die Inhalte eröffnen den Lesern in der Forschung und in UnternehmendieMöglichkeit,innovativeProdukteundProzessezuerkennenundsoihre Wettbewerbsfähigkeit nachhaltig zu stärken. Die Kenntnisse dienen der Weiterbildung von Ingenieuren und Multiplikatoren für die Produktentwicklung sowie die Produktions- und Lasertechnik, sie beinhalten die Entwicklung lasergestützter Produktionstechnolo- gien und der Qualitätssicherung von Laserprozessen und Anlagen sowie Anleitungen für Beratungs- und Ausbildungsdienstleistungen für die Industrie. Katharina Bartsch Digitalization of design for support structures in laser powder bed fusion of metals KatharinaBartsch iLASInstitutfürLaser-und Anlagensystemtechnik TUHHTechnischeUniversitätHamburg Hamburg,Germany ISSN2522-8447 ISSN2522-8455 (electronic) LightEngineeringfürdiePraxis ISBN978-3-031-22955-8 ISBN978-3-031-22956-5 (eBook) https://doi.org/10.1007/978-3-031-22956-5 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG 2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whetherthewhole orpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorage andretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownor hereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoes notimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditorsgive awarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforanyerrorsoromissionsthat mayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsand institutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Abstract The digital transformation of the manufacturing sector is among the most important meg- atrends in the global value creation. Additive manufacturing, with laser powder bed fusion of metals presenting the most mature technology for the production of metal end-use prod- ucts, is considered an essential technology for digital production and is increasingly ap- plied in industry. The design freedom allows for highly complex parts optimized for per- formance and efficiency, while the nature of additive manufacturing – being based on a digital model of the part and requiring no tools – enables decentralized on-demand pro- duction as well as customization of parts without additional cost. However, several barri- ers towards the broad industrial application exist. Among the most crucial challenges are the associated cost and the required experience regarding the manufacturing process. A possible approach to reduce production cost and eradicate the need for user experience lies in the complete digitalization of the value creation process, including design and manu- facturing. A digital, automated support structure design procedure addresses most of the process steps lacking. Support structures are essential to the successful manufacturing by laser powder bed fusion, but require design experience because the automation of their generation is limited currently. As they do not belong to the final product, though, they increase production cost without adding value to the product. In order to advance today’s additive manufacturing towards first-time-right production with no need of extensive user knowledge as well as to reduce support structure-induced production cost, this thesis digitalizes the support design process by developing an algo- rithm-based, automated process for part-specific support structure design. In the first step, process simulation determines the actual load cases of the support structures. Then, using the space colonization method from algorithmic botany, the support structures are gener- ated, which have a tree-like topology. The algorithm includes specific design rules for the tree shape, which have been derived from a systematic topology optimization study. The support structure design procedure is validated experimentally by applying a benchmark approach specifically developed to compare support structures in terms of their technical and economic performance. The whole thesis is based on the titanium alloy Ti-6Al-4V, for which a complete model of the thermo-physical, optical, and mechanical material prop- erties is presented. The validation demonstrates the procedure’s capability to design support structures tai- lored to a specific part without the need of user experience. This enables the adoption of laser powder bed fusion even in smaller companies, who cannot afford to build up expe- rience over several years. Furthermore, by advancing the digitalization of the manufactur- ing process, the possibility of the digital transformation of manufacturing companies is eased. Although the support structure volume is significantly reduced, and therefore the production cost, no significant savings in support structure-induced cost is achieved at the level of single-lot production due to the numerical efforts required. However, with the on- going efforts to introduce laser powder bed fusion to serial production, significant cost savings could be pointed out at larger production scale, as the influence of the support structure design on the support structure cost is dimished. By this, the technology adoption barrier is lowered, contributing to the current efforts of achieving broad industrial appli- cation for fully digital production by additive manufacturing. Table of content 1 Introduction 1 2 Digital production by additive manufacturing 5 2.1 Laser powder bed fusion of metals (PBF-LB/M) .............................................5 2.1.1 Technical process ................................................................................5 2.1.2 Digital transformation of (additive) manufacturing ............................9 2.2 Digitalization of part design by topology optimization.................................. 12 2.2.1 Topology optimization methods ....................................................... 14 2.2.2 Numerical challenges ........................................................................ 21 2.2.3 Physics addressed in topology optimization ..................................... 23 2.2.4 Solver algorithms .............................................................................. 25 2.2.5 Topology optimization for additive manufacturing .......................... 26 2.3 Digitalization of PBF-LB/M process ............................................................. 28 2.3.1 Process modeling .............................................................................. 28 2.3.2 Material modeling ............................................................................. 34 2.4 Support structures in PBF-LB/M ................................................................... 44 2.4.1 Integration of supports in the manufacturing process ....................... 44 2.4.2 Challenges in the application of supports ......................................... 48 2.5 Support structure optimization ....................................................................... 49 2.5.1 Support structure avoidance .............................................................. 53 2.5.2 Optimization of available support structures .................................... 56 2.5.3 Development of novel support structures.......................................... 60 2.5.4 General characteristics of optimization approaches .......................... 64 2.5.5 Optimization goals ............................................................................ 65 2.5.6 Quantification of optimization success ............................................. 66 2.5.7 Automated support structure removal ............................................... 69 2.6 Economic evaluation of additive manufacturing ........................................... 71 2.6.1 Cost calculation ................................................................................. 73 2.6.2 Cost prediction .................................................................................. 76 3 Research Hypothesis and Methodology 79 4 Material Model of Ti-6Al-4V Alloy in Laser Powder Bed Fusion 83 4.1 Thermo-physical properties of Ti-6Al-4V ..................................................... 84 4.1.1 𝛽-transus temperature ....................................................................... 85 4.1.2 Solidus temperature .......................................................................... 90 4.1.3 Liquidus temperature ........................................................................ 90