ebook img

Digital Signal Processing Using MATLAB: A Problem Solving Companion, Fourth [4th] Edition Ed (Instructor's Solution Manual) (Solutions) PDF

672 Pages·2016·5.085 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Digital Signal Processing Using MATLAB: A Problem Solving Companion, Fourth [4th] Edition Ed (Instructor's Solution Manual) (Solutions)

An Instructor’s Solutions Manual to Accompany DIGITAL SIGNAL PROCESSING USING MATLAB, 4TH E DITION VINAY K. INGLE JOHN G. PROAKIS © 2017, 2012 Cengage Learning ISBN: 978-1-305-66781-5 WCN: 01-100-101 Cengage Learning 20 Channel Center Street ALL RIGHTS RESERVED. No part of this work covered by the Boston, MA 02210 copyright herein may be reproduced, transmitted, stored, or USA used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, Cengage Learning is a leading provider of customized recording, scanning, digitizing, taping, Web distribution, learning solutions with office locations around the globe, information networks, or information storage and retrieval including Singapore, the United Kingdom, Australia, systems, except as permitted under Section 107 or 108 of the Mexico, Brazil, and Japan. Locate your local office at: 1976 United States Copyright Act, without the prior written international.cengage.com/region. permission of the publisher except as may be permitted by the license terms below. Cengage Learning products are represented in Canada by Nelson Education, Ltd. For your course and learning solutions, visit For product information and technology assistance, contact us at www.cengage.com/engineering. Cengage Learning Academic Resource Center, 1-800-423-0563. Purchase any of our products at your local college store or at our preferred online store For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. www.cengagebrain.com. Further permissions questions can be emailed to [email protected]. NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN. READ IMPORTANT LICENSE INFORMATION Dear Professor or Other Supplement Recipient: electronically must be through a password-protected site, with all copy and download functionality disabled, and accessible solely by Cengage Learning has provided you with this product (the your students who have purchased the associated textbook for the “Supplement”) for your review and, to the extent that you adopt Course. You may not sell, license, auction, or otherwise redistribute the associated textbook for use in connection with your course the Supplement in any form. We ask that you take reasonable (the “Course”), you and your students who purchase the steps to protect the Supplement from unauthorized use, textbook may use the Supplement as described below. reproduction, or distribution. Your use of the Supplement indicates Cengage Learning has established these use limitations in your acceptance of the conditions set forth in this Agreement. If you response to concerns raised by authors, professors, and other do not accept these conditions, you must return the Supplement users regarding the pedagogical problems stemming from unused within 30 days of receipt. unlimited distribution of Supplements. All rights (including without limitation, copyrights, patents, and trade Cengage Learning hereby grants you a nontransferable license secrets) in the Supplement are and will remain the sole and to use the Supplement in connection with the Course, subject to exclusive property of Cengage Learning and/or its licensors. The the following conditions. The Supplement is for your personal, Supplement is furnished by Cengage Learning on an “as is” basis noncommercial use only and may not be reproduced, posted without any warranties, express or implied. This Agreement will be electronically or distributed, except that portions of the governed by and construed pursuant to the laws of the State of Supplement may be provided to your students IN PRINT FORM New York, without regard to such State’s conflict of law rules. ONLY in connection with your instruction of the Course, so long as such students are advised that they may not copy or Thank you for your assistance in helping to safeguard the integrity distribute any portion of the Supplement to any third party. Test of the content contained in this Supplement. We trust you find the banks and other testing materials may be made available in the Supplement a useful teaching tool. classroom and collected at the end of each class session, or posted electronically as described herein. Any material posted Instructor's Solutions Manual to Accompany Digital Signal Processing using MATLAB 4th EDITION, I E NTERNATIONAL DITION VINAY K. PROAKIS JOHN G. PROAKIS Contents 2 Discrete-TimeSignalsandSystems 1 3 Discrete-TimeFourierTransform 55 4 The´-Transform 129 5 TheDiscrete-TimeFourierTransform 179 6 DigitalFilterStructures 259 7 FIRFilterDesign 337 8 IIRFilterDesign 415 9 Sampling-RateConversion 499 10 FiniteWord-LengthEffects 613 3 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. Chapter 2 Discrete-Time Signals and Systems P2.1 Generate the following sequences using the basic MATLAB signal functions and the basic MATLAB signal operations discussedinthischapter. Plotsignalsamplesusingthestemfunction. 1. x .n/D3ı.nC2/C2ı.n/(cid:0)ı.n(cid:0)3/C5ı.n(cid:0)7/,(cid:0)5(cid:20)n(cid:20)15 1 % P0201a: x1(n) = 3*delta(n + 2) + 2*delta(n) - delta(n - 3) + % 5*delta(n - 7), -5 <= n <= 15. clc; close all; x1 = 3*impseq(-2,-5,15) + 2*impseq(0,-5,15) - impseq(3,-5,15) + 5*impseq(7,-5,15); Hf_1 = figure; set(Hf_1,’NumberTitle’,’off’,’Name’,’P0201a’); n1 = [-5:15]; Hs = stem(n1,x1,’filled’); set(Hs,’markersize’,2); axis([min(n1)-1,max(n1)+1,min(x1)-1,max(x1)+1]); xlabel(’n’,’FontSize’,LFS); ylabel(’x_1(n)’,’FontSize’,LFS); title(’Sequence x_1(n)’,’FontSize’,TFS); set(gca,’XTickMode’,’manual’,’XTick’,n1,’FontSize’,8); print -deps2 ../EPSFILES/P0201a; Theplotsofx .n/isshowninFigure2.1. 1 Sequence x (n) 1 6 5 4 3 ) n ( 2 1 x 1 0 (cid:239)1 (cid:239)2 (cid:239)5 (cid:239)4 (cid:239)3 (cid:239)2 (cid:239)1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n Figure2.1: ProblemP2.1.1sequenceplot 1 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 2 SOLUTIONSMANUALFORDSPUSINGMATLAB(4THEDITION) 5 2. x .n/D X e(cid:0)jkjı.n(cid:0)2k/,(cid:0)10(cid:20)n(cid:20)10. 2 kD(cid:0)5 % P0201b: x2(n) = sum_{k = -5}^{5} e^{-|k|}*delta(n - 2k), -10 <= n <= 10 clc; close all; n2 = [-10:10]; x2 = zeros(1,length(n2)); for k = -5:5 x2 = x2 + exp(-abs(k))*impseq(2*k ,-10,10); end Hf_1 = figure; set(Hf_1,’NumberTitle’,’off’,’Name’,’P0201b’); Hs = stem(n2,x2,’filled’); set(Hs,’markersize’,2); axis([min(n2)-1,max(n2)+1,min(x2)-1,max(x2)+1]); xlabel(’n’,’FontSize’,LFS); ylabel(’x_2(n)’,’FontSize’,LFS); title(’Sequence x_2(n)’,’FontSize’,TFS); set(gca,’XTickMode’,’manual’,’XTick’,n2); print -deps2 ../EPSFILES/P0201b; Theplotsofx .n/isshowninFigure2.2. 2 Sequence x (n) 2 2 1.5 1 ) n ( 0.5 2 x 0 −0.5 −1 −10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 n Figure2.2: ProblemP2.1.2sequenceplot © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. SOLUTIONSMANUALFORDSPUSINGMATLAB(4THEDITION) 3 3. x .n/D10u.n/(cid:0)5u.n(cid:0)5/(cid:0)10u.n(cid:0)10/C5u.n(cid:0)15/. 3 % P0201c: x3(n) = 10u(n) - 5u(n - 5) + 10u(n - 10) + 5u(n - 15). clc; close all; x3 = 10*stepseq(0,0,20) - 5*stepseq(5,0,20) - 10*stepseq(10,0,20) ... + 5*stepseq(15,0,20); n3 = [0:20]; Hf_1 = figure; set(Hf_1,’NumberTitle’,’off’,’Name’,’P0201c’); Hs = stem(n3,x3,’filled’); set(Hs,’markersize’,2); axis([min(n3)-1,max(n3)+1,min(x3)-1,max(x3)+2]); ytick = [-6:2:12]; xlabel(’n’,’FontSize’,LFS); ylabel(’x_3(n)’,’FontSize’,LFS); title(’Sequence x_3(n)’,’FontSize’,TFS); set(gca,’XTickMode’,’manual’,’XTick’,n3); set(gca,’YTickMode’,’manual’,’YTick’,ytick); print -deps2 ../EPSFILES/P0201c; Theplotsofx .n/isshowninFigure2.3. 3 Sequence x (n) 3 12 10 8 6 ) 4 n ( 3 x 2 0 −2 −4 −6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 n Figure2.3: ProblemP2.1.3sequenceplot © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 4 SOLUTIONSMANUALFORDSPUSINGMATLAB(4THEDITION) 4. x .n/De0:1nŒu.nC20/(cid:0)u.n(cid:0)10/(cid:141). 4 % P0201d: x4(n) = e ^ {0.1n} [u(n + 20) - u(n - 10)]. clc; close all; n4 = [-25:15]; x4 = exp(0.1*n4).*(stepseq(-20,-25,15) - stepseq(10,-25,15)); Hf_1 = figure; set(Hf_1,’NumberTitle’,’off’,’Name’,’P0201d’); Hs = stem(n4,x4,’filled’); set(Hs,’markersize’,2); axis([min(n4)-2,max(n4)+2,min(x4)-1,max(x4)+1]); xlabel(’n’,’FontSize’,LFS); ylabel(’x_4(n)’,’FontSize’,LFS); title(’Sequence x_4(n)’,’FontSize’,TFS); ntick = [n4(1):5:n4(end)]; set(gca,’XTickMode’,’manual’,’XTick’,ntick); print -deps2 ../CHAP2_EPSFILES/P0201d; print -deps2 ../../Latex/P0201d; Theplotsofx .n/isshowninFigure2.4. 4 Sequence x (n) 4 3 2.5 2 ) 1.5 n ( 4 x 1 0.5 0 −0.5 −1 −25 −20 −15 −10 −5 0 5 10 15 n Figure2.4: ProblemP2.1.4sequenceplot © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. SOLUTIONSMANUALFORDSPUSINGMATLAB(4THEDITION) 5 5. x .n/D5Œcos.0:49(cid:25)n/Ccos.0:51(cid:25)n/(cid:141); (cid:0)200(cid:20)n(cid:20)200. Commentonthewaveformshape. 5 % P0201e: x5(n) = 5[cos(0.49*pi*n) + cos(0.51*pi*n)], -200 <= n <= 200. clc; close all; n5 = [-200:200]; x5 = 5*(cos(0.49*pi*n5) + cos(0.51*pi*n5)); Hf_1 = figure; set(Hf_1,’NumberTitle’,’off’,’Name’,’P0201e’); Hs = stem(n5,x5,’filled’); set(Hs,’markersize’,2); axis([min(n5)-10,max(n5)+10,min(x5)-2,max(x5)+2]); xlabel(’n’,’FontSize’,LFS); ylabel(’x_5(n)’,’FOntSize’,LFS); title(’Sequence x_5(n)’,’FontSize’,TFS); ntick = [n5(1): 40:n5(end)]; ytick = [-12 -10:5:10 12]; set(gca,’XTickMode’,’manual’,’XTick’,ntick); set(gca,’YTickMode’,’manual’,’YTick’,ytick); print -deps2 ../CHAP2_EPSFILES/P0201e; print -deps2 ../../Latex/P0201e; Theplotsofx .n/isshowninFigure2.5. 5 Sequence x (n) 5 12 10 5 ) n ( 0 5 x −5 −10 −12 −200 −160 −120 −80 −40 0 40 80 120 160 200 n Figure2.5: ProblemP2.1.5sequenceplot © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 6 SOLUTIONSMANUALFORDSPUSINGMATLAB(4THEDITION) 6. x .n/D2sin.0:01(cid:25)n/cos.0:5(cid:25)n/; (cid:0)200(cid:20)n(cid:20)200. 6 %P0201f: x6(n) = 2 sin(0.01*pi*n) cos(0.5*pi*n), -200 <= n <= 200. clc; close all; n6 = [-200:200]; x6 = 2*sin(0.01*pi*n6).*cos(0.5*pi*n6); Hf_1 = figure; set(Hf_1,’NumberTitle’,’off’,’Name’,’P0201f’); Hs = stem(n6,x6,’filled’); set(Hs,’markersize’,2); axis([min(n6)-10,max(n6)+10,min(x6)-1,max(x6)+1]); xlabel(’n’,’FontSize’,LFS); ylabel(’x_6(n)’,’FontSize’,LFS); title(’Sequence x_6(n)’,’FontSize’,TFS); ntick = [n6(1): 40:n6(end)]; set(gca,’XTickMode’,’manual’,’XTick’,ntick); print -deps2 ../CHAP2_EPSFILES/P0201f; print -deps2 ../../Latex/P0201f; Theplotsofx .n/isshowninFigure2.6. 6 Sequence x (n) 6 3 2 1 ) n ( 0 6 x −1 −2 −3 −200 −160 −120 −80 −40 0 40 80 120 160 200 n Figure2.6: ProblemP2.1.6sequenceplot © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.