ebook img

Digital signal processing : spectral computation and filter design PDF

457 Pages·2001·6.871 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Digital signal processing : spectral computation and filter design

Digital Signal Processing Spectral Computation and Filter Design Chi-Tsong Chen StateUniversityofNewYorkatStonyBrook NewYork Oxford OXFORDUNIVERSITYPRESS 2001 OxfordUniversityPress Oxford NewYork Athens Auckland Bangkok Bogota´ BuenosAires Calcutta CapeTown Chennai DaresSalaam Delhi Florence HongKong Istanbul Karachi KualaLumpur Madrid Melbourne MexicoCity Mumbai Nairobi Paris Sa˜oPaulo Shanghai Singapore Taipei Tokyo Toronto Warsaw andassociatedcompaniesin Berlin Ibadan Copyright©2001byOxfordUniversityPress,Inc. PublishedbyOxfordUniversityPress,Inc., 198MadisonAvenue,NewYork,NewYork,10016 http://www.oup-usa.org OxfordisaregisteredtrademarkofOxfordUniversityPress Allrightsreserved.Nopartofthispublicationmaybereproduced, storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recording,orotherwise, withoutthepriorpermissionofOxfordUniversityPress. LibraryofCongressCataloging-in-PublicationData Chen,Chi-Tsong. Digitalsignalprocessing:spectralcomputationandfilterdesign/Chi-TsongChen. p. cm. Includesbibliographicalreferencesandindex. ISBN0-19-513638-1 1.Signalprocessing—Digitaltechniques. 2.Electricfilters—Designandconstruction. 3.Spectralsequences(Mathematics) I.Title. TK5102.9.C476 2000 621.382'2—dc21 00-027881 Printing(lastdigit):10987654321 PrintedintheUnitedStatesofAmerica onacid-freepaper PREFACE This text is intended for use in a first course on digital signal processing (DSP), typically in seniororfirst-yeargraduatelevel.Itmayalsobeusefultoengineersandscientistswhousedigital computers to process measured data. Some elementary knowledge on signals and systems is helpful but is not necessary. An attempt has been made to make this text as self-contained as possible. Asanintroductorytext,wediscussonlytwomajortopics:computercomputationoffrequency contentsofsignalsanddesignofdigitalfilters.Thesetwotopicsfollowlogicallyabasictext or course on Signals and Systems, which now often covers both continuous-time (CT) and discrete-time(DT)cases.Tobeself-contained,westartfromscratch.Chapter1introducesCT signals,DTsignals,anddigitalsignals.WediscusswhyCTsignalsarenowwidelyprocessed digitallyandhowtheyareconvertedintodigitalsignals.Wealsodiscusswhywestudyinthis text, as in every other DSP text, only CT and DT signals even though digital signals are the signalsprocessedondigitalcomputers.InChapter2,wefirstdiscussthefrequencyofCTand DTsinusoidalsignals.WethenintroduceCTandDTFourierseries(frequencycomponents)for periodicsignalsandestablishtheirrelationships.WethenusethefastFouriertransform(FFT) tocomputetheirfrequencycomponents. Chapter 3 extends CT and DT Fourier series to CT and DT Fourier transforms (frequency spectra)thatcanrevealfrequencycontentsofaperiodicsignalsaswell.Weestablishthesampling theoremanddiscusstheeffectsoftruncationofsignalsonfrequencyspectra.InChapter4,we showthatcomputercomputationofDTFouriertransform(DTFT)leadsnaturallytothediscrete Fouriertransform(DFT),whichdiffersfromtheDTFourierseriesonlybyafraction.Wethen introduceaversionofFFT,anefficientwayofcomputingDFT.WeuseFFTtocomputefrequency spectraofDTandCTsignalsandtocomputeDTandCTsignalsfromtheirfrequencyspectra. Thiscompletesthediscussionofspectralcomputationofsignals. Thesecondpartofthistextdiscussesthedesignofdigitalfilters.WeintroduceinChapter5 theclassofdigitalfilters(linear,time-invariant,lumped,causal,andstable)tobedesignedand themathematicaltools(convolutions,impulseresponses, z-transform,andtransferfunctions) tobeused.Wethenintroducetheconceptoffrequencyresponsesforstablesystems.Chapter 6discussesspecificationsofdigitalfiltersandhowtousepolesandzerostoshapemagnitude responsesofsimpledigitalfilters.Chapter7introducesvariousmethodstodesignfinite-impulse- response(FIR)digitalfilters.InChapter8,wefirstdiscussthereasonsfornotdesigningdirectly infinite-impulse-response(IIR)digitalfilters.Wethenintroduceanalogprototypefilters,which arelowpassfilterswith1rad/sastheirpassbandorstopbandedgefrequency.Allotheranalogand alldigitalfrequency-selectivefilterscanthenbeobtainedbyusingfrequencytransformations. xiii xiv PREFACE Thelastchapterdiscussesanumberofblockdiagramsfordigitalfiltersandsomeproblemsdue tofinite-word-lengthimplementation.ThischapterisessentiallyindependentofChapters7and 8andmaybestudiedrightafterChapter6. Althoughmosttopicsinthistextarestandard,ourpresentationandemphasisaresignificantly differentfromotherexistingDSPtexts.Theyarediscussedinthefollowing. • MostDSPtextsdiscusssystemsandsignalsintertwined.Thistextdiscussesinthefirstpart onlysignalsandtheirspectralcomputation.Thusthediscussioncanbemorefocused.Itis alsomoreefficientforthosewhowishtolearnhowtouseFFTtoanalyzemeasureddata. • ThistextshowsthatthefrequencyofaDTsinusoidalsequencecannotbedefinedfromits fundamentalperiodasintheCTcase.ItisthendefinedfromaCTsinusoidandjustified usingaphysicalargument.Thusthistextusesthesamenotationtodenotefrequenciesin CT and DT signals as opposed to different notations used in most DSP texts. We do use different notations when the analog frequency range (−∞, ∞) is compressed into the digitalfrequencyrange(−π, π]inbilineartransformations. • AssumingthereadertohavehadFourieranalysisofCTsignals,mostDSPtextscoveronly FourieranalysisofDTsignals.BecausesignalsprocessedbyDSParemostlyCT,thistext coversFourieranalysesofbothCTandDTsignals.ThediscussionoftheCTpart,however, isnotexhaustive.ItisintroducedtotheextenttoshowthedifferencesbetweenCTandDT Fourier analyses and to establish their relationships. We establish sampling theorems for puresinusoids,periodicsignals,andgeneralsignals. • Most DSP texts assume the sampling period T to be 1 in DT Fourier analysis. Although the equations involved are simpler, they become more complex in relating spectra of CT signalsandtheirsampledsequences.ThistextdoesnotassumeT = 1anddiscusseshow toselectT inspectralcomputationofCTsignalsfromtheirtimesamples.Indigitalfilter design, however, we can select T to be 1 or any other value such as π in MATLAB,1 as discussedinSection5.3.2. • ManyDSPtextsintroduceDFTaftertheFouriertransformsanddiscussitasanindependent mathematicalentity.OurdiscussionofDFTisbriefbecauseitisessentiallythesameasthe DTFourierseries.Itisintroducedasacomputationaltool. • Most DSP texts introduce first the two-sided z-transform and then reduce it to the one- sided z-transform. This text does not need the two-sided transform. Thus we concentrate on the one-sided z-transform and give reasons for forgoing the concept of the region of convergence,whichisadifficultconceptandrarelyneededinapplication. • Fourier analysis of DT systems are covered in most DSP texts. It is not covered in this text because Fourier analysis of DT systems is less general and more complex than the z-transform(Section5.5.3). • Most DSP texts use exclusively negative-power transfer functions. This text uses both negative-powerandpositive-powertransferfunctionsbecausethelatterismoreconvenient in introducing the concepts of properness, degrees, poles, and zeros. Furthermore, both formsareusedinMATLAB. 1MATLABisatrademarkoftheMathWorks,Inc. PREFACE xv • ThebilineartransformationintroducedinmanyDSPtextsnormalizethefrequencyrange byassumingT =1andyetintroducethefactorT/2whereT maybedifferentfrom1.This isinconsistent.Weintroduceanarbitraryfactorandshowthatthedesignisindependentof thefactor.Thisismorelogicalandcanalsojustifytheinconsistence. Inaddition,thistextdiscussesanumberoftopicsnotfoundinmostDSPtexts.Welistsomeof theminthefollowing: • Give a formal definition of the frequency of sinusoidal sequences and give a precise frequencyrange(−π/T, π/T]forDTsignals(Section2.2). • EstablishasimplifiedversionofthesamplingtheoremforperiodicsignalsandthenuseFFT to compute frequency components of CT periodic signals from their sampled sequences. DiscusshowtousetheMATLABfunctionsfftshift,ceil,floorandanewlydefinedfunction shift to plot FFT computed frequency components in (−π/T, π/T] or [−π/T, π/T) (Sections2.6and2.7). • DiscussthenonuniquenessofinverseDFTandamethodofdeterminingthelocationofa timesignalcomputedfromfrequencysamplesofitsfrequencyspectrum(Section4.7). • UseFFTtocomputetheinversez-transform(Section5.4.2). • Discusssteady-stateandtransientresponsesofdigitalfilters,andgiveanestimatedtimefor atransientresponsetodieout(Section5.7.1).Comparetwowaysofintroducingtheconcept offrequencyresponses.Wearguethatalthoughtheconceptcanbemoreeasilyintroduced byassuminganinputtobeappliedfrom−∞,twoconceptsofpracticalimportancemay oftenbeconcealed(Section5.7.3). • Give a mathematical justification of using an antialiasing analog filter in digital signal processing(Section6.7.1). • IntroduceadiscreteleastsquaresmethodtodesignFIRfilters.Themethod,althoughvery simple, does not seem to appear anywhere in the literature. The method is more flexible thanthemethodoffrequencysamplingandleadsnaturallytotheMATLABfunctionfirls (Sections7.6and7.6.1). • Introduceananalogbandstoptransformationthatyieldsbetterbandstopfiltersthantheones generatedbyMATLAB(Section8.4). • Although FFT is very efficient in computing the convolution of two long sequences, we givepossiblereasonsfornotusingFFTintheMATLABfunctionconv(Section9.4.1). All terminology in this text is carefully defined. For example, both the Fourier series and Fouriertransformsofperiodicsignalsareoftencalleddiscretefrequencyspectraintheliterature. ThistextreservesfrequencyspectraexclusivelyfortheFouriertransforms,andcallsFourierse- riesfrequencycomponents.Weattempttomakealldiscussionmathematicallycorrect;however, wewillnotbeconstrainedbypuremathematics(Section3.9andthefootnoteinSection6.3).Asa textintendedforpracticalapplication,thediscussionisnotnecessarilyrigorous.Forexample,we usetheterms“veryclose”and“practicallyzero”loosely.Becauseoftheinformationexplosion, weallhavelesstimetostudyasubjectarea.Thusthediscussioninthistextisnotexhaustive;we concentrateonlyonconceptsandresultsthat,inouropinion,areessentialinpracticalapplication. xvi PREFACE MATLAB is an integral part of this text. We use while loops and if-else-end structures to developMATLABprograms.However,ouremphasisisnotonMATLABbutratheronbasic ideasandproceduresindigitalsignalprocessing.ThusthistextlistsonlyessentialMATLAB functionsinmostprogramsandskipsfunctionsthatadjustshapesandsizesofplots,anddraw horizontalandverticalcoordinates.Itisrecommendedthatthereaderrepeateachprogram.Even thoughhemaynotobtainidenticalresults,allessentialinformationwillbegenerated.Clearly anyotherDSPpackagecanalsobeused. All numerical examples in the text and most problems at the end of each chapter are very simple and can be solved analytically by hand. The reader is urged to do so. After obtaining resultsbyhand,onecanthencomparethemwithcomputer-generatedresults.Thisisthebest wayoflearningatopicandacomputationaltool.Oncemasteringthesubjectandtool,wecan then apply the tool to real-world problems. A solutions manual, in which complete programs arelistedforproblemsthatuseMATLAB,isavailablefromthepublisher. This text is a complete restructure and rewriting of One-Dimensional Digital Signal Pro- cessing,publishedin1979.Wedeletedthediscussionofthetwo-sidedz-transform,itsregion ofconvergence,andthetopicssuchaserroranalyses,WienerFIR,andIIRfilters,thatrequire statisticalmethods.Allaforementionedsections,exceptSection6.6.1,arenewinthistext. I am indebted to many people in developing this text. First I like to thank Professors Petar Djuric,AdrianLeuciuc,JohnMurray,NamPhamdo,StephenRappaport,KennethShort,and ArmenZemanian,mycolleaguesatStonyBrook.IwenttothemwheneverIhadanyquestion ordoubt.Manypeoplereviewedaearlierversionofthistext.Theircommentspromptedmeto rewritemanysections.Ithankthemall. IamgratefultomyeditorPeterC.Gordonforhisconfidenceinandenthusiasmaboutthis project. Many people at Oxford University Press including Christine D’Antonio, Jacki Hartt, AnitaSung,andJasmineUrmeneta,weremosthelpfulinthisundertaking.FinallyIthankmy wife,Bih-Jau,forhersupport. Chi-TsongChen CONTENTS Preface xiii 1 Introduction 1 1.1 Continuous-Time(CT),Discrete-Time(DT),andDigitalSignals 1 1.1.1 PlottingofDTSignals 3 1.2 RepresentationofDigitalSignals 4 1.3 A/DandD/AConversions 6 1.4 ComparisonofDigitalandAnalogTechniques 11 1.5 ApplicationsofDigitalSignalProcessing 12 1.6 ScopeoftheBook 14 1.6.1 SpectralComputation 15 1.6.2 DigitalFilterDesign 18 PART 1 Spectral Computation 2 CT and DT Fourier Series—Frequency Components 21 2.1 Introduction 21 2.1.1 FrequencyofCTSinusoids 22 2.2 FrequencyandFrequencyRangeofSinusoidalSequences 22 2.3 FrequenciesofCTSinusoidsandTheirSampledSequences 28 2.3.1 Applications 30 2.3.2 RecoveringaSinusoidfromItsSampledSequence 31 2.4 Continuous-TimeFourierSeries(CTFS) 34 2.4.1 DistributionofAveragePowerinFrequencies 42 2.4.2 ArePhasesImportant? 43 2.5 Discrete-TimeFourierSeries(DTFS) 45 2.5.1 RangeofFrequencyIndexm 51 2.5.2 TimeShifting 52 2.6 FFTComputationofDTFSCoefficients 54 2.6.1 RearrangingtheOutputoftheFFT 55 vii viii CONTENTS 2.7 FFTComputationofCTFSCoefficients 59 2.7.1 FrequencyAliasingduetoTimeSampling 66 2.7.2 SelectingN toHaveNegligibleFrequencyAliasing 69 2.8 AveragePowerandItsComputation 75 2.9 ConcludingRemarks 78 Problems 78 3 CT and DT Fourier Transforms—Frequency Spectra 82 3.1 Introduction 82 3.2 CTFourierTransform(CTFT) 82 3.2.1 FrequencySpectrumofCTPeriodicSignals 89 3.3 PropertiesofFrequencySpectra 92 3.3.1 BoundednessandContinuity 92 3.3.2 EvenandOdd 93 3.3.3 TimeShifting 96 3.3.4 FrequencyShifting 96 3.3.5 TimeCompressionandExpansion 97 3.4 DistributionofEnergyinFrequencies 99 3.5 EffectsofTruncation 101 3.5.1 GibbsPhenomenon 103 3.6 DTFourierTransform(DTFT) 106 3.6.1 FrequencySpectrumofDTPeriodicSignals 113 3.7 EffectsofTruncation 114 3.8 NyquistSamplingTheorem 117 3.8.1 FrequencyAliasingduetoTimeSampling 122 3.9 Time-limitedBandlimitedTheorem 126 3.9.1 PracticalReconstructionofx(t)fromx(nT) 127 Problems 128 4 DFT and FFT—Spectral Computation 132 4.1 Introduction 132 4.2 DiscreteFourierTransform(DFT) 132 4.2.1 RelationshipbetweenDFTandDTFS 140 4.2.2 InverseDFTandInverseDTFT—TimeAliasingdueto FrequencySampling 141 4.3 PropertiesofDFT 144 4.3.1 EvenandOdd 144 4.3.2 PeriodicShifting 145 4.4 FastFourierTransform(FFT) 146 4.4.1 OtherFFTandDSPProcessors 150 4.4.2 RealSequences 152 4.5 SpectralComputationofFiniteSequences 155 CONTENTS ix 4.5.1 PaddingwithZeros 156 4.5.2 SpectralComputationofInfiniteSequences 159 4.6 SpectralComputationofCTSignals 163 4.6.1 SpectralComputationofCTPeriodicSignals 171 4.7 ComputingDTSignalsfromSpectra 174 4.7.1 ComputingCTSignalsfromSpectra 179 4.8 ComputingEnergyUsingFFT 182 4.9 ConcludingRemarks 184 Problems 186 PART 2 Digital Filter Design 5 Linear Time-Invariant Lumped Systems 191 5.1 Introduction 191 5.2 LinearityandTimeInvariance 192 5.2.1 LTISystems—Convolutions 193 5.3 LTILSystems—DifferenceEquations 198 5.3.1 RecursiveandNonrecursiveDifferenceEquations 202 5.3.2 SamplingPeriodandReal-TimeProcessing 203 5.4 z-Transform 204 5.4.1 Inversez-Transform 210 5.4.2 FFTComputationoftheInversez-Transform 213 5.5 TransferFunctions 215 5.5.1 PolesandZeros 218 5.5.2 TransferFunctionsofFIRandIIRFilters 222 5.5.3 DTFourierTransformandz-Transform 223 5.6 Stability 225 5.6.1 TheJuryTest 226 5.7 FrequencyResponse 228 5.7.1 InfiniteTime 234 5.7.2 FrequencyResponseandFrequencySpectrum 235 5.7.3 AlternativeDerivationofFrequencyResponses 237 5.8 Continuous-TimeLTILSystems 239 5.8.1 LaplaceTransformandz-Transform 241 5.9 CTTransferFunction,Stability,andFrequencyResponse 242 5.9.1 MeasuringCTFrequencyResponses 245 5.10 ConcludingRemarks 247 Problems 248 6 Ideal and Some Practical Digital Filters 252 6.1 Introduction 252 x CONTENTS 6.2 IdealDigitalFilters 252 6.3 Realizability 253 6.3.1 FilterSpecifications 257 6.3.2 DigitalProcessingofAnalogSignals 259 6.4 First-OrderDigitalFilters 261 6.4.1 Second-OrderDigitalFilters 270 6.5 ReciprocalRootsandAll-PassFilters 275 6.6 MiscellaneousTopics 280 6.6.1 CombFilters 280 6.6.2 SinusoidGenerators 281 6.6.3 GoertzelAlgorithm 284 6.7 AnalogIdealLow-PassFilters 286 6.7.1 WhyAntialiasingFilters? 289 Problems 292 7 Design of FIR Filters 294 7.1 Introduction 294 7.2 ClassificationofLinear-PhaseFIRFilters 295 7.3 Least-SquaresOptimalFilters—DirectTruncation 302 7.4 WindowMethod 305 7.5 DesiredFilterswithSpecifiedTransitionBands 310 7.5.1 DesignbyFrequencySampling 313 7.6 DiscreteLeast-SquaresOptimalFIRFilters 316 7.6.1 IntegralLeast-SquaresOptimalFIRFilters 324 7.7 MinimaxOptimalFIRFilters 327 7.8 DesignofDigitalDifferentiators 332 7.9 HilbertTransformers 340 7.9.1 FromFIRLow-PassFilterstoHilbertTransformers 346 7.10 ADesignExample 349 Problems 352 8 Design of IIR Filters 355 8.1 Introduction 355 8.2 DifficultiesinDirectIIRFilterDesign 356 8.3 DesignofAnalogPrototypeFilters 358 8.4 AnalogFrequencyTransformations 364 8.5 ImpulseInvarianceMethod 374 8.5.1 DigitalFrequencyTransformations 379 8.6 BilinearTransformation 386 8.7 Analog-Prototype-to-DigitalTransformations 390 8.8 ComparisonswithFIRFilters 394 Problems 395

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.