ebook img

Digital Holographic Methods: Low Coherent Microscopy and Optical Trapping in Nano-Optics and Biomedical Metrology PDF

268 Pages·2018·12.641 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Digital Holographic Methods: Low Coherent Microscopy and Optical Trapping in Nano-Optics and Biomedical Metrology

Springer Series in Optical Sciences 221 Stephan Stuerwald Digital Holographic Methods Low Coherent Microscopy and Optical Trapping in Nano-Optics and Biomedical Metrology Springer Series in Optical Sciences Volume 221 Founded by H. K. V. Lotsch Editor-in-chief William T. Rhodes, Florida Atlantic University, Boca Raton, FL, USA Series editors Ali Adibi, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA Toshimitsu Asakura, Hokkai-Gakuen University, Sapporo, Hokkaido, Japan Theodor W. Hänsch, Max-Planck-Institut für Quantenoptik, Garching, Bayern, Germany Ferenc Krausz, Garching, Bayern, Germany Barry R. Masters, Cambridge, MA, USA Katsumi Midorikawa, Laser Technology Laboratory, RIKEN Advanced Science Institute, Saitama, Japan Bo A. J. Monemar, Department of Physics and Measurement Technology, Linköping University, Linköping, Sweden Herbert Venghaus, Ostseebad Binz, Germany Horst Weber, Berlin, Germany Harald Weinfurter, München, Germany Springer Series inOptical SciencesisledbyEditor-in-ChiefWilliamT. Rhodes, Georgia Institute of Technology, USA, and provides an expanding selection of research monographs in all major areas of optics: – lasers and quantum optics – ultrafast phenomena – optical spectroscopy techniques – optoelectronics – information optics – applied laser technology – industrial applications and – other topics of contemporary interest. With this broad coverage of topics the series is useful to research scientists and engineers who need up-to-date reference books. More information about this series at http://www.springer.com/series/624 Stephan Stuerwald Digital Holographic Methods Low Coherent Microscopy and Optical Trapping in Nano-Optics and Biomedical Metrology 123 StephanStuerwald University of California, Berkeley Berkeley, CA, USA ISSN 0342-4111 ISSN 1556-1534 (electronic) SpringerSeries inOptical Sciences ISBN978-3-030-00168-1 ISBN978-3-030-00169-8 (eBook) https://doi.org/10.1007/978-3-030-00169-8 LibraryofCongressControlNumber:2018954606 ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface A variety of applications in the area of biomedicine, microchemistry, and micro system technology demand the possibility of a minimally invasive, positioning or manipulation and analysis of biological cells or different micro and nano particles, which is not possible with conventional mechanical methods. To achieve these requirements,systemsareestablishedthatfacilitateamicromanipulationwithlight. Therefore, a momentum change of photons that are refracted on the surface of a transparent cell or a partly transparent micro particle is harnessed for holographic optical tweezers (HOTs), which enables the user to exert forces in the range of piconewtons. Anadditionalchallengeistheexactanddetailedimagingofbiologicalcellsina bright field microscope. The outline of a cell is usually easily recognizable due to diffractionorabsorptioncharacteristics,butthereconstructionofathree-dimensional form is not directly possible. A suitable method to overcome this problem is the imaging with digital holographic quantitative phase contrast microscopy (DHM). This method utilizes the optical path difference of photons that pass through a transparentcellwithahigherrefractiveindexcomparedtotheambientmediumand can therefore be considered as an advanced and quantitative phase contrast micro- scopymethod. A combination of these two methods is so far solely rudimentary explored in research. A further developed expansion of these functionalities into an integrated setup therefore represents a significant enhancement in this field and allows new applications. A few examples for new applications are an automated detection of any biological cell and a subsequent automated holding, separation, analysis of rheological cell parameters, and a positioning into specifically predetermined allocated cavities for cell sorting, as needed in Lab-on-a-Chip (LoC) applications (Fig. 1b). The aim of this work is the development and characterization of a system for analyzing biological as well as technical specimens with digital holographic meth- ods.Thesystemshallallowarealizationandcharacterizationofthecombinationof both described techniques with unrivaled high content cell analysis and manipula- tion capabilities. To achieve this, a confocal laser scanning and fluorescence v vi Preface Fig. 1 a Developed multifunctional microscope system in CAD illustration with beam paths indicated in red. b 14 micro particles arranged by dynamic holographic optical tweezers to the letters “IPT”. c Intermediate (IF) and far-field (FF) intensity distributions of Bessel beams of higherorder(5th)forgeneratingsymmetrictrappatternsandopticalangularmomentum microscopeisextended:Thecameraportofamicroscopebeampathisutilizedfor coupling in a modulated laser beam besides imaging a hologram of the object planeontoacamera.Toenable,e.g.,asimultaneousmanipulationofmultiplecells ð(cid:2)(cid:3)6Þinthreedimensionsandinvideorate,anintensitydistributionintheobject planeiscreatedbyanopticalreconstructionofahologram.Toachievethis,aspatial lightmodulator(SLM)thatcanchangethephaseofthewavefrontineverypixelin the range of [0, 2…] is inserted into the beam path. This phase pattern gets Fourier transformed optically by a microscope objective, leading to the desired intensity distribution inthe focus plane of themicroscope objective. Thismethodisbasedonaphase-onlySLMandfacilitatesalsothegenerationof non-diffractivebeamconfigurationslikeAiry,Mathieu,andBesselbeamsofhigher order,whichallowforefficient,stable,andmostlysymmetrictrapconfigurations.It is demonstrated that they open up prospect for increased light efficiency for direct laser writing (DLW). Non-diffractive beams are sometimes referred to self-healing beams, since self-focusing effects lead to better focusing properties exceeding the conventionalRayleighlengthcompared tostandardGaussianbeams.Additionally, it is shown that these beams and their higher modes enable an allocation of a high number of different efficient light force and light intensity distributions. These can be particularly useful for a three-dimensional positioning of micro and nano par- ticles or structures and even for direct laser writing. The development of modular systems for DHM and HOTs also allows an integrationintoananopositioningsystem(NMM-1,25(cid:4)25(cid:4)5mm3,positioning accuracy: (cid:3)3 nm) in order to extend the positioning volume beyond the field of viewanddepthofsharpnessofthemicroscopeobjectiveandmoreprecisethanwith conventional microscopy xyz-stages. The digital holographic imaging mode is additionally investigated with low coherent light sources like SLDs, LEDs, and a super continuous light source to optimize the phase noise of the interferograms. The system combination is then appliedfordirectlaserwritinginphotoresistsbasedontwo-photonpolymerization —also known as 3D-lithography. This opens up the possibility for dynamic and Preface vii multifocalgenerationoflarge-scalemicroandnanostructureswithoutdrawbacksin accuracy caused by stitching losses. Previoussystemssolelyallowdirectlaserwritingwithonefixedfocuspointanda scanvolumeoftypically300(cid:4)300(cid:4)300m3withaxyz-piezostage.Thecombined deploymentofbiggernanopositioningsystemsliketheNMM-1(25(cid:4)25(cid:4)5mm3) or the recently new developed NPMM-200 (200 (cid:4) 200 (cid:4) 25 mm3) open up the possibilitytorealizeaphotonicsystemplatformfordirectproduction,manipulation, assemblyand measuring ofphotonic circuits and elements. Therefore,thisworkcontributestothelong-termgoalofestablishingamodular photonic system platform with multifunctional features, which represent a key technology for the efficient production of micro and nano optical structures. These system platforms shall also open the way to new research areas in the field of the systemsitselfandprovideafuturetoolforthewholenanoopticandphotonicarea. Berkeley, USA Stephan Stuerwald Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Basic Principles of Holography . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Classic Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Fourier Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3 Digital Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.4 Computer Generated Holograms. . . . . . . . . . . . . . . . . . . 13 2.1.5 Numerical Reconstruction of Digital Holograms . . . . . . . 15 2.2 Phase Shifting Reconstruction Methods . . . . . . . . . . . . . . . . . . . 16 2.2.1 Temporal Phase Shifting . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 Spatial Phase Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Numeric Propagation of Complex Object Waves . . . . . . . . . . . . 21 2.3.1 Digital Holographic Microscopy. . . . . . . . . . . . . . . . . . . 22 2.4 Benefits of Partial Coherence for DHM . . . . . . . . . . . . . . . . . . . 26 2.4.1 Spatial Frequency Filtering. . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Straylight and Multiple Reflection Removal . . . . . . . . . . 29 2.5 Types of Spatial Light Modulators. . . . . . . . . . . . . . . . . . . . . . . 31 2.5.1 Different Methods of Addressing . . . . . . . . . . . . . . . . . . 31 2.5.2 Digital Micromirror Devices and Liquid Crystal SLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5.3 Light Modulators as Holographic Elements . . . . . . . . . . . 34 2.6 Micromanipulation with Light . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6.1 Observation of the Momentum . . . . . . . . . . . . . . . . . . . . 38 2.6.2 Geometric Optical Explanation - Mie Regime . . . . . . . . . 41 2.6.3 Wave Optical Analysis - Rayleigh Regime . . . . . . . . . . . 42 2.6.4 Features and Influences of Optical Traps. . . . . . . . . . . . . 42 ix x Contents 2.6.5 Algorithms for Optical Trap Patterns in the Fourier Plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.6.6 Calibration of the Trap Forces . . . . . . . . . . . . . . . . . . . . 46 2.7 Dynamic Holography for Optical Micromanipulation . . . . . . . . . 47 2.8 Applications of Optical Tweezers . . . . . . . . . . . . . . . . . . . . . . . 49 2.9 Diffractive and Non-diffractive Beam Types. . . . . . . . . . . . . . . . 49 2.9.1 Gaussian Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.9.2 Bessel Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.9.3 Superposition of Bessel Beams. . . . . . . . . . . . . . . . . . . . 54 2.9.4 Laguerre Beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.9.5 Mathieu Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.9.6 Airy Beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.10 Direct Laser Writing with Two-Photon Polymerisation . . . . . . . . 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3 Available Systems and State of the Art. . . . . . . . . . . . . . . . . . . . . . . 73 3.1 Systems for Optical Traps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2 Imaging by Means of Digital Holographic Quantitative Phase-Contrast Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.3 Overview of HOT-Systems in Research. . . . . . . . . . . . . . . . . . . 75 3.4 Direct Laser Writing Lithography . . . . . . . . . . . . . . . . . . . . . . . 76 3.5 Multifunctional Combined Microscopy Systems . . . . . . . . . . . . . 78 3.6 Nano Coordinate Measuring Systems. . . . . . . . . . . . . . . . . . . . . 79 3.6.1 Properties of the NMM-1 System . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4 Experimental Methods and Investigations. . . . . . . . . . . . . . . . . . . . . 85 4.1 Objectives and Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Subsequent Digital Holographic Focussing. . . . . . . . . . . . . . . . . 87 4.2.1 Autofocus Strategies and Application to Phase Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.2 Halton Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2.3 Experimental Investigations . . . . . . . . . . . . . . . . . . . . . . 93 4.3 Digital Holographic Microscopy with Partially Coherent Light Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3.1 Optical Setups and Digital Holographic Reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3.2 Coherent Noise Removal . . . . . . . . . . . . . . . . . . . . . . . . 99 4.3.3 Experimental Demonstrations and Applications . . . . . . . . 100 4.3.4 Adaption of Reconstruction Methods . . . . . . . . . . . . . . . 100 4.3.5 Tayloring of the Coherence Length. . . . . . . . . . . . . . . . . 107 4.4 Error Compensation of SPM in a Nano-positioning Reference System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.