DIGITAL CMOS CIRCUIT DESIGN THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE VLSI, COMPUTER ARCHITECTURE AND DIGITAL SIGNAL PROCESSING Consulting Editor Jonathan Allen Other books in the series: Logic Minimization Algorithmsfor VLSI Synthesis. R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-Vincentelli. ISBN 0-89838-164-9. Computer-Aided Design and VLSIDevice Development. K.M. Cham, S.-Y. Oh, D. Chin, and J.L. Moll. ISBN 0-89838-204-1. Adaptive Filters: Structures, Algorithms, andApplications. M.L. Honig and D.G. Messerschmitt. ISBN 0-89838-163-0. Introduction to VLSISilicon Devices: Physics, Technology and Characterization. B. EI-Kareh and R.J. Bombard. ISBN 0-89838-210-6. Latchup in CMOS Technology: The Problem andIts Cure. R.R. Troutman. ISBN 0-89838-215-7. DIGITAL CMOS CIRCUIT DESIGN by Marco Annaratone Carnegie-Mellon University Pittsburgh, Pennsylvania ., ~ KLUWER ACADEMIC PUBLISHERS Boston / Dordrecht / Lancaster Distributorsfor Nortb America: Kluwer AcademicPublishers 101 PhilipDrive ASsinippi Park Norwell, Massachusetts02061, USA Distributorsfor tbeUKand Ireland: KluwerAcademicPublishers MTP PressLimited Falcon House, QueenSquare LancasterLAI lRN, UNITED KINGDOM Distributorsfor all otbercountries: KluwerAcademicPublishersGroup DistributionCentre PostOffice Box322 3300AH Dordrecht, THE NETHERLANDS LibraryofCongressCataloging-in-PublicationData Annaratone, Marco. DigitalCMOScircuitdesign. (The Kluwer internationalseriesinengineeringand computerscience. VLSI, computerarchitecture, and digitalsignal processing) Includesindex. 1. Metaloxidesemiconductors, Complementary. 2. Digitalelectronics. 3. Integratedcircuits Verylargescaleintegration. I. Title. II. Series. TK7871.99.M44A56 1986 621.395 86-10646 ISBN-13:978-1-4612-9409-2 e-ISBN-13:978-1-4613-2285-6 001: 10.1007/978-1-4613-2285-6 Copyright © 1986byKluwerAcademicPublishers Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem, ortransmittedinanyformorbyanymeans, mechanical, photocopying, recording, orother wise, withoutthepriorwrittenpermissionofthepublisher,KluwerAcademicPublishers, 101 PhilipDrive, Assinippi Park, Norwell, Massachusetts02061. PrintedintheUnitedStatesofAmerica To Hanni(and Vanessa, ofcourse) Contents Foreword xi Preface xiii 1. Introduction 1 1.1. FromnMOStoCMOS 3 1.2. CMOSBasicGates 8 2. MOSTransistorCharacteristics 15 2.1. TheMOSTransistor 15 2.2. ParasiticParameters 28 2.3. SmallGeometryMOSTransistor 36 2.4. CMOSTransmissionGate 41 2.5. CMOSInverter 44 2.6. AMoreAccurateModelfortheCMOSInverter 49 2.7. CMOSPowerDissipation 55 3. FabricationProcesses 61 3.1. Thep-wellFabricationProcess 62 3.2. Then-wellFabricationProcess 66 3.3. LOCMOSTechnology 68 3.4. Latchup 71 3.5. TheTwin-tubFabricationProcess 79 3.6. TheSOSFabricationProcess 80 3.7. Bulkvs. SOl 82 3.8. DesignRules 83 4. LogicDesign 89 4.1. StaticLogic 93 4.1.1. ComplementaryLogic 93 4.1.2. nMOS-likeLogic 94 4.1.3. TransmissionGateIntensiveLogic 98 4.1.4. CascodeLogic 100 4.2. DynamicLogic 103 4.2.1. Ripple-through Logic 105 4.2.2. P-ELogic 111 viii DigitalCMOSCircuitDesign 4.2.3. ClockedCMOSLogic 113 4.2.4. DominoLogic 114 4.2.5. NORALogic 117 4.3. ChargeSharing 121 4.4. Bootstrap Logic 124 4.5. LogicDesignattheSystemLevel 128 5. CircuitDesign 133 5.1. Resistance, Capacitance,and Inductance 134 5.1.1. InterconnectResistance 136 5.1.2. InterconnectCapacitance 137 5.1.3. InterconnectInductance 143 5.1.4. InterconnectDiscontinuities 143 5.1.5. CouplingParametersandInterconnectDelay 144 5.1.6. DiffusionResistance 146 5.1.7. Contact Resistance 147 5.2. ModelingLongInterconnects 149 5.3. TheConceptofEquivalentGateLoad 152 5.4. DelayMinimization 155 5.4.1. InverterDelayandSizing 156 5.4.2. InverterChainSizing 159 5.4.3. InverterChainSizingwithStrayCapacitance 162 5.5. TransistorSizinginStaticLogic 163 5.6. TransistorSizinginDynamicLogic 165 6. DesignofBasicCircuits 173 6.1. StorageElements 174 6.2. Full-adder 178 6.3. ProgrammableLogicArray 181 6.4. Random-accessMemory 186 6.4.1. MemoryCell 188 6.4.2. Decoder 191 6.4.3. SenseAmplifier 193 6.5. ParallelAdder 204 6.6. ParallelMultiplier 209 6.6.1. The Design of a Multiplier Based on the ModifiedBoothAlgorithm 211 6.6.2. BasicBuilding-blocksInsidetheArray 213 6.6.3. TheProblemofSignExtension 216 6.6.3.1. The"SignPropagate"Method 217 6.6.3.2. The "SignGenerate" Method 222 6.6.4. The Implementation of a 24-bit CMOSBoothMultiplier 226 Contents ix 7. DriverandI/OBufferDesign 233 7.1. CMOSInverterDelayEstimation 234 7.1.1. Fall-timeDelayEstimation 243 7.1.1.1. Region 1: n-channel Device in Saturation 244 7.1.1.2. Region 2: n-channel Device in LinearRegion 248 7.1.2. Rise-timeDelayEstimation 252 7.1.3. RefiningtheModel 252 7.2. InputBuffer 257 7.3. OutputBuffer 261 7.4. Tri-stateOutputBufferand I/OBuffer 272 7.5. OutputBufferandBusDriverDesignOptimization 274 7.5.1. UnconstrainedDelayMinimization 275 7.5.2. ConstrainedDelayMinimization 282 7.6. InputProtection 287 7.7. OutputProtection 294 7.8. DrivingLargeOn-chipLoads 295 AppendixA. Layout 301 A.I. GeneralConsiderationsonLayout 302 A.2. Layout Methodologies for Latchup Avoidance 310 A.3. LayoutwithStructuredMethodologies 313 A.4. PowerandGroundRouting 315 AppendixB.InterconnectCapacitanceComputation 319 B.I. Case 1: CoupledMicrostripStructure 320 B.2. Case2: CoupledStriplineStructure 321 AppendixC. FiguresfromSection5.4.2 323 AppendixD.DelayMinimizationBasedonEq. (7·3) 327 AppendixE.EquationsRelatedtoFig.7·10 337 AppendixF. SymbolsandPhysicalConstants 339 Index 341 Foreword In light of decreasing feature size and greater sophistication of modern processing technology, CMOS has become increasingly attractive, pro viding low-power (at moderate frequencies), good scalability, and rail-to rail operation. For many designers, particularly those approaching VLSI from a system viewpoint, previous experiencehas beenmainly with ratioed NMOSdesign, andsothereisaneedto buildonthisexperienceandmakea naturaltransitionintoCMOSdesign. Indeed, thereismuchthatcanbebor rowed from NMOS experience, mainly centered around the techniques for creating N channel pulldown structures. Based on these contributions, CMOS has now grown to the point where there are several circuit styles which haveevolved, and theseareamplydescribed inthisbook. Startingat the level oftheindividualMOSFET, basicbuildingblocksaredescribed, as well as the variety ofCMOS fabrication processes in contemporary usage. Circuitstyleissuesarethenexpandedto providetheuserwithseveraluseful designmethodologies, andmuchcareisgiventoelectricalperformancecon siderations, including characteristics of interconnect, gate delay, and I/O buffering. This understanding is then applied to macro-sized components, including array multipliers, where the reader acquires a unified view ofar chitectural performance through parallelism, and circuit performance throughscrupulousattentiontodevicesizingandcontrolofparasiticcircuit elements. In addition, layout techniques to avoid latchup, a consideration not previously encountered by NMOS designers, are given careful treatment. DesignerswhoareapproachingCMOSfrom previous NMOSexperience, orthosewhoarecontemplatingtheir first designs, will find arichtreatment ofmajordesignissuescenteredaroundCMOS, inastylethatisthoughtful, detailed, and broad from the system perspective. The emerging high performance designs will partake of the benefits of increasingly exciting process and circuit innovation, forming the basis for lasting contributions to contemporary digital design. Jonathan Allen Consulting Editor Preface Complementary metal-oxide semiconductor (CMOS) technology has become the most effective fabrication process for the production of very large-scale integrated (VLSI) digital circuits. Moreover, there is wide-spread consensus that no other technology will effectively compete with CMOS for many years to come. It is therefore essential for the VLSI circuit designer to fully master the wide range of possibilitiesthatCMOScanoffer. The purpose ofthis book is not simply to present and discuss the most important techniquesusedinthedesignofCMOS digitalcircuits. Rather, digitalCMOSdesign is dealt with in the realm ofconstantly decreasing feature sizes, which poses new challengesto the designer in search ofultimate speed. Aquick look atthe Tableof Contents exemplifies this: interconnection and off-chip communication delays are dealtwithextensivelyinChapters5and7. As is well-known, the intrinsic gate delay no longer dictates circuit speed. Interconnection and off-chip communication delays represent far more important limitations. This is another reason why other technologies featuring shorter gate delay than CMOS- such as Gallium Arsenide, in particular- will not necessarily prevail in the shortterm. Smaller feature sizeswill also require lowerpowersupply voltage. Although it is still possible to use the standard 5V power supply for micrometer technologies, sub-rilicron processes will necessitate lower voltages. with dramatic effects on design methodologies. Lower voltages and smaller parasitic capacitances make dynamic logic design less reliable, noise problems may call for differential interconnections. and so on. Therefore. it is crucial to realize that the approachtothedesignofhigh-performancechipsmustbereconsidered.