ebook img

Diffusions and elliptic operators PDF

239 Pages·1997·1.097 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Diffusions and elliptic operators

To the memory of my father, Jay Bass (1911–1997) PREFACE Theinterplayofprobabilitytheoryandpartialdifferentialequations forms a fascinating part of mathematics. Among the subjects it has in- spired are the martingale problems of Stroock and Varadhan, the Harnack inequality of Krylov and Safonov, the theory of symmetric diffusion pro- cesses, and the Malliavin calculus. When I first made an outline for my previous book Probabilistic Techniques in Analysis, I planned to devote a chapter to these topics. I soon realized that a single chapter would not do the subject justice, and the current book is the result. The first chapter provides the probabilistic machine needed to drive thesubject,namely,stochasticdifferentialequations.Weconsiderexistence, uniqueness, and smoothness of solutions and stochastic differential equa- tions with reflection. The second chapter is the heart of the subject. We show how many partial differential equations can be solved by simple probabilistic expres- sions. The Dirichlet problem, the Cauchy problem, the Neumann problem, theobliquederivativeproblem,Poisson’sequation,andSchro¨dinger’sequa- tion all have solutions that are given by appropriate probabilistic expres- sions. Green functions and fundamental solutions also have simple proba- bilistic representations. Ifanoperatorhassmoothcoefficients,thenequationswiththeseop- erators will have smooth solutions. This theory is discussed in Chapter III. The chapter is largely analytic, but probability allows some simplification in the arguments. ChapterIVconsidersone-dimensionaldiffusionsandthecorrespond- ingsecond-orderordinarydifferentialequations.Everyone-dimensionaldif- viii PREFACE fusion can be derived from Brownian motion by changes of time and scale. Whatiscoveredinthefirstfourchaptersismostlyclassicalandwell known. The next four chapters discuss material that has appeared only in much more specialized places. Chapter V concerns operators in nondivergence form. After some preliminaries,thediscussionturnstotheHarnackinequalityofKrylovand Safonov and then to approximating operators with nonsmooth coefficients by those with smooth coefficients. Even in the nonsmooth case, solutions to these equations will have at least some regularity. ChapterVIconcernstheexistenceanduniquenessofthemartingale problem for operators in nondivergence form. If the coefficients are contin- uous, there exists only one process corresponding to a given operator. A similar assertion can be made in certain other cases. In Chapter VII we turn to divergence form operators. Our main goalsaretoderiveMoser’sHarnackinequality,upperandlowerboundsfor the heat kernel, and path properties of the associated processes. Finally,inChapterVIIIweconsidertwodifferentapproachestothe Malliavin calculus. We show how each one can be used to prove a version of Ho¨rmander’s theorem. Inthisbookweconsideronlylinearsecond-orderellipticandparabol- icoperators.Thisisnottoimplythatprobabilityhasnothingtosayabout nonlinear or higher-order equations, but these topics are not discussed in this book. Itisassumedthatthereaderknowssomeprobabilitytheory;thefirst chapter of Bass [1] (referenced in this book by “PTA”) is more than suffi- cient. References are given for the theorems from probability and analysis that are required. Each chapter ends with some notes that describe where I obtained the material and suggestions for further reading. These are not meant to be a history of the subject and are totally inadequate for that purpose. Most of the material covered has previously been the subject of courses I have given at the University of Washington, and I would like to thank the students who attended and pointed out errors. In addition, I would like to give special thanks to Heber Farnsworth and Davar Khosh- nevisan, who read through the text and made valuable suggestions. Partial support for this project has been provided by the National Science Foun- dation. Some notation We will let B(x,r) denote the open ball in Rd with center x and radius r. We use | · | for the Euclidean norm of points of Rd, for the norm of vectors, and for the norm of matrices.(cid:1)To be more precise, let ei denote theunitvectorinthexi direction.Ifv = di=1biei andAisamatrix,then Some notation ix (cid:2)(cid:3)d (cid:4) 1/2 |v|= b2 , |A|= sup |Av|. i i=1 |v|=1 The inner product in Rd of x and y will be written x·y. If A is a matrix, then AT denotes the transpose of a. Kronecker’s delta δij is 1 if i=j and 0 otherwise. The complement of a set B is denoted Bc. ∂t is an abbreviation for ∂/∂t and ∂i an abbreviation for ∂/∂xi. The Lp norm of a function f will be denoted (cid:1)f(cid:1)p. We define the Fourier transform of a function f by (cid:6) f(cid:5)(ξ)= eiξ·xf(x)dx. Rd A smooth function is one such that the function and its partial derivatives of all orders are continuous and bounded. The notation 1A represents the function or random variable that takes the value 1 on the set A and 0 on the complement of A. If Xt is a stochastic process and A a Borel subset of Rd, we write TA =T(A)=inf{t>0:Xt ∈A} and τA =τ(A)=inf{t>0:Xt ∈/ A} for the first hitting time and first exit time of A, respectively. The letter c with a subscript indicates a constant whose exact value is unimportant. We renumber in each theorem, lemma, proposition, and corollary. The reference PTA refers to Bass [1]. Seattle, Washington Richard F. Bass CONTENTS PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . vii Some notation . . . . . . . . . . . . . . . . . . . . . viii I. STOCHASTIC DIFFERENTIAL EQUATIONS . . . . . . . . . 1 1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . 2 2. Pathwise solutions . . . . . . . . . . . . . . . . . . . 4 3. Lipschitz coefficients . . . . . . . . . . . . . . . . . . 5 4. Types of uniqueness . . . . . . . . . . . . . . . . . . 10 5. Markov properties . . . . . . . . . . . . . . . . . . 12 6. One-dimensional case . . . . . . . . . . . . . . . . . 16 7. Examples . . . . . . . . . . . . . . . . . . . . . . 18 8. Some estimates . . . . . . . . . . . . . . . . . . . . 23 9. Stratonovich integrals . . . . . . . . . . . . . . . . . 27 10. Flows . . . . . . . . . . . . . . . . . . . . . . . . 28 11. SDEs with reflection . . . . . . . . . . . . . . . . . 33 12. SDEs with reflection: pathwise results . . . . . . . . . . 37 13. Notes . . . . . . . . . . . . . . . . . . . . . . . . 41 II. REPRESENTATIONS OF SOLUTIONS . . . . . . . . . . . 43 1. Poisson’s equation . . . . . . . . . . . . . . . . . . 44 2. Dirichlet problem . . . . . . . . . . . . . . . . . . . 46 3. Cauchy problem . . . . . . . . . . . . . . . . . . . 47 4. Schro¨dinger operators . . . . . . . . . . . . . . . . . 48 5. Girsanov transformation . . . . . . . . . . . . . . . . 50 xii CONTENTS 6. The Neumann and oblique derivative problems . . . . . . 51 7. Fundamental solutions and Green functions . . . . . . . 53 8. Adjoints . . . . . . . . . . . . . . . . . . . . . . . 54 9. Notes . . . . . . . . . . . . . . . . . . . . . . . . 56 III. REGULARITY OF SOLUTIONS . . . . . . . . . . . . . . 57 1. Variation of parameters . . . . . . . . . . . . . . . . 58 2. Weighted Ho¨lder norms . . . . . . . . . . . . . . . . 59 3. Regularity of hitting distributions . . . . . . . . . . . . 64 4. Schauder estimates . . . . . . . . . . . . . . . . . . 67 5. Dirichlet problem . . . . . . . . . . . . . . . . . . . 69 6. Extensions . . . . . . . . . . . . . . . . . . . . . . 71 7. Neumann and oblique derivative problem . . . . . . . . 73 8. Caldero´n-Zygmund estimates . . . . . . . . . . . . . . 74 9. Flows . . . . . . . . . . . . . . . . . . . . . . . . 75 10. Notes . . . . . . . . . . . . . . . . . . . . . . . . 76 IV. ONE-DIMENSIONAL DIFFUSIONS . . . . . . . . . . . . 77 1. Natural scale . . . . . . . . . . . . . . . . . . . . . 77 2. Speed measures . . . . . . . . . . . . . . . . . . . . 80 3. Diffusions as solutions of SDEs . . . . . . . . . . . . . 87 4. Boundaries . . . . . . . . . . . . . . . . . . . . . . 90 5. Eigenvalue expansions . . . . . . . . . . . . . . . . . 93 6. Notes . . . . . . . . . . . . . . . . . . . . . . . . 96 V. NONDIVERGENCE FORM OPERATORS . . . . . . . . . . 97 1. Definitions . . . . . . . . . . . . . . . . . . . . . . 97 2. Some estimates . . . . . . . . . . . . . . . . . . . . 99 3. Examples . . . . . . . . . . . . . . . . . . . . . . 104 4. Convexity . . . . . . . . . . . . . . . . . . . . . . 107 5. Green functions . . . . . . . . . . . . . . . . . . . 110 6. Resolvents . . . . . . . . . . . . . . . . . . . . . . 112 7. Harnack inequality . . . . . . . . . . . . . . . . . . 114 8. Equicontinuity and approximation . . . . . . . . . . . 120 9. Notes . . . . . . . . . . . . . . . . . . . . . . . . 127 VI. MARTINGALE PROBLEMS . . . . . . . . . . . . . . . . 129 1. Existence . . . . . . . . . . . . . . . . . . . . . . 130 2. The strong Markov property . . . . . . . . . . . . . . 135 3. Some useful techniques . . . . . . . . . . . . . . . . 138 4. Some uniqueness results . . . . . . . . . . . . . . . . 144 5. Consequences of uniqueness . . . . . . . . . . . . . . 151

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.