ebook img

Diffusion of a massive quantum particle coupled to a quasi-free thermal medium PDF

1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Diffusion of a massive quantum particle coupled to a quasi-free thermal medium

Diffusion of amassive quantumparticle coupled toa quasi-freethermalmedium. W.DeRoeck1 InstituteforTheoreticalPhysics K.U.Leuven B3001Heverlee,Belgium InstituteforTheoreticalPhysics ETHZu¨rich CH-8093Zu¨rich,Switzerland J.Fro¨hlich 0 1 InstituteforTheoreticalPhysics 0 ETHZu¨rich 2 CH-8093Zu¨rich,Switzerland g u A 2 2 Abstract: Weconsideraheavyquantumparticlewithaninternaldegreeoffreedommovingonthed-dimensionallatticeZd (e.g.,aheavy atomwithfinitelymanyinternalstates). Theparticleiscoupledtoathermalmedium(bath)consistingoffreerelativisticbosons(photons ] orGoldstonemodes)throughaninteractionofstrengthλlinearincreationandannihilationoperators. Themassofthequantumparticleis h assumedtobeoforderλ−2,andweassumethattheinternaldegreeoffreedomiscoupled“effectively”tothethermalmedium.Weprovethat p themotionofthequantumparticleisdiffusiveind≥4andforλsmallenough. - h KEYWORDS:diffusion,weakcouplinglimit,quantumBoltzmannequation,quantumfieldtheory t a m [ 1 Introduction 3 v 8 1.1 Diffusion 7 1 Diffusion and Brownianmotion arecentralphenomena in the theory of transport processesand nonequilibrium 5 statisticalphysicsingeneral. Onecanthinkofthediffusionofatracerparticleininteractingparticlesystems,the . 6 diffusionofenergyincoupledoscillatorchains,andmanyotherexamples. 0 Fromaheuristic point of view, diffusionisratherwell-understood inmost of these examples. Itcanoftenbe 9 successfullydescribedbysomeMarkovianapproximation,e.g.theBoltzmannequationorFokker-Planckequation, 0 dependingontheexampleunderstudy. Infact,thishasbeenthestrategyofEinsteininhisgroundbreakingwork : v of1905,inwhichhemodeleddiffusionasarandomwalk. i X However,uptothisdate,thereisnorigorousderivationofdiffusionfromclassicalHamiltonianmechanicsor unitaryquantummechanics,exceptforsomespecialchaoticsystems;seeSection1.3.1. Suchaderivationoughtto r a allowus,forexample,toprovethatthemotionofatracerparticlethatinteractswithitsenvironmentisdiffusive atlargetimes. Inotherwords,onewouldliketoproveacentrallimittheoremforthepositionofsuchaparticle. Inrecentyears,somepromisingstepstowardsthisgoalhavebeentaken. Weprovideabriefreviewofprevious resultsinSection1.3. Inthepresentpaper,werigorouslyexhibitdiffusionforaquantumparticleweaklycoupled toathermalreservoir.However,ourmethodisrestrictedtospatialdimensiond 4. ≥ 1PostdoctoralFellowFWO-FlandersatK.U.Leuven,Belgium,email:[email protected] 1 1.2 Informaldescription of themodeland mainresults WeconsideraquantumparticlehoppingonthelatticeZd,andinteractingwithareservoirofbosons(photonsor phonons) attemperatureβ 1 > 0. Inthe presentsection, we describe the system in awaythat isappropriateat − zerotemperature,butisformalwhenβ < . ThetotalHilbertspace,H,ofthecoupledsystemisatensorproduct oftheparticlespace,H ,withareservoirs∞pace,H . Thus S R H :=H H . (1.1) S R ⊗ TheparticlespaceH isgivenbyl2(Zd) S,wheretheHilbertspaceS describestheinternaldegreesoffreedom S ⊗ of the particle, e.g., a (pseudo-)spin or dipole moment, and the particle Hamiltonian is given by the sum of the kineticenergyandtheenergyoftheinternaldegreesoffreedom H :=H 1+1 H (1.2) S S,kin S,spin ⊗ ⊗ Thekineticenergyischosentobesmallincomparisonwiththeinteractionenergy,andthisismademanifestinits definitionbyafactorλ2,whereλisthecouplingstrengthbetweentheparticleandthereservoir(tobeintroduced below). Henceweset H =λ2ε(P), (1.3) S,kin wherethefunctionεisthedispersionlawoftheparticleandP isthelattice-momentumoperator.Themostnatural choiceistotakeε(P)tobe(minus)thediscretelatticeLaplacian, ∆. Theenergyofstatesoftheinternaldegreeof − freedomistoalargeextentarbitrary H :=Y, forsomeHermitianmatrixY, (1.4) S,spin themainrequirementbeingthatY notbeequaltoamultipleoftheidentity. Thereservoirisdescribedbyafreeboson field; creationandannihilation operatorscreating/annihilatingbo- sonswithmomentumq Rd arewrittenasa ,a ,respectively. Theysatisfythecanonicalcommutationrelations ∈ ∗q q [a#q ,a#q′]=0, [aq,a∗q′]=δ(q−q′), (1.5) wherea# standsforeitheraora . Theenergyofareservoirmodeq isgivenbythedispersionlawω(q) 0. To ∗ describethecouplingoftheparticletothereservoir,weintroduceaHermitianmatrixW onS andwewrit≥eX for thepositionoperatoronl2(Zd). ThetotalHamiltonianofthesystemistakentobe Hλ :=HS+ZRddqω(q)a∗qaq+λZ dq(cid:16)eiq·X ⊗W ⊗φ(q)aq +e−iq·X ⊗W ⊗φ(q)a∗q(cid:17) (1.6) actingonH H . Thefunctionφ(q)isaformfactorandλ Risthecouplingstrength. WewriteH insteadof S R S ⊗ ∈ H 1,etc. S ⊗ Weintroducethreeimportantassumptions: 1) Thekineticenergyissmallw.r.t.thecouplingtermintheHamiltonian,ashasalreadybeenindicatedbythe inclusionofλ2inthedefinitionofH . Physically,thismeansthattheparticleisheavy. S,kin 2) Werequirealineardispersionlawforthereservoirmodes,ω(q) q ,inordertohavegooddecayestimatesat ≡| | lowspeed.Thismeansthatthereservoirconsistsofphotons,phononsorGoldstonemodesofaBose-Einstein condensate. 3) We assume that the amplitude of the wave front of a reservoir excitation (located on the light cone) has integrable(intime)decay.Thisissatisfiedifthedimensionofspace2isatleast4. 2Sincetheintegrabilityintimeisonlyneededforreservoirexcitations, wecaninprinciple alsotreatmodelsinwhich theparticleis3- dimensional,butthereservoiriseffectively4-dimensional. 2 Additionalassumptionswillconcernthesmoothnessoftheformfactorφandthe“effectiveness”ofthecoupling totheheatbath(e.g.,theinteractionbetweenthe internaldegreesof freedomandthereservoir,describedbythe matrixW,shouldnotvanish.) The initial state, ρβ, of the reservoir is chosen to be an equilibrium state at temperature β 1 > 0. For math- R − ematicaldetailson the construction of infinite reservoirs, see e.g.[10, 4,2]. The initialstate of the whole system, consistingoftheparticleandthereservoir,isaproductstateρ ρβ,withρ adensitymatrixfortheparticlethat S⊗ R S willbespecifiedlater. Thetime-evolveddensitymatrixoftheparticle(’subsystem’)iscalledρ andisobtained S,t by “tracing out the reservoir degreesof freedom” after the time-evolution has acted on the initial state during a timet,i.e.,formally, ρS,t :=TrHR e−itHλ ρS⊗ρβR eitHλ , (1.7) whereTrHR isthepartialtraceoverHR. Wewarnhtherea(cid:16)derthatt(cid:17)heaboiveformuladoesnotmakesensemath- ematically for an infinitely extended reservoir, since the reservoir state ρβ is not a density matrix on H . This R R is aconsequence of the factthatthe reservoiris describedfromthe startin the thermodynamic limit and, hence, the reservoir modes form a continuum. Nevertheless, the LHS of formula (1.7) can be given a meaning in the thermodynamiclimit. Thedensitymatrixρ obviouslydependsonthecouplingstrengthλ,butwedonotindicatethisexplicitly. We S,t alsodropthesubscriptSandwesimplywriteρ ,insteadofρ ,inwhatfollows. t S,t Wewilloftenrepresentρ asaB(S)-valuedfunctiononZd Zd: t × ρ (x ,x ) B(S), x ,x Zd. (1.8) t L R ∈ L R ∈ Althoughthisisnotnecessaryformanyofourresults,werequiretheinitialstateoftheparticletobeexponentially localizedneartheoriginofthelattice,i.e., kρt(xL,xR)kB(S) ≤Ce−δ′|xL|e−δ′|xR|, forsomeconstantsC,δ′ >0 (1.9) Ourfirstresultconcernsthediffusionofthepositionoftheparticle. 1.2.1 Diffusion Wedefinetheprobabilitydensity µt(x):=TrS ρt(x,x) (1.10) whereTrS denotesthepartialtraceovertheinternaldegreesoffreedom. Thenumberµt(x)istheprobabilityto findtheparticleatsitexaftertimet. Bydiffusion,wemeanthat,forlarget, d/2 1 1 x x µt(x) (detD)−1/2exp D−1 , (1.11) ∼ 2πt {−2 √t · √t } (cid:18) (cid:19) (cid:18) (cid:19) wherethediffusiontensorD D isastrictlypositivematrixwithrealentries;actually,iftheparticledispersion λ ≡ law ε is invariant under lattice rotations, then the tensor D is isotropic and hence a scalar. The magnitude of D is inferred from the following reasoning: The particle undergoes collisions with the reservoir modes. Let t be m the mean time between two collisions, and let v be the mean speed of the particle (the direction of the particle m velocityisassumedtoberandom). Thenthemeanfreepathisv t andthecentrallimittheoremsuggeststhat m m × theparticlediffuseswithdiffusionconstant (v t )2 m m D × (1.12) ∼ t m The meantime t is of ordert λ 2 since the interaction with the reservoircontributes only in second order. m m − ∼ The mean velocity v is of order v λ2 because of the factor λ2 in the definition of the kinetic energy. Hence m m ∼ D λ2. ∼ 3 Wenowmovetowardsquantifying(1.11). Letusfixatimet. Sinceµ (x)isaprobabilitymeasure,onecanthink t ofx asarandomvariablewith t Prob(x =x):=µ (x). (1.13) t t The claimthatthe randomvariable xt convergesindistribution, ast , toaGaussianrandomvariablewith √t ր ∞ mean0andvarianceD iscalledaCentralLimitTheorem(CLT).Itisequivalenttopointwise convergenceof the characteristicfunction,i.e., e−√itx·qµt(x) e−12q·Dq, forallq Rd, (1.14) −t→ ∈ xX∈Zd ↑∞ anditisthisstatementwhichisourmainresult,Theorem3.1. Astrongerversionoftheconvergencein(1.14)(also includedinTheorem3.1)impliesthattherescaledmomentsofµ converge. Forexample,fori,j =1,...,d, t 1 1 Tr[ρ X ]= x µ (x) 0 (1.15) t i i t t t −t→ x ↑∞ X 1 1 Tr[ρ X X ]= x x µ (x) D , (1.16) t i j i j t i,j t t −t→ x ↑∞ X Infact,thefirstline(vanishingofaveragedrift)isexpectedonlyifoneassumesthatthemodelhasspaceinversion symmetry,whichisassumedthroughout. 1.2.2 Equipartition Oursecondresultconcernstheasymptoticexpectationvalueofthekineticenergyoftheparticleandtheinternal degreesoffreedom. Theequipartitiontheoremsuggeststhattheenergyofalldegreesoffreedomof theparticle, the translational and internal degrees of freedom, thermalizes at the temperature β 1 of the heat bath. We will − establish this property up to a correction that is small in the coupling strength λ. This is acceptable, since the interactioneffectivelymodifiestheGibbsstateoftheparticle. Weprovethat,forallboundedfunctionsF, 1 ρt(F(HS,kin)) dkF(λ2ε(k))e−βλ2ε(k)+o(λ0) (1.17) t−ր→∞ Z ZTd | | 1 ρt(F(HS,spin)) F(e)e−βe+o(λ0), as λ 0 (1.18) t−ր→∞ Z′ e spY | | ց ∈X where Z,Z arenormalization constants and the sum rangesover alleigenvalues of the Hamiltonian Y. ′ e spY Wenotethatthefactore βλ2ε(k) canbereplacedby1(asin∈Theorem3.2)sinceweanyhowallowacorrectionterm − P thatissmallinλandthefunctionε(k)isbounded. Forthisreason,onecouldsaythat,forverysmallvaluesofλ, thetranslationaldegreesoffreedomthermalizeatinfinitetemperature(β =0). 1.2.3 Decoherence Bydecoherencewemeanthatoff-diagonalelementsρ (x,y)ofthedensitymatrixρ inthepositionrepresentation t t falloffrapidlyinthedistancebetweenxandy. Ofcourse,thispropertycanonlyholdatlargeenoughtimeswhen theeffectofthereservoirontheparticlehasdestroyedallinitiallong-distancecoherence,i.e.,afteratimeoforder λ 2. Thus,thereisadecoherencelength1/γ andadecayrategsuchthat − dch kρt(xL,xR)kB(S) ≤Ce−γdch|xL−xR|+C′e−λ2gt, as tր∞ (1.19) forsomeconstantsC,C . Themagnitudeoftheinversedecoherencerateγ isdeterminedasfollows: Thetime ′ dch thereservoirneedstodestroycoherenceisoftheorderofthemeanfreetimet ,whilethetimethatisneededfor m coherence to be built up over a distance 1/γ is given by (γ v ) 1, where v is the mean velocity of the dch dch m − m × particle. Equatingthesetwotimesyields γdch (tm vm)−1 (1.20) ∼ × andhence,recallingthatt λ 2andv λ2,asarguedinSection1.2.1,wefindthatγ doesnotscalewithλ. m − m dch ∼ ∼ 4 1.3 Related resultsanddiscussion 1.3.1 Classicalmechanics Diffusionhasbeenestablishedforthetwo-dimensionalfinitehorizonbilliardin[6]. Inthatsetup,apointparticle travelsinaperiodic,planararrayoffixedhard-corescatterers.Thefinite-horizonconditionreferstothefactthatthe particlecannotmovefurtherthanafixeddistancewithouthittinganobstacle. Knauf[27]replacedthe hard-corescatterersbyaplanarlatticeofattractiveCoulombic potentials, i.e., thepo- tential is V(x) = 1 . In that case, the motion of the particle can be mapped to the free motion on a − j Z2 x j ∈ | − | manifoldwithstrictlynegativecurvature,andonecanagainprovediffusion. P Recently,adifferentapproachwastakenin[24]: theauthorsof[24]considerad=3latticeofconfinedparticles that interact locally with chaotic maps such that the energy of the particles is preserved but their momenta are randomized. Neighboringparticlescanexchangeenergyviacollisionsandoneprovesdiffusivebehaviourofthe energyprofile. 1.3.2 Quantummechanicsforextendedsystems Theearliestresultforextendedquantumsystemsthatweareawareof,[30],treatsaquantumparticleinteracting with a time-dependent random potential that has no memory (the time-correlation function is δ(t)). Recently, thiswasgeneralizedin[25]tothecaseoftime-dependentrandompotentialswherethetime-dependenceisgiven by a Markov process with a gap (hence, the free time-correlation function of the environment is exponentially decaying). In[32],wetreatedaquantumparticleinteractingwithindependentheatreservoirsateachlatticesite. Thismodelalsohasanexponentiallydecayingfreereservoirtime-correlationfunctionandassuch,itisverysimilar to[25]. Noticealsothat,inspirit,themodelwithindependentheatbathsiscomparabletothemodelof[24],but, inpractice,itiseasiersincequantummechanicsislinear! Themostseriousshortcomingoftheseresultsisthefactthattheassumptionofexponentialdecayofthecorrel- ationfunctionintimeisunrealistic. Inthemodelofthepresentpaper,thespace-timecorrelationfunction, called ψ(x,t)inwhatfollows,isthecorrelationfunctionoffreely-evolvingexcitationsinthereservoir,createdbyinterac- tionwiththeparticle. Sincemomentumisconservedlocally,theseexcitationscannotdecayexponentiallyintime t,uniformlyinx. Forexample,ifthedispersionlawofthereservoirmodesislinear,thenψ(x,t)isasolutionofthe linearwaveequation. Ind=3,itbehavesqualitativelyas 1 ψ(x,t) δ(ct x), with c thepropagationspeedofthereservoirmodes (1.21) ∼ x | |−| | | | Inhigherdimensions,onehasbetterdispersiveestimates,namelysupx|ψ(x,t)|≤td−21 (undercertainconditions), andthisisthereasonwhy,forthetimebeing,ourapproachisrestrictedtod 4. IntheAndersonmodel,theana- ≥ logueofthecorrelationfunctiondoesnotdecayatall,sincethepotentialsarefixedintime. Indeed,theAnderson model is different from our particle-reservoir model: diffusion is only expected to occur for small values of the couplingstrength,whereastheparticlegetstrapped(Andersonlocalization)atlargecoupling. Finally, we mention a recent and exciting development: in [13], the existence of a delocalized phase in three dimensionsisprovenforasupersymmetricmodelwhichisinterpretedasatoyversionoftheAndersonmodel. 1.3.3 Quantummechanicsforconfinedsystems Thetheoryofconfinedquantumsystems,i.e.,multi-levelatoms,incontactwithquasi-freethermalreservoirshas beenintensivelystudiedinthelastdecade,e.g.by[3,23,12].Inthissetup,oneprovesapproachtoequilibriumfor themulti-levelatom. Althoughatfirstsight,thisproblemisdifferentfromours(thereisnoanalogueofdiffusion), thetechniquesarequitesimilarandweweremainlyinspiredbytheseresults. However,animportantdifference is that, due to its confinement, the multi-level atom experiences a free reservoir correlation function with better decay properties than that of our model. For example, in [23], the free reservoir correlation function is actually exponentiallydecaying. 5 1.3.4 Scalinglimits Up to now, most of the rigorous results on diffusion starting from deterministic dynamics are formulated in a scalinglimit.Thismeansthatonedoesnotfixonedynamicalsystemandstudyitsbehaviourinthelong-timelimit, but, rather, one comparesa family of dynamical systems at differenttimes. The precise definition of the scaling limitdiffersfrommodeltomodel,but,ingeneral,onescalestime,spaceandthecouplingstrength(andpossibly also the initial state) such that the Markovian approximation to the dynamics becomes exact. In our model the naturalscaling limit is the so-called weakcoupling limit: one introducesthe macroscopic time τ := λ2t and one takesthelimitλ 0,t whilekeepingτ fixed. Inthatlimit,thedynamicsoftheparticlebecomesMarkovian ց ր∞ in τ (asif the heatbath had no memory) and it is describedbya Lindblad evolution. The long-time behavior of thisLindbladevolutionisdiffusive. ThisisexplainedindetailinSection4. Onemaysaythat,inthisscalinglimit, the heuristic reasoning employed in the previous sections to deduce the λ-dependence of the diffusion constant and the decoherence length becomesexact. The same scaling is known verywell in the theoryof confined open quantumsystemsasitgivesrisetothePaulimasterequation. Thiswasfirstmadeprecisein[9]. IfwehadsetupthemodelwithakineticenergyofO(1)(insteadofO(λ2)),thenoneshouldalsorescalespace byintroducingthemacroscopicspace-coordinateχ:=λ2x. Thereasonforthisadditionalrescalingisthat,between twocollisions,aparticlewithmassoforder1movesduringatimeoforderλ 2,andhenceittravelsadistanceof − orderλ 2. Theresultingscalinglimit − x λ−2x, t λ−2t, λ 0 (1.22) → → ց isoftencalledthekineticlimit. InthekineticlimitthedynamicsoftheparticleisdescribedbyalinearBoltzmann equation(LBE)inthevariables(χ,τ). TheconvergenceoftheparticledynamicstotheLBEhasbeenprovenin[14] for a quantum particle coupled to a heatbath, and in [17] for a quantum particle coupled to a random potential (Anderson model). The long-time, large-distance limit of the Boltzmann equation is the heat equation, which suggeststhatoneshouldbeabletoderivetheheatequationdirectlyinthelimitingregimecorrespondingto x λ−(2+κ)x, t λ−(2+2κ)t, λ 0, forsome κ>0. (1.23) → → ց Thiswasaccomplishedin[16,15]fortheAndersonmodel. Ananalogousresultwasobtainedin[28]foraclassical particlemovinginarandomforcefield. 1.3.5 Limitationstoourresult Twostrikingfeaturesofourmodelarethelargemass,oforderλ 2,andtheinternaldegreesoffreedomdescribed − bytheHamiltonianH = Y. Physicallyspeaking,thesechoicesareofcoursenotnecessaryfordiffusion,they S,spin justmakeourtaskofprovingiteasier. Letusexplainwhythisisso. Firstofall,oncethemassischosentobeof orderλ 2,theinternaldegreesoffreedomarenecessarytomakethemodeldiffusiveinsecondorderperturbation − theory. Withouttheinternaldegreesoffreedom,itwouldbeballistic. ThisisexplainedinSection4.2;inparticular, it can be deduced immediately fromconservation of momentum and energyfor the processesin Figure 3. Note alsothatthedependenceonλischosensuchthatthekinetic termH = λ2ε(P)iscomparabletotheparticle- S,kin reservoir interaction in second order of perturbation theory (both are of order λ2). The large mass ensures that the position of the particle remains well-defined for a time of order λ 2, which permits us to sum up Feynman − diagramsinrealspace. Further, we note thatour resultrequiresananalyticity assumption on the formfactor φ, see Assumption 2.3. Thisassumption ensuresthatthefreereservoircorrelationfunction ψ(x,t)isexponentiallydecayingfor smallx, eventhoughithasslowdecayonthelightcone,asexplainedinSection1.3.2. 1.4 Outline of the paper ThemodelisintroducedinSection2andtheresultsarestatedinSection3.InSection4,wedescribetheMarkovian approximationtoour model. Thisapproximationprovidesmost of the intuition and itisa keyingredientof the proofs. Section5 describesthe mainideasof the proof, which iscontained inthe remainingSections6-9and the fourappendicesA-D. 6 Acknowledgements W.DeRoeckthanksJ.BricmontandH.Spohnforhelpfuldiscussionsandsuggestions,andforpointingoutseveral references. He has also greatly benefited from collaboration with J. Clarkand C. Maes. In particular, the results describedinSection4andAppendixCwereessentiallyobtainedin[7].Afterthefirstversionwassubmitted,some inaccuracieswerepointedoutbyL.Erdo¨s,A.Knowles,H.-T.YauandJ.Yin. Mostimportantly,theremarksofan anonymous refereeallowed for serious improvements in the presentation of the proof. Finally, W.D.R. acknow- ledgesthefinancialsupportoftheFlemishresearchfund‘FWO-Vlaanderen’. 2 The model AfterfixingconventionsinSection2.1,weintroducethemodel. Section2.2describestheparticle,whileSection2.3 dealswiththereservoir. InSection2.4,wecoupletheparticletothereservoir,andwedefinethereducedparticle dynamics . Section2.5introducesthefiberdecomposition. t Z 2.1 Conventions and notation GivenaHilbertspaceE,weusethestandardnotation Bp(E):= S B(E),Tr (S∗S)p/2 < , 1 p , (2.1) ∈ ∞ ≤ ≤∞ n h i o withB (E) B(E)theboundedoperatorsonE,and ∞ ≡ 1/p S p := Tr (S∗S)p/2 , S := S . (2.2) k k k k k k∞ (cid:16) h i(cid:17) For bounded operators acting on B (E), i.e. elements of B(B (E)), we use in general the calligraphic font: p p , , ,.... AnoperatorX B(E)determinesanoperatorad(X) B(B (E))by p V W T ∈ ∈ ad(X)S :=[X,S]=XS SX, S B (E). (2.3) p − ∈ ThenormofoperatorsinB(B (E))isdefinedby p (S) p := sup kW k . (2.4) kWk S∈Bp(E) kSkp WewillmainlyworkwithHilbert-Schmidtoperators(p = 2)and,unlessmentionedotherwise,thenotation kWk willrefertothiscase. Forvectorsυ Cd,weletReυ,Imυ denotethevectors(Reυ ,...,Reυ )and(Imυ ,...,Im υ ),respectively. 1 d 1 d Thescalarproduc∈tonCdiswrittenasυ υ andthenormas υ :=√υ υ. ′ ThescalarproductonageneralHilbe·rtspaceE iswritten|a|s , ,o·r,occasionally,as , E. Allscalarproducts h· ·i h· ·i aredefinedtobelinearinthesecondargumentandanti-linearinthefirstone. Weusethephysicists’notation ϕ ϕ′ fortherank-1operatorinB(E)actingas ϕ′′ ϕ′,ϕ′′ ϕ (2.5) | ih | 7→h i WewriteΓ (E)forthesymmetric(bosonic)FockspaceovertheHilbertspaceE andwereferto[10]fordefin- s itions and discussion. If ω is a self-adjoint operator on E, then its (self-adjoint) second quantization, dΓ (ω), is s definedby n dΓ (ω)Sym(ϕ ... ϕ ):= Sym(ϕ ... ωϕ ... ϕ ), (2.6) s 1 n 1 i n ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ i=1 X whereSymprojectsonthesymmetricsubspaceof nE andϕ ,...,ϕ E. 1 n ⊗ ∈ WeuseC,C todenoteconstantswhoseprecisevaluecanchangefromequationtoequation. ′ 7 2.2 The particle We choose a finite-dimensional Hilbert space S, which can be thought of as the state space of some internal degreesoffreedomoftheparticle,suchasspinoradipolemoment. ThetotalHilbertspaceoftheparticleisgiven byH :=l2(Zd,S)=l2(Zd) S (thesubscriptSrefersto’system’,asiscustomaryinsystem-reservoirmodels). S Wedefinethepositionope⊗rators,X ,onH by j S (X ϕ)(x)=x ϕ(x), x Zd, ϕ l2(Zd,S), j =1,...,d (2.7) j j ∈ ∈ In what follows, we will almost always drop the component index j and write X (X ) to denote the vector- j valuedpositionoperator. WewilloftenconsiderthespaceH initsdualrepresenta≡tion,i.e.asL2(Td,S),where S Tdisthed-dimensionaltorus(momentumspace),whichisidentifiedwithL2([ π,π]d,S). Weformallydefinethe ‘momentum’operatorP asmultiplicationbyk Td,i.e., − ∈ Pϕ(k)=kϕ(k), k [ π,π]d,ϕ L2(Td,S) (2.8) ∈ − ∈ AlthoughP iswell-definedasaboundedoperator,itdoesnotcorrespondtoacontinuous functiononTd,andit isnottruethat[X ,P ]= i. Throughoutthepaper,wewillonlyuseoperatorsF(P)whereF isafunctiononTd j j thatisextendedperiodica−llytoRd. Wechoosesuchaperiodicfunction,ε,ofP todeterminethedispersionlawof theparticle. Thekineticenergyofourparticleisgivenbyλ2ε(P),whereλisasmallparameter,i.e.,the’mass’of theparticleisoforderλ 2 − The energyof the internal degreesof freedomis given by a self-adjointoperator Y (S), actingon H as S ∈ B (Yϕ)(k)=Y(ϕ(k)). TheHamiltonianoftheparticleis H :=λ2ε(P) 1+1 Y (2.9) S ⊗ ⊗ AsinSection1,wewillmostlywriteε(P)insteadofε(P) 1andY insteadof1 Y. ⊗ ⊗ OurfirstassumptionensuresthattheHamiltonianH =Y +λ2ε(P)hasgoodregularityproperties S Assumption2.1(Analyticityoftheparticledynamics). Thefunctionε,definedoriginallyonTd,extendstoananalytic functioninaneighborhoodofthecomplexmultistripofwidthδ >0. Thatis,whenviewedasaperiodicfunctiononRd,εis ε analytic(andbounded)inaneighborhoodof(R+i[ δ ,δ ])d. Moreover,εissymmetricwithrespecttospaceinversion,i.e., ε ε − ε(k)=ε( k). (2.10) − Furthermore, weassumethereisno υ Rd such thatthefunctionk υ ε(k)vanishesidenticallyandthatεdoesnot haveasmallerperiodicitythanthatofT∈d,i.e.,weassumethat 7→ ·∇ ε(k)=ε(z+k) forall k Td z (2πZ)d. (2.11) ∈ ⇔ ∈ Themostnaturalchoiceforεisε(k)= d 2(1 cos(k )),whichcorrespondsto ε(P)beingthelatticeLapla- i=1 − i − cian. AsalreadyindicatedinSection1.2.1,thesymmetryassumption(2.10)isnecessarytoexcludeanasymptotic P driftoftheparticle. Bya simple Paley-Wiener argument, Assumption 2.1implies thatone has exponential propagationestimates fortheevolutiongeneratedbytheoperatorε(P). Indeed,fromtherelation (eiν·Xe−itε(P)e−iν·X) = e−itε(P+ν) eqε(|Imν|)|t|, for Imν <δε (2.12) ≤ | | (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) withqε(γ):=sup|Imp|(cid:13)≤γ|Imε(p)|,oneobtai(cid:13)ns (cid:13) (cid:13) (e−itε(P))(xL,xR) e−γ|xL−xR|eqε(γ)|t|, for γ δε (2.13) S ≤ ≤ (cid:13) (cid:13) wherewewriteS(xL,xR)fo(cid:13)(cid:13)raB(S)-valued’(cid:13)(cid:13)matrixelement’ofS B(HS). ∈ 8 2.3 The reservoirs 2.3.1 Thereservoirspace We introduce a one-particle reservoir space h = L2(Rd) and a positive one-particle Hamiltonian ω 0. The coordinateq Rd shouldbethoughtofasamomentumcoordinate,andω actsbymultiplicationwitha≥function ∈ ω(q), (ωϕ)(q)=ω(q)ϕ(q) (2.14) In other words, ω is the dispersion law of the reservoir particles. The full reservoir Hilbert space, H , is the R symmetricFockspace(seeSection2.1or[10])overtheone-particlespaceh, H :=Γ (h) (2.15) R s ThereservoirHamiltonian,H ,actingonH ,isthenthesecondquanitzationofω R R HR :=dΓs(ω)= dqω(q)a∗qaq. (2.16) ZRd withthecreation/annihilationoperatorsa ,a tobeintroducedbelow. ∗q q 2.3.2 Thesystem-reservoircoupling The coupling between system and reservoir is assumed to be translation invariant. We choose a ‘form factor’ φ L2(Rd)andaself-adjointoperatorW =W B(S)with W 1,andwedefinetheinteractionHamiltonian ∗ ∈ ∈ k k≤ H by SR HSR := dq eiq·X ⊗W ⊗φ(q)aq +e−iq·X ⊗W ⊗φ(q)a∗q on HS⊗HR, (2.17) Z (cid:16) (cid:17) wherea ,a arethecreation/annihilationoperatorsonhsatisfyingthecanonicalcommutationrelations(CCR) q ∗q [aq,a∗q′]=δ(q−q′), [a#q ,a#q′]=0 (2.18) witha#standingforeitheraora . Wealsointroducethesmearedcreation/annihilationoperators ∗ a∗(ϕ):=ZRddqϕ(q)a∗q, a(ϕ):=ZRddqϕ(q)aq, ϕ∈L2(Rd). (2.19) InwhatfollowswewillspecifyourassumptionsonH ,butwealreadymentionthatweneed[W,Y] = 0for SR 6 theinternaldegreesoffreedomtobecoupledeffectivelytothefield. 2.3.3 Thermalstates Next, we put some tools in place to describe the positive temperature state of the reservoir. We introduce the densityoperator Tβ =(eβω 1)−1 on h=L2(Rd). (2.20) − LetCbethe algebraconsistingofpolynomialsinthecreationandannihilationoperatorsa(ϕ),a (ϕ)withϕ,ϕ ∗ ∗ ′ ′ ∈ h. Wedefineρβ asaquasi-freestatedefinedonC. Itisfullyspecifiedbythefollowingproperties: R 1) Gauge-invariance ρβR[a∗(ϕ)]=ρβR[a(ϕ)]=0 (2.21) 2) Thechoiceofthetwo-particlecorrelationfunction ρβ [a (ϕ)a(ϕ)] ρβ [a (ϕ)a (ϕ)] ϕ T ϕ 0 R ∗ ′ R ∗ ∗ ′ = h ′| β i (2.22) (cid:18) ρβR[a(ϕ)a(ϕ′)] ρβR[a(ϕ)a∗(ϕ′)] (cid:19) (cid:18) 0 hϕ|(1+Tβ)ϕ′i (cid:19) 9 3) The state ρβ is quasifree. This means that the higher correlation functions are related to the two-particle R correlationfunctionviaWick’stheorem ρβ a#(ϕ )...a#(ϕ ) = ρβ a#(ϕ )a#(ϕ ) (2.23) R 1 2n R i j (cid:2) (cid:3) πX∈Pn(i,Yj)∈π (cid:2) (cid:3) wherea# standsforeithera ora,and isthesetofpairingsπ,partitionsof 1,...,2n intonpairs(r,s). ∗ n P { } Byconvention,wefixtheorderwithinthepairssuchthatr<s. ThereasonthatitsufficestospecifythestateonChasbeenexplainedinmanyplaces,seee.g.[4,20,10] 2.3.4 Assumptionsonthereservoir Next,westateourmainassumptionrestrictingthetypeofreservoirandthedimensionalityofspace. Assumption2.2(Relativisticreservoirandd 4). Weassumethatthe ≥ dimensionofspace d 4 (2.24) ≥ Further,weassumethedispersionlawofthereservoirparticlestobelinear; ω(q):= q (2.25) | | Forsimplicity,wewillassumethattheformfactorφisrotationallysymmetricandwewrite φ(q) φ(q ), q Rd (2.26) ≡ | | ∈ Wedefinethe”effectivesquaredformfactor”as 1 φ(ω )2 ω 0 ψˆ(ω):= ω (d−1) 1−e−βω | | | | ≥ (2.27) | | ( 1 φ(ω )2 ω <0 e−βω−1| | | | whereweareabusingthenotation bylettingω denote avariableinR. Previously, ω wasthe energyoperatoron theone-particleHilbertspaceandassuch,itcouldassumeonlypositivevalues. Indeed,atpositivetemperature, thefunctionψˆ(ω)playsasimilarroleas φ(ω )2 atzero-temperature: Itdescribestheintensityofthecouplingto | | | | thereservoirmodesoffrequencyω. Modeswithω < 0appearonlyatpositivetemperatureandtheycorrespond physicallyto”holes”. Onechecksthat ψˆ(ω) = eβω,whichisEinstein’semission-absorptionlaw(i.e.detailedbal- ψˆ( ω) − ance). Thisparticle-holepointofviewcanbeincorporatedintotheformalismbytheAraki-Woodsrepresentation, seee.g.[4,20,10]. Thenextassumptionrestrictsthe“effectivesquaredformfactor”ψˆ. Assumption2.3(Analyticformfactor). Lettheformfactorberotation-symmetricφ(q) φ(q ),asin(2.26),andletψˆbe ≡ | | definedasin(2.27). Weassumethatψˆ(0) = 0andthatthefunctionω ψˆ(ω)hasananalyticextensiontoaneighborhood ofthestripR+i[δ ,δ ],forsomeδ >0,suchthat → R R R sup dω ψˆ(ω) < . (2.28) | | ∞ −δR≤χ≤δRRZ+iχ WenotethatAssumption2.3issatisfied(ind 4)ifonechooses: ≥ 1 φ(q ):= ϑ(q ) (2.29) | | q | | | | with ϑ a function on R with ϑ( ω) = ϑ(ω)and analyticpinthe strip of width δ , and such that(2.28) holds with R − ϑ(ω)2substitutedfor ψˆ(ω). | | | | 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.