NonamemanuscriptNo. (willbeinsertedbytheeditor) ff Di usion NMR Study of Complex Formation in 1 Membrane-Associated Peptides 2 2 1 SulimanBarhoum,ValerieBoothandAnandYethiraj 0 3 2 t c O 4 4 5 Received:date/Accepted:date 2 ] t f 6 Abstract Pulsed-field-gradientnuclearmagneticresonance(PFG-NMR)isusedtoobtain o s the true hydrodynamic size of complexes of peptides with sodium dodecyl sulfate SDS . 7 t a micelles.Thepeptideusedinthisstudyisa19-residueantimicrobialpeptide,GAD-2.Two m 8 - 9 smallerdipeptides,alanine-glycine(Ala-Gly)andtyrosine-leucine(Tyr-Leu),areusedfor d n comparison. We use PFG-NMR to simultaneously measure diffusion coefficients of both 10 o c peptideandsurfactant.Thesetwoinputs,asafunctionofSDSconcentration,arethenfitto 11 [ asimpletwospeciesmodelthatneglectshydrodynamicinteractionsbetweencomplexes. 1 12 v FromthisweobtainthefractionoffreeSDS,andthehydrodynamicsizeofcomplexesina 3 13 4 GAD-2–SDSsystemasafunctionofSDSconcentration.Theseresultsarecomparedtothose 6 14 6 forsmallerdipeptidesandforpeptide-freesolutions.AtlowSDSconcentrations([SDS]≤ . 15 0 1 25mM),theresultsself-consistentlypointtoaGAD-2–SDScomplexoffixedhydrodynamic 16 2 1 sizeR=(5.5±0.3)nm.AtintermediateSDSconcentrations(25mM<[SDS]<60mM),the 17 : v i SulimanBarhoum X Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, r Canada a E-mail:[email protected], ValerieBooth DepartmentofBiochemistry,MemorialUniversityofNewfoundland,St.John’s,NL,Canada Tel.:709-864-4523 E-mail:[email protected], AnandYethiraj Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, Canada Tel.:709-864-2113 E-mail:[email protected] 2 SulimanBarhoum,ValerieBoothandAnandYethiraj apparent size of a GAD-2–SDS complex shows almost a factor of two increase without a 18 significant change in surfactant-to-peptide ratio within a complex, most likely implying 19 an increase in the number of peptides in a complex. For peptide-free solutions, the self- 20 diffusioncoefficientsofSDSwithandwithoutbufferaresignificantlydifferentatlowSDS 21 concentrationsbutmergeabove[SDS]=60mM.Thisconcentrationisidentifiedasanonset 22 ofcrowdingbeyondwhichitisimpossible,eveninprinciple,toextractinformationabout 23 hydrodynamicsizeofthepeptide-surfactantcomplex. 24 Keywords Antimicrobialpeptide·Peptide-micellecomplexes·NMRdiffusometry·NMR 25 relaxometry 26 Introduction 27 Membrane-associated proteins and peptides are often studied in a micellar environment 28 (TulumelloandDeber,2009;SandersandSo¨nnichsen,2006).Likemembranebilayers,mi- 29 cellesprovideahydrophobic-hydrophilicinterface,butunlikethem,theyaresmallenough 30 toenablesolutionNMRsignalstobeobserved.MicellesarecommonlyemployedinNMR 31 structure determination of membrane proteins (Qureshi and Goto, 2012; Tulumello and 32 Deber,2009),buthavealsobeenusedinstudieswheretheprotein-lipidinteractionitselfis 33 thefocus(Cozzolinoetal,2008;Moreinetal,1996;Yuetal,2006;Romanietal,2010).NMR- 34 basedtechniqueshavebeenutilizedtostudyanimportantclassofmembrane-associated 35 proteinsthatarecalledantimicrobialpeptides(AMPs). 36 AMPs are often short peptides consisting of 12 to 50 residues and act by interacting 37 with (and often disrupting) membranes. AMPs have been shown to play an important 38 role in attacking and killing microbes such as bacteria, viruses, and fungi (Zasloff, 2002; 39 Nicolas,2009;HoskinandRamamoorthy,2008;Chincharetal,2004).Moreover,someAMPs 40 exhibitactivityagainsttumorcellsinamammal’sbodybydisruptingthemembraneofthe 41 diseased cells and targeting the cell interior without affecting the membrane of host cells 42 (Regeetal,2007).Thisselectivity,formicrobialand/ortumorcells,isthoughttoarisedue 43 totheamphiphilicstructureoftheAMPthathasanaffinitytothelipidbilayerstructureof 44 DiffusionNMRStudyofComplexFormationinMembrane-AssociatedPeptides 3 themicrobialcellsaswellasduetotheinteractionbetweenthepositivechargeontheAMP 45 withtheanioniccomponentsofthetumororpathogencellmembrane(EpandandVogel, 46 1999). Therefore, anionic sodium dodecyl sulfate SDS surfactant micelles are commonly 47 employed in the structural studies of AMPs, as well as other membrane proteins (Wang, 48 2008, 1999; Whitehead et al, 2001; Orfi et al, 1998; Begotka et al, 2006; Deaton et al, 2001; 49 Whiteheadetal,2004;GaoandWong,1998;Buchkoetal,1998). 50 A knowledge of the hydrodynamic size of proteins plays an important role in un- 51 derstanding their conformations (Jones et al, 1997). This is also the case for peptides in 52 peptide-micellecomplexes,wheretherecouldbemanycoexistingconformations.Thehy- 53 drodynamic size of complexes can be obtained by measuring diffusion coefficients and 54 usingtheStokes-Einstein-SutherlandequationR =K T/6πηD .Thisapproach,however, 55 H B o is only strictly valid when the self-diffusion coefficient D is obtained by measuring the 56 o diffusioncoefficientasafunctionofthesurfactantconcentrationandthenextrapolatingto 57 infinitedilution.Suchaprocedureisoftennotpracticalwhentheamountofpeptideorpro- 58 teinislimitedinquantity.Asaresultofthis,“apparent”hydrodynamicradiiareroutinely 59 reported,withoutsuchextrapolation,insystemswithratherlargesurfactantconcentrations 60 (Binksetal,1989;GimelandBrown,1996;Sarkeretal,2011). 61 An important phenomenon to consider with respect to large macromolecular concen- 62 trationsiscrowding.Macromolecularcrowdingreferstothenon-specificexcludedvolume 63 (steric)effectofmacromoleculeswithrespecttooneanotherinanenvironmentwherethe 64 macromolecularvolumefractionΦislarge;anexampleisalivingcellwithΦ=40%(Zhou 65 etal,2008).Atfinitedilutionstherearehydrodynamiccorrectionstodiffusion(Batchelor, 66 1976) even for a simple colloidal system of spherical particles. It is now being realized 67 thatelectrostaticandhydrodynamicinteractionssensitivelyaffectmacromoleculardynam- 68 ics(Zhouetal,2008;Schreiberetal,2009). 69 The nature of the association of peptides with anionic SDS micelles depends on the 70 detailsoftheelectrostaticenvironment;forexample,cationicpeptidesbindmorestrongly 71 thantheirzwitterioniccounterparts(Begotkaetal,2006).NMRdiffusometrystudieshave 72 found that peptide binding with anionic SDS micelles and zwitterionic dodecylphospho- 73 4 SulimanBarhoum,ValerieBoothandAnandYethiraj choline(DPC)micellesaredifferent,alsoduetothedifferenceinelectrostaticenvironment 74 (Whitehead et al, 2004). Similarly, it was found that a cell-penetrating peptide (CPP) al- 75 ters the dynamics and size of neutral and negatively charged bicelles in different ways 76 (Anderssonetal,2004). 77 PFG-NMR studies have shown that the hydrophobic interaction can play a signifi- 78 cant role on the binding of peptides and tripeptides to micelles (Deaton et al, 2001; Orfi 79 etal,1998),aswellasneuropeptidestoamembrane-mimicenvironment(Chatterjeeetal, 80 2004). NMR studies were also carried out to explore the binding of a neuropeptide to 81 SDS micelles in the presence of zwitterionic 3-[(3-cholamidopropyl) dimethylammonio]- 82 1-propanesulfonate(CHAPS)surfactantasacrudemodelforcholesterolinthebiological 83 membrane.ThesestudiesshowedthathavingcomicellescomposedofSDSandCHAPSsur- 84 factantsinhibitsthehydrophobicinteractionoftheneuropeptidewiththecoreofcomicelles 85 (Whiteheadetal,2001). 86 Since AMPs are subjects of much interest and also represent an even larger class of 87 amphipathic, helical peptides, a helical AMP, GAD-2, was selected for this study. GAD-2 88 andarelatedpeptide,GAD-1,havebeenidentifiedinrecenteffortstodiscoverynewAMPs 89 (Fernandesetal,2010;Browneetal,2011;Ruangsrietal,2012).Inthiswork,weusedNMR 90 diffusometry and relaxometry to study the interaction between the cationic GAD-2 AMP 91 andananionicSDSmicelleasamembranemimicenvironment.Inordertodoso,weuse 92 a simple mathematical model that is utilized to signal the changes in the nature of the 93 macromolecularcomplexesinasystemofnonionicpolymer-anionicsurfactantsystemin 94 aqueous solution (Barhoum and Yethiraj, 2010). We compare the nature of the resulting 95 peptide-SDScomplexwiththosethatformwithtwomuchsmallerpeptides,andareable 96 to identify important distinguishing characteristics. We find, reassuringly, that the most 97 minimal model to extract hydrodynamic size works well for peptides, at least for those 98 with the size (19 residues) of GAD-2; however, one must be careful to avoid the onset of 99 crowdinginordertoreliablyusethesesimplemodels. 100 DiffusionNMRStudyofComplexFormationinMembrane-AssociatedPeptides 5 1 MaterialsandMethods 101 GAD-2peptidewithaveragemolecularmassM =2168g/molewassynthesizedusingsolid 102 w phasechemicalsynthesisemployingO-fluorenylmethoxycar−bonyl(Fmoc)chemistry,on 103 a CS336X peptide synthesizer (C S Bio Company, Menlo Park, CA) following the man- 104 ufacturer’s instructions. The peptides were synthesized at a 0.2 mmol scale with a single 105 coupling,usingprederivatizedRinkamideresin.ResinandallFmocaminoacidswerepur- 106 chasedfromCSBioCompanyOrganicsolventsandotherreagentsusedforthesynthesis 107 and purification were high- performance liquid chromatography (HPLC) grade or better 108 andpurchasedfromFisherScientific(Ottawa,ON)andSigma-AldrichCanada(St.Louis, 109 MO). Deprotection and cleavage of the peptides from the resin were conducted with a 110 trifluoroaceticacid(TFA)/water(95:5byvolume)cleavagecocktailfollowedbycoldprecip- 111 itationwithtert-butylether.Thecrudeproductswerepurifiedbypreparativereverse-phase 112 HPLCinaVydacC-8columnbyuseofawater/acetonitrilelineargradientwith0.1%TFA 113 astheionpairingagent.Themolecularweightsofthepeptideswereconfirmedbymatrix- 114 assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. The 115 ◦ purifiedpeptideswerelyophilizedandstoredat4 C. 116 Ala-GlypeptidewithM =146.14g/mole,Tyr-LeupeptidewithM =294.35g/mole,and 117 w w SDS (99% purity) with M =288.38 g/mole were purchased from Sigma-Aldrich Canada 118 w (St.Louis,MO)andwereusedasreceivedwithoutfurtherpurification.Deuteriumoxide 119 D Owith99.9%isotopicpuritywaspurchasedfromCambridgeIsotopeLaboratories(St. 120 2 Leonard,Quebec). 121 Table1Samplenomenclature.AllsamplesweremadewithD2Oasasolvent,andunlessstatedhave0.1M sodiumoxalatebufferinthem.Finalconcentrations[SDS]wereachievedbymixingdifferentstocksolutions.The molarratioR=[peptide]/[SDS]=30waskeptconstantforGAD-2solutions. Abbreviation Final[SDS] SDS-buf 2-187mM GAD-2–SDS 1-80mM Ala-Gly–SDS 2-60mM Tyr-Leu–SDS 2-60mM 6 SulimanBarhoum,ValerieBoothandAnandYethiraj GAD-2–SDS,Ala-Gly–SDS,Tyr-Leu–SDS,andSDSsampleswerepreparedwithcompo- 122 sitionsaccordingtotable1.Themolarratio(R)ofSDSconcentrationtopeptideconcentra- 123 tioninGAD-2–SDSsampleswasheldconstant(R=[SDS]/[GAD-2]=30).Theconcentration 124 ofdipeptides(Ala-GlyandTyr-Leu)inAla-Gly–SDSandTyr-Leu–SDSsystemswas2mM. 125 ThepHvalueforallsampleswasadjustedtobe4bytheadditionofsodiumdeuteroxide 126 ordeuteriumchloride.AllsamplesweremadewithD Oassolventand,unlessotherwise 127 2 stated, have 0.1 M sodium oxalate buffer (Na C O ) in them. Sodium oxalate buffer was 128 2 2 4 usedinpreviousNMRstudiestoadjustthepHofSDSmicelle-peptidesolutions(Orfietal, 129 1998;Deatonetal,2001).ItiseffectiveasabufferforpHbelow5,wherethehistidine-rich 130 GAD-2peptideisexpectedtohaveanetpositivecharge.Moreover,thechemicalstructure 131 ofsodiumoxalatedoesnotincludeprotonsinit.Asaresult,theonedimensionalproton 132 NMRspectradonotincludebufferpeaksthatmightoverlapwithSDSandpeptidespeaks. 133 Theself-diffusionmeasurementswerecarriedoutinadiffusionprobe(Diff30)andwith 134 maximum field gradient (1800 G/cm) at a resonance frequency of 600 MHz on a Bruker 135 AvanceIIspectrometer.Diffusionwasmeasuredwithapulsed-fieldgradientstimulated- 136 echosequence(Price,1997)with(almostsquare)trapezoidalgradientpulses.Thediffusion 137 coefficientofamoleculeinaqueoussolutionisobtainedfromtheattenuationofthesignal 138 accordingtotheequation(Price,1997) 139 (cid:32) (cid:33) S(k) ln =−Dk (1) S(0) where S(k) is the ``intensity´´of the signal (the integration of the relevant peak region) 140 in the presence of field gradient pulse, S(0) is the intensity of the signal in the absence 141 of field gradient pulse, k=(γδg)2(∆−δ/3) is a generalized gradient strength parameter, 142 γ=γH=2.6571×108T−1s−1 is the gyromagnetic ratio of the 1H nucleus, δ=2ms is the 143 duration of the field gradient pulse, ∆=100ms is the time period between the two field 144 gradient pulses, and g is the amplitude of the field gradient pulse. T relaxation mea- 145 1 surements were also performed using the Diff30 diffusion probe and the relaxation rates 146 (R =1/T )arereportedinsection2.1. 147 1 1 DiffusionNMRStudyofComplexFormationinMembrane-AssociatedPeptides 7 2 ResultsandDiscussion 148 ComplementaryNMR-basedtechniqueswereutilizedinordertoidentifycomponentsfor 149 differentsamplesbasedontheirone-dimensionalNMRspectraandtoextractparameters 150 such as self-diffusion coefficients and longitudinal relaxation rates. The one-dimensional 151 (1D) proton NMR spectra at a resonance frequency of 600 MHz on a Bruker Avance II 152 spectrometerandatsampletemperature298Kareshowninfigure1.Inallcasesthetrace 153 signalofHDOinD Oisthemostdominantpeak(at≈4.7ppm);howevertheHDO,peptide 154 2 andSDSpeaksareallspectrallyseparable. 155 (a) (b) Fig.11D1HNMRspectrumfor(a)apeptide-freeSDSsamplewith[SDS]=6mM(b)aGAD-2–SDSsamplewith [SDS]=60mMand[GAD-2]=2mM.Sampletemperatureis298K. In this work, we carried out experiments with peptide at varying SDS concentrations 156 in the presence of sodium oxalate buffer. We also performed experiments on pure SDS 157 solutions as well as buffered SDS solutions for comparison. Figure 2 shows the signal at- 158 tenuationandtheself-diffusioncoefficientsforSDSandpeptidesinabufferedpeptide-free 159 SDSsampleandGAD-2–SDSsample.Thesignalattenuationinallsampleswasobserved 160 tobemonoexponential.ThissuggeststhattheexchangeofSDSmoleculesbetweentheSDS 161 in micelles and in free solution must be very rapid in the NMR time scale. The values of 162 theobserveddiffusioncoefficientswerecalculatedfromthemonoexponentialdecaysusing 163 equation1.Forpeptide-freeSDSsolutionspreparedwithsodiumoxalatebuffer(figure2a), 164 8 SulimanBarhoum,ValerieBoothandAnandYethiraj 0 [S DD=S(8]=.04 0±m 0M.1) x 10-11 m2/s -01 GS [DAGSDA,-D 2 D-,2 =D](==22(.14.6.797 0±m ±0M .00, .6[0S)3 Dx) Sx1] 01=1081- 0 1m1m m2M/s2/s -2 0)) 0)) -2 S/S( -4 S/S( -3 ln( ln( -4 -6 -5 -8 -6 0 20 40 60 80x109 0 50 100 150 200 250x109 gd D-d/3 gd D-d/3 k=( g)2( ) k=( g)2( ) (a) (b) Fig.2TheattenuationofthesignalS(k)/S(0)onalogscaleversusk=(γδg)2(∆−δ/3)for(a)apeptide-freeSDS samplewith[SDS]=40mMand0.1Msodiumoxalatebuffer(b)aGAD-2–SDSsamplewith[SDS]=80mM, [GAD-2]=2.67mM,and0.1Msodiumoxalatebuffer.δ=2msand∆=100ms. thesignalattenuationofSDSwasobtainedbyintegratingtheareaunderthespectralregion 165 between0to4ppm.FortheGAD-2–SDSsystem,thespectralrangesfrom0to4ppmand7 166 to9ppmwereusedtoobtainSDSandGAD-2signalattenuation,respectively.Ineachcase 167 theSDSandpeptidespectralregionswerechosentoensureaclearspectralseparation. 168 2.1 Relaxometry 169 1.4 1.4 1.2 SDS-buf 1.2 GAD-2-SDS s) fit s) fit R(1/1 1.0 F i t : Cy*0=+ A(1*.E9x ±p (0-.[1S)DmSM]/C*) R(1/1 1.0 Fit: y0+A*Exp(-[SDS]/C*) C*= (1.3 ± 0.1)mM 0.8 0.8 0.6 0.6 0 50 100 150 200 0 20 40 60 80 [SDS] (mM) [SDS] (mM) (a) (b) Fig.3ProtonlongitudinalrelaxationratesR1forSDSin(a)peptide-freeSDSsolutionsversusSDSconcentration [SDS].(b)GAD-2–SDSsolutionswithR=[SDS]/[GAD-2]=30.Similarmeasurementswerecarriedoutforthetwo dipeptides(notshown).Theerrorbarsrepresenttheuncertaintyinthenumericalsingleexponentialfitforthe rawdataoftherelaxationtimemeasurements. DiffusionNMRStudyofComplexFormationinMembrane-AssociatedPeptides 9 Figure 3 shows the variation in the proton longitudinal relaxation rate R for the SDS 170 1 peaks in peptide-free SDS solutions and GAD-2–SDS solution with increasing SDS con- 171 centration. In all cases, the SDS concentration dependence can be fit to an exponential 172 y0+A exp(−[SDS]/C∗); where C∗ is identified as a characteristic SDS concentration that 173 indicates a change in the local environment for the surfactant molecules in GAD-2–SDS 174 andpeptide-freesystems. 175 TheexponentialfityieldsaC∗=(1.9±0.1)mMforpeptide-freeSDSsamples(figure3a). 176 ForGAD-2–SDSsamples,thespectralregionfrom0to4ppmisusedtocalculateR forthe 177 1 SDSpeaksatdifferentSDSconcentration.ThisyieldsaC∗=(1.3±0.1)mM(figure??). 178 2.2 Diffusometry 179 2.2.1 SurfactantSolutionsandAnalysisMethods 180 Figure4ashowstheself-diffusioncoefficientofSDSin3peptide-freeSDSsystems:onewith 181 sodiumoxalatebufferwithpH=4(redopencircles),andtwowithoutsodiumoxalatebuffer. 182 Of the unbuffered solutions one was with pH unadjusted but measured to be between 3 183 and 3.5 (blue open squares), and one with the pH=4 (black filled squares). Below [SDS] 184 = 60 mM, the SDS diffusion coefficient DSDS for unbuffered solutions at different pH are 185 Obs indistinguishablefromeachother,whilevaluesinthebufferedsolutionaremuchlower. 186 The pulsed-field-gradient signal attenuation is monoexponential for all samples (fig- 187 ure 2). This implies that the exchange of SDS molecules between the SDS in micelles and 188 in free solution is rapid in the NMR time scale. Previous studies (Soderman and Stilbs, 189 1994)showedthatasurfactantmoleculevisitsmorethanoneenvironmentoververyshort 190 timescales, and interpreted the observed diffusion coefficients using a two-site exchange 191 model.Inallthesystemsconsideredhere,theSDSsurfactantcaneitherbeafreemonomer 192 insolutionorassociatedwithasurfactant-richaggregate.Theobservedself-diffusioncoef- 193 ficientofSDSisthusalinearcombinationoftheself-diffusioncoefficientDSDS ofthefree 194 free molecules in bulk and that of the bound molecules in the micelle DSDS in peptide-free 195 micelle solutionsorapeptide-SDScomplexDSDS 196 Aggr 10 SulimanBarhoum,ValerieBoothandAnandYethiraj DSDS=DSDS, [SDS]≤C , Obs free 0 (cid:16) (cid:17) DSDS= DSDS−DSDS (f )+DSDS , [SDS]>C (2) Obs free Aggr s Aggr 0 wheref =[SDS] /[SDS]isthefractionoffreeSDSmolecules,DSDS iseitherthemicellar 197 s free Aggr diffusion coefficient in peptide-free samples, or the diffusion coefficient of the micelle- 198 peptidecomplex,andC referstothecritical(micellaroraggregation)concentration(CMC 199 0 orCAC),and[SDS]isthetotalSDSconcentration.Akeyassumptionofthemodelisthat 200 there are only two distinct species, the free and the aggregate states; however, as will be 201 seenlater,weareabletocheckforself-consistencyofthemodel. 1 10-9 46 n (f)s o 0.1 SDS2D m/s) (Obs10-10462 SSDDSS//DD2OO,, ppHH==34-3.5 DS free facti 0.01 SSDDSS-buf 2 S 2 SDS-buffer/D2O, pH=4 two species model 0.001 10-11 2 4 6 2 4 6 2 4 6 0.1 1 10 100 0.1 1 10 100 1000 [SDS] (mM) [SDS] (mM) (a) (b) Fig.4Self-diffusioncoefficientinpeptide-freeSDSsolutions.(a)DversusSDSconcentration[SDS]forsolutions withsodiumoxalatebuffer(pH=4)(redopencircles),andunbuffered,withpH=3-3.5(blueopensquares),and withpH=4(blackfilledsquares).(b)Fraction(fs)offreeSDSwithandwithoutsodiumoxalatebuffer. 202 For simple spherical micelle systems, buffered and unbuffered peptide-free SDS solu- 203 tions,[SDS] =CMCfor[SDS]>CMC.Therefore,equation2has3parameters,C =CMC, 204 free 0 DSDS andDSDS .Fittingthebufferedpeptide-freeSDSsolutiontothetwo-speciesmodel 205 free micelle in equation 2 yields the parameters DSDS=(4.90±0.07)×10−10m2/s, DSDS =(6.3±0.4) 206 free micelle ×10−11m2/s,andCMC=(0.91±0.02)mM,whilefortheunbufferedpeptide-freeSDSsolu- 207 tionDSDS=(4.71±0.08)×10−10m2/s,DSDS =(6.1±0.9)×10−11m2/s,andCMC=(5.3±0.2)mM. 208 free micelle