ebook img

Diffuse steep-spectrum sources from the 74 MHz VLSS survey PDF

1.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Diffuse steep-spectrum sources from the 74 MHz VLSS survey

Astronomy&Astrophysicsmanuscriptno.15991 c ESO2011 (cid:13) January21,2011 Diffuse steep-spectrum sources from the 74 MHz VLSS survey R.J.vanWeeren1,H.J.A.Ro¨ttgering1,andM.Bru¨ggen2 1 LeidenObservatory,LeidenUniversity,P.O.Box9513,NL-2300RALeiden,TheNetherlands e-mail:[email protected] 1 2 JacobsUniversityBremen,P.O.Box750561,28725Bremen,Germany 1 0 Preprintonlineversion:January21,2011 2 n ABSTRACT a J Context.Galaxyclustersgrowbyasequenceofmergerswithotherclustersandgalaxygroups.Duringthesemergers,shocksand/or 0 turbulencearecreatedwithintheintraclustermedium(ICM).Inthisprocess,particlescouldbeacceleratedtohighlyrelativisticener- 2 gies.Thesynchrotronradiationfromtheseparticlesisobservedintheformofradiorelicsandhalosthataregenerallycharacterized byasteepradiospectralindex.ShockscanalsorevivefossilradioplasmafromapreviousepisodeofAGNactivity,creatingaso- ] calledradio “phoenix”. Herewepresent multi-frequency radioobservations of diffusesteep-spectrum radio sources selectedfrom O the74MHzVLSSsurvey.PreviousGiantMetrewaveRadioTelescope(GMRT)observationsshowedthatsomeofthesesourceshad filamentaryandelongatedmorphologies,whichareexpectedforradiorelics. C Aims.Weattempttounderstandthenatureofdiffusesteep-spectrumradiosourcesandcharacterizetheirspectralindexandpolariza- . h tionproperties. p Methods.Wecarriedoutradiocontinuumobservationsat325MHzwiththeGMRT.ObservationswiththeVeryLargeArray(VLA) - andWesterborkSynthesisRadioTelescope(WSRT)weretakenat1.4GHzinfullpolarizationmode.Opticalimagesaroundtheradio o sourcesweretakenwiththeWilliamHerschelandIsaacNewtonTelescope(WHT,INT). r Results.MostofthesourcesinoursampleconsistofoldradioplasmafromAGNslocatedinsmallgalaxyclusters.Thesourcescan t s beclassifiedasAGNrelicsorradiophoenices.Thespectralindicesacrossmostoftheradiosourcesdisplaylargevariations. a Conclusions.Weconcludethatdiffusesteep-spectrumradiosourcesarenotonlyfoundinmassiveX-rayluminousgalaxyclustersbut [ alsoinsmallersystems.Futurelow-frequencysurveyswilluncoverlargenumbersofsteep-spectrumradiorelicsrelatedtoprevious episodesofAGNactivity. 1 v Keywords.RadioContinuum:galaxies–Galaxies:active–Clusters:general–Cosmology:large-scalestructureofUniverse 5 6 8 1. Introduction & Enßlin 2000). The turbulent re-acceleration model currently 3 . seemstoprovideabetterexplanationoftheoccurrenceofradio 1 Studiesoflarge-scalestructureformationshowthatgalaxyclus- halos(e.g.,Brunettietal.2008). 0 tersgrowthroughmergerswithotherclustersandgalaxygroups, Mini-halos(alsocalledcore-halosystems) arediffuseradio 1 aswell asthroughthe continuousaccretionof gasfromthe in- sourceswithsizes. 500kpclocatedinrelaxedgalaxyclusters, 1 : tergalactic medium (IGM). The baryonic content of clusters is in which diffuse emission surrounds the central cluster galaxy v mostly in the form of hot thermal gas visible at X-ray wave- (Murgiaetal.2009;Govonietal.2009;Gittietal.2007,2004; Xi lengths. Several clusters also have a non-thermal component Bacchietal.2003;Gittietal.2002;Burnsetal.1992). withintheICM,whichisobservableatradiowavelengths(e.g., Radio relics are irregularlyshapedradio sourceswith sizes r Ferrarietal.2008;Giovanninietal.2009;Giovannini&Feretti a rangingfrom50kpcto2Mpc,whichcanbedividedintothree 2000; van Weeren et al. 2010). The idea is that shocks and/or groups(Kempneretal.2004).Radiogischtarelargeelongated, turbulence generated during cluster merger events can acceler- oftenMpc-sized,radiosourceslocatedattheperipheryofmerg- ate particles to relativistic energies, and in the presence of a ing clusters. They probably trace shock fronts in which parti- magnetic field, synchrotron radiation is emitted (e.g., Ensslin clesareacceleratedviathediffusiveshockaccelerationmecha- et al. 1998; Miniati et al. 2001; Hoeft & Bru¨ggen 2007;Hoeft nism (DSA; Krymskii 1977;Axford et al. 1977;Bell 1978a,b; etal.2008;Pfrommer2008;Battagliaetal.2009;Skillmanetal. Blandford & Ostriker 1978; Drury 1983; Blandford & Eichler 2010).Theseradiosources,whichtracethenon-thermalcompo- 1987; Jones & Ellison 1991; Malkov & O’C Drury 2001). nentoftheICM,canbedividedintoseveralclasses. Amongtheseareraredouble-relicsthathavetworelicslocated Radiohalosarefoundatthecenterofmerginggalaxyclus- onbothsidesoftheclustercenter(e.g., Bonafedeetal.2009b; ters and have typical sizes of about a Mpc. They follow the vanWeerenetal.2009a;Venturietal.2007;Bagchietal.2006; X-ray emission from the thermal ICM and are mostly unpo- Ro¨ttgering et al. 1997; van Weeren et al. 2010; Brown et al. larized, although there are some exceptions (see Govoni et al. 2010).AccordingtoDSAtheory,theintegratedradiospectrum 2005;Bonafedeetal.2009a).Radiohaloshavebeenexplained shouldbea singlepower-law.RadiophoenicesandAGN relics byturbulenceinjectedbyrecentmergerevents.Thisinjectedtur- arebothrelatedtoradiogalaxies.AGNrelicsareassociatedwith bulencemightbecapableofre-acceleratingrelativisticparticles extinct or dying radio galaxies. The radio plasma has a steep (e.g., Brunettietal.2001;Petrosian2001).Alternatively,theen- curvedspectrum1duetosynchrotronandinverseCompton(IC) ergeticelectronsaresecondaryproductsofproton-protoncolli- sions(e.g.,Dennison1980;Blasi&Colafrancesco1999;Dolag 1 F να,whereαisthespectralindex ν ∝ 2 R.J.vanWeerenetal.:Diffusesteep-spectrumsourcesfromthe74MHzVLSSsurvey losses.FossilradioplasmafromapreviousepisodeofAGNac- Table1.GMRT325MHzobservations tivity canalso be compressedbya mergershockwave produc- ing a radio phoenix (Enßlin & Gopal-Krishna 2001; Enßlin & rmsnoise beamsize Bru¨ggen 2002), these sources again having steeply curved ra- µJybeam−1 arcsec diospectra.ProposedexamplesofthesearethosefoundbySlee VLSSJ1431.8+1331 178 11.8′′ 7.8′′ VLSSJ1133.7+2324 132 10.4 ×7.7 etal.(2001). ′′ ′′ × Abell2048 248 9.7 9.6 InvanWeerenetal.(2009b),wepresentedobservationsofa ′′× ′′ 24P73 162 13.6 9.0 sampleof26diffusesteep-spectrumsources,withα 1.15,se- ′′× ′′ lectedfromthe1.4GHzNVSS(Condonetal.1998)≤an−d74MHz VVLLSSSSJJ00090145..97−+32455171 340192 1134..57′′×18.11.0′′ ′′ ′′ VLSS(Cohenetal.2007)surveys.Thesesourceswereeitherre- × solved out in the VLA B-array 1.4 GHz snapshot observations or1.4GHzFIRSTsurvey(Beckeretal.1995).GMRT610MHz observationsof these 26 sources detected one distant powerful radiohalowitharadiorelic(vanWeerenetal.2009c),fiveradio The data was visually inspected for the presence of RFI, relicsincludingtworadiophoenices,andonepossiblemini-halo. which was subsequently removed (i.e., “flagged”). We carried Theremainingsourceswereclassifiedasradiosourcesdirectly out an amplitude and phase calibration on the flux and band- relatedto AGNactivity.The spectralindicesofthe radiorelics pass calibrators3C147and3C286on a timescale of 8 sec. For inthesamplearegenerallysteeperthanmostpreviouslyknown this,wechosethreeneighboringfrequencychannelsfreeofRFI. relics.Bycomplementingourobservationswithresultsforother Thesegainsolutionswereappliedbeforedeterminingtheband- relics fromthe literature, we foundthat the largerrelics gener- pass response of the antennas. This assures that any amplitude ally have flatter spectra and are located farther away from the and/or phase variations during the scans on the calibrators are clustercenter.Thisisinlinewithpredictionsfromshockstatis- correctedbeforedeterminingthe bandpasssolutions. Athigher tics derived from cosmological simulations (Hoeft et al. 2008; frequencies(e.g., 1.4 GHz), both amplitude and phases are as- Skillmanetal.2008;Battagliaetal.2009).Inthesesimulations, sumedtobeconstantduringbandpasscalibration.However,for itisfoundthatlargershockwavesoccurmainlyinlower-density theGMRTobservingatlowfrequencies,thisassumptionisnot regionsandhavelargerMachnumbers,andconsequentlyshal- alwaysvalidandcanaffectthequalityofthebandpasssolutions lowerspectra.Ontheotherhand,smallershockwavesaremore aswellasthedeterminationofthefluxscale. likelytobefoundinclustercentersandhavelowerMachnum- After correctingfor the bandpassresponse,boththe ampli- bers,thussteeperspectra. tude and phase solutions for both primary and secondary cali- Inthispaper,wepresentfollow-upradioobservationsofsix brators were determined but in this case using the full channel sources(i.e.,thosemostlikelyrelatedtoradiorelicsandhalos) range.The fluxesofthe primarycalibratorswere setaccording found in van Weeren et al. (2009b). GMRT 325 MHz as well tothePerley&Taylor(1999)extensiontotheBaarsetal.(1977) asVLAandWSRT1.4GHzobservationswereobtainedtocre- scale.Thefluxdensitiesforthesecondarycalibratorswereboot- ate spectral index and polarization maps. Optical images were strappedfromtheprimarycalibrators.Theamplitudeandphase acquired with the 4.2m WHT and 2.5m INT telescopes at the solutions were interpolated and applied to the target sources. position of the radio sources to search for optical counterparts Sometargetswereobservedovermultipledays(observingruns), andidentifygalaxyclustersassociatedwiththeradiosources. the resulting different data sets were combined with the AIPS Thelayoutofthispaperisasfollows.InSect.2,wepresent task‘DBCON’. an overviewof the observationsand data reduction.In Sect. 3, Foreachofthetargetsources,wecreatedamodelofthesur- we present the radio and spectral maps as well as optical im- roundingfieldusingtheNVSSsurveywithaspectralindexscal- ages around the radio sources. In Sect. 4, we show additional ingof 0.7.Wecarriedoutaphase-onlyself-calibrationagainst − opticalimagesaroundfiveslightlymorecompactradiosources this model to improve the astrometric accuracy. This was fol- (alsofromthesampleof26sources)tosearchforopticalcoun- lowedby severalroundsofphase self-calibrationand two final terparts.Thesesourcesarenotlocatedinnearbygalaxyclusters roundsof amplitude and phase self-calibration.To producethe andtheirnatureremainsunclear.Weendwithadiscussionand images,weusedthepolyhedronmethod(Perley1989;Cornwell conclusionsinSects.5and6. & Perley 1992) to minimize the effects of non-coplanar base- Throughoutthispaper,weassumeaΛCDMcosmologywith lines. The modelwas then subtractedfromthe data,a step that H =71kms 1Mpc 1,Ω =0.3,andΩ =0.7.Allimagesare facilitatedtheremovalofadditionalRFIorbaselineswithprob- 0 − − m Λ intheJ2000coordinatesystem. lems. Final images were made using robust weighting (robust = 0.5, Briggs 1995). Images were cleaned using the automatic clean-boxwindowingalgorithminAIPSandcleaneddownto2 2. Observations&datareduction timesthermsnoiselevel(2σ )withinthecleanboxes.Thefi- rms nalimageswerecorrectedfortheprimarybeamresponse2.The 2.1.GMRT325MHzobservations uncertaintyinthecalibrationoftheabsoluteflux-scaleisinthe RadiocontinuumobservationswiththeGMRTat325MHzwere range 5 10%, see Chandra et al. (2004). The resulting noise − carried out on 14, 15, and 17 May, 2009. Both upper (USB) levelsandbeamsizesareshowninTable1. andlower(LSB)sidebands(IFs,whichincludedRRandLLpo- Radioobservationsat610MHzweretakenwiththeGMRT larizations) were recorded with a total bandwidth of 32 MHz. inFebruaryandNovember2008ofthesourcesinTable1.The The observations were carried out in spectral line mode with reductionoftheseobservationsissimilartotheGMRT325MHz 128channelsperIFtofacilitatetheremovalofradiofrequency dataandisdescribedinmoredetailinvanWeerenetal.(2009b). interference(RFI)andreducetheeffectofbandwidthsmearing. Weusedtheseimagestocreatethespectralindexmaps. The integration time per visibility was 8 sec. Each source was observedforabout4hrsintotal.Thedatawerereducedwiththe 2 http://gmrt.ncra.tifr.res.in/gmrt hpage/Users/doc/manual/ NRAOAstronomicalImageProcessingSystem(AIPS)package. UsersManual/node27.html R.J.vanWeerenetal.:Diffusesteep-spectrumsourcesfromthe74MHzVLSSsurvey 3 Table2.VLA1.4GHzobservations VLSSJ1133.7+2324 MaxBCGJ217.95869+13.53470 VLSSJ0004.9 3457 Abell2048 − Frequencybands(IFs) 1385,1465MHz 1385,1465MHz 1385,1465MHz 1385,1465MHz Bandwidth 2 50MHz 2 50MHz 2 50MHz 2 50MHz × × × × Polarization RR,LL,RL,LR RR,LL,RL,LR RR,LL,RL,LR RR,LL,RL,LR Observationdates 4Nov2008,17Apr2009, 2Nov2008,18Apr2009, 11Jun2009 15Jul2009 10Aug2009 31Jul2009 Projectcode AV305,AV312 AV305,AV312 AV312 AV312 Integrationtime 3.3s 3.3s 3.3s 3.3s Totalon-sourcetime 5.0hr,6.8hr,3.9hr 4.9hr,6.8hr,3.9hr 4.0hr 4.0hr VLAconfiguration A+B+C A+B+C CnB C Beamsize 1.3 1.4 a,6.7 6.7 b 1.6 1.5 a,6.4 5.3 b 19.8 10.3 13.0 12.4 ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ Rmsnoise(σ ) 14a,1×9bµJybeam×1 15a,1×7bµJybeam×1 49µJy×beam 1 88µJy×beam 1 rms − − − − aBriggsweighting(robust= 1.0) bnaturalweighting − 2.2.VLA1.4GHzobservations gainsolutionsweredeterminedusingobservationsoftwostan- dard calibrators, both at the start and end of an observing run. We carried out L-band observations of four sources with the The fluxes for the calibrators were set according to the Perley VLA(seeTable2).Theobservationsweretakeninstandardcon- & Taylor (1999)extensionto the Baars et al. (1977)scale. We tinuummodewithtwoIFs,eachhavingabandwidthof50MHz usedbothpolarized(3C138or3C286)andunpolarized(CTD93, recordingallpolarizationproducts(RR,LL,RL,andLR).Gain 3C48)calibratorsources.Thebandpassandgainsolutionswere solutions were determinedfor the calibrator sources and trans- applied and the data were calibrated for the leakage terms us- ferredtothetargetsources.Thefluxesfortheprimarycalibrators ing the unpolarized calibrator source. The polarization angles were set according to the Perley & Taylor (1999) extension to were set using the polarized calibratorssources, the anglesbe- theBaarsetal.(1977)scale.Theeffectivefeedpolarizationpa- ing the same as in Sect. 2.2. The data was then exported into rameters(theleakagetermsorD-terms)werefoundbyobserv- AIPSfortworoundsofphaseonlyandtworoundsofamplitude ingthe phase calibratorovera wide rangeof parallacticangles andphaseself-calibration(separatelyforeachIF).Thesolutions andsimultaneouslysolvingfortheunknownpolarizationprop- for the amplitude and phase self-calibrations were determined erties of the source. The polarizationangles were set using the by combing both XX and YY polarizationsas Stokes Q is not polarizedsources 3C286 and 3C138. For the R-L phase differ- necessarilyzero. ence,weassumedvaluesof 66.0and15.0degfor3C286and − 3C138,respectively.StokesQandUimageswerecompiledfor The images for each IF were cleaned to about 2σ using eachsource.FromtheStokesQandUimages,thepolarization rms cleanboxes.TheimagesforeachIFwerecombinedintoadeep angles(Ψ)weredetermined(Ψ = 1arctan(U/Q)).Totalpolar- 2 imagebyconvolvingtheimagesoftheindividualsIFstoacom- izedintensity(P)imageswerealsomade(P= Q2+U2).The monresolutionandusingaspectralindexscalingof 1. polarizationfractionwerefoundbydividingtheptotalpolarized − intensitybythetotalintensity(StokesI)image( Q2+U2/I). p 2.4.OpticalWHT&INTimaging 2.3.WSRT1.3 1.7GHzobservationsof24P73 − WSRT observationswere taken of a single source (24P73)not Optical images around the radio sources were made using the included in the VLA observations.Every 5 min, the frequency PFIPcameraonthe4.2mWHTtelescopeandtheWFCcamera setup was changed within the L-band, alternating between the ontheINT.Theobservationswerecarriedoutbetween15and19 21cm and 18cm setups. Both of these frequency setups have April,2009(WHT)and1 8October,2009(INT).Thefieldof − 160 MHz bandwidth divided over 8 IFs, each having 20 MHz viewwas16 16 forthePFIPand34 34 fortheWFCcam- ′ ′ ′ ′ × × bandwidth. The data were recorded in spectral line mode with era. The seeing varied between 0.6 and 2.0 , but was mostly ′′ ′′ 64spectralchannelsperIFin4polarizations.Theobservations between1.0 and1.5 .Mostnightswerephotometric.Thetotal ′′ ′′ were carried out in three runs on 11, 17, and 18 March, 2009 integrationtimepertargetwasabout1500sforbothV,R,andI resultingin a more or less complete12-hoursynthesisrun,see bandsfortheWHTobservationsand4000sfortheINTobser- Table3. vations. The data were reduced with IRAF (Tody 1986, 1993) The data were partly calibrated using the CASA (formerly and the mscred package (Valdes 1998). All images were flat- AIPS++)3 package. The L-band receivers of the WSRT tele- fieldedandbias-corrected.TheIandRbandimageswerefringe scopes have linearly polarized feeds4. The leakage terms (D- corrected.Theindividualexposureswereaveraged,withpixels terms) for the WSRT are frequency dependent(e.g., Brentjens being rejected above 3.0σrms to remove cosmic rays and other 2008). As a first step, we flagged the autocorrelations, and re- artifacts. movedanyobviousRFIandcorrupteddata.Timerangesofan- tennasaffectedbyshadowingwerealsotakenout.Bandpassand Zero-pointswere determined using various observationsof standard stars taken during the nights. Images taken on non- 3 http://casa.nrao.edu/ photometricnightswerescaledsuchthatthefluxofafewtargets 4 TheWSRTrecordsXX=I Q,YY=I Q,XY= U+iV,and withinthefieldofviewagreedwiththatoftheimagestakenon XY= U iV,whereI,Q,U,a−ndVaretheS−tokesparam−eters. photometricnights. − − 4 R.J.vanWeerenetal.:Diffusesteep-spectrumsourcesfromthe74MHzVLSSsurvey Table3.WSRTobservations Frequencybands21cm(IFs) 1311,1330,1350,1370,1392,1410,1432,1450MHz Frequencybands18cm(IFs) 1650,1668,1686,1704,1722,1740,1758,1776MHz BandwidthperIF 20MHz NumberofchannelsperIF 64 Channelwidth 312.5kHz Polarization XX,YY,XY,XY Observationdates 11,17,and18March,2009 Integrationtime 30s Totalon-sourcetime 6.5hr21cm+6.5hr18cm Beamsize 19.0 16.5 ′′ ′′ Rmsnoise(σ ) 37µJy×beam 1 rms − 3. Results The spectral index map, between 325 and 610 MHz, is shown in Fig. 2 (left panel). The spectral index of the south- A list of the observed sources with their integrated fluxes and ern partof the filamentary source is 2.0, while for the rest of redshiftsisgiveninTable4.Forsourceswithoutaspectroscopic the diffuse emission it is α 1.7.−Towards UGC 6544, the redshift, we used the Hubble-K or Hubble-R relations to esti- ∼ − spectralindexflattens.Thespectralindexmapbetween610and mate the redshift (Willott et al. 2003; Snellen et al. 1996; de 1425MHzisshowninFig.2(rightpanel).Herethespectralin- Vries etal. 2007).Spectralindexmaps were also made for the dexsteepenstoα 2.5forthesouthernpartofthefilamentary radiosources.OnlycommonUV-rangeswereusedtominimize ≤− source.ThespectralindexoftheforegroundgalaxyUGC6544 errors due to differences in the UV-coverage and the individ- isrelativelyflatwithα 0.5. ual maps were convolved to the same resolution. For sources ∼− VLSSJ1133.7+2324wasalsoobservedbyDwarakanath& withhigh-resolution(.10 )1.4GHzobservations,wecreateda ′′ Kale(2009)at1287MHzwiththeGMRTandat330MHzwith high-resolutionspectralindexmapbetween610and1425MHz. the VLA. The reportedintegratedspectralindiceswere 1.6 Alow-frequencyspectralindexmapbetween325and610MHz − ± 0.03 between 74 and 328 MHz and 1.9 0.08 between 328 wasalsomadeformostsources.Pixelsbelow4σ ateitherone − ± rms and1278MHz.Theintegratedfluxdensitywas151 12mJyat ofthetwofrequencymapswereblanked.Low-resolutionspec- ± 328MHz.Wemeasureafluxof273 28mJyat325MHz,which tralindexmapsbetween325,610,and1425MHzwerecreated ± issignificantlyhigherthanthereportedvaluefromDwarakanath tomapthespectralindexinlowsignal-to-noiseratio(SNR)re- & Kale. This may be partly caused by the higher SNR of our gions.Wefittedasingle(power-law)spectralindexthroughthe image as we may pick up additional emission beyond what is threefrequencies,pixelsbelow2.5σ beingneglected. rms visibleintheDwarakanath&Kaleimage.Although,thiscannot Fortwosources,theSNRwashighenoughtocreatespectral completelyexplainthedifferenceinfluxes. curvaturemaps.Thespectralcurvaturewedefinedasα 325 610 The source could be old radio plasma from a previous α .Pixelswithaspectralindexerrorlargerthan0.06−wer−e 610 1425 episode of AGN activity from UGC 6544, but UGC 6544 is blan−kedinthespectralcurvaturemaps.Theerrorsinthespectral a spiral galaxy, which normally do not host AGN. If the radio index map are based on the noise levels (rms) of the individ- emissionwereexplainedbyreliclobes,theywouldbeexpected ualimages.Inthefollowingsubsections,theradioandspectral to be located symmetrically with respect to the nucleus of the indexmapsarepresentedtogetherwithopticaloverlays. galaxy,which isnotthecase. Theflat spectrumradioemission wedetectfromthegalaxyisfullyconsistentwiththatpredicted bythefar-infraredradiocorrelation(vanWeerenetal.2009b). 3.1.VLSSJ1133.7+2324,7C1131+2341 Atthelocationofthefilamentaryradiosource,wedetected VLSSJ1133.7+2324isafilamentaryradiosource,possiblyas- anoverdensityoffaintgalaxies(seeFig.3).Thesegalaxiesare sociated with a galaxy cluster at z = 0.61 (van Weeren et al. partlyhiddenbehindUGC6544.ThemedianSDSSphotometric 2009b). To the west of the filamentary source, our 610 MHz redshift is 0.61 for these galaxies. To confirm the presence of imagedetecteddiffuseemissionassociatedwiththeforeground a cluster, X-ray observations and/or spectroscopic redshifts of galaxyUGC6544locatedatz=0.02385(Haynesetal.1997). severalgalaxiesareneeded. The325MHzimage(seeFig.1leftpanel),issimilartoour If this is indeeda distant galaxycluster, the radio emission previous 610 MHz image. In the 325 MHz image, the south- isverylikely tobeassociated withthecluster. Thesourcemay ern part of the filamentary source is significantly brighter than thentraceashockwaveintheclusterwhereparticlesareaccel- the northern part, while little emission from UGC 6544 is de- erated by the DSA mechanism. In that case the integrated ra- tectedat325MHz.TheVLA1.4GHzimagemadewithnatural dio spectrum should be a single power-law. Our flux measure- weightingisshowninFig.1(rightpanel)andrevealsmuchmore ments however indicate a slightly curved spectrum. A redshift emissionfromUGC6544.Thesouthernpartofthefilamentary of 0.61 would correspond to a physical size of about 500 kpc. source is quite faint at 1.4 GHz, confirming that it has a steep The very steep and somewhatcurvedradio spectrum then sug- spectrum. A high-resolution VLA image, also at 1.4 GHz, is gestthesourcetobeanAGNrelic,ratherthana radiophoenix shownasanoverlayinFig.3.Thisimagerevealsonlythreefaint becausethesourceisquitelargeandthetimetocompresssucha compact radio sources. This shows that the emission from the largeradio“ghost”wouldremovemostoftheelectronsrespon- steep-spectrumsource is truly diffuse, and cannotbe attributed sible for the radio emission by radiative energy losses (Clarke tothecombinedemissionfromcompactsources.Wedonotde- &Ensslin2006).Additionalfluxmeasurementsatlowerand/or tect any polarized emission from the source at 1425 MHz. We higherfrequencieswillbe neededtoconfirmwhetherthe radio placea5σupperlimitof5%onthepolarizationfraction. spectrumisindeedcurved. R.J.vanWeerenetal.:Diffusesteep-spectrumsourcesfromthe74MHzVLSSsurvey 5 Table4.Sourcelist&properties source/cluster z S S α curvature LLS classificationh 325 1425 74 1400 Jy mJy − α α kpc VLSSJ1431.8+1331 0.1599 0.373 0.040 14.6 1.1 2.03 0.05 1.7043−6f10− 610−1425 125 AGN+AGNRorPHNX VLSSJ1133.7+2324 0.61 0.16g 0.273±0.028 12.3±1.1 −1.69±0.06 0.96 570g AGNRorDSAR ± ± ± − ± Abell2048 0.0972 0.559 0.061 18.9 4.3 1.50 0.05 1.6 310 PHNX 24P73 0.15 0.1b,g 0.307±0.033 12.0±3.0 −2.20±0.06 2.0 270 PHNX VLSSJ0004.9 3457 0.3 ±0.1e 0.417±0.046 32.2±1.9 −1.40±0.04 0.30f 200 AGN(orMH+DSAR?) VLSSJ0915.7+−2511 0.32±4 0.417±0.046 24.7±1.5a −1.52±0.04 1.02 190 AGNRorPHNX VLSSJ1117.1+7003 0.8 0.4d 0.030±0.006c 2.9 ±0.5a −1.87±0.07 0.0 130 AGN? VLSSJ2043.9 1118 0.5±0.3d ... ± 7.7±0.6a −1.74±0.05 0.84 250 AGN(MH?+DSAR?) VLSSJ0516.2+−0103 1.2±0.7d ... 4.3±0.4a −1.73±0.06 0.0 290 AGN(orMH?) VLSSJ2209.5+1546 1.1±0.7d ... 7.0±0.9a −1.56±0.07 0.59 500 AGN? VLSSJ2241.3 1626 0.5±0.3d ... 14.6± 1.1a −1.44±0.06 0.0 290 AGN? − ± ± − ± afluxfromNVSS(Condonetal.1998) bidentificationofthecDgalaxyuncertain cfluxfromWENSS(Rengelinketal.1997) d redshift estimated using the fitted Hubble-R relation from de Vries et al. (2007), since it is unclear whether there is a common underlying populationofmassiveellipticalgalaxiesforextendedsteep-spectrumradiosourceswehavetakenthe3CHubble-RrelationfromSnellenetal. (1996)asanupperlimitfortheredshift(i.e.,the3Cgalaxiesareabout1magbrighteratthesameredshift) eredshiftestimatedusingthefittedHubble-KrelationfromWillottetal.(2003) f variesacrossthesource gassociationwithclusteruncertain hPHNX=radiophoenix,AGNR=AGNrelic,MH=radiomini-halo,DSAR=relictracingshockwavewithDSA Fig.1.Left:GMRT325MHzmap.Contourlevelsaredrawnat √[1,2,4,8,...] 4σ .ThepositionofisUGC6544isindicatedbythedashed × rms ellipse.Right:VLA1425MHzmap.Contourlevelsaredrawnasintheleftpanel. 3.2.VLSSJ1431.8+1331,MaxBCGJ217.95869+13.53470 first two components are connected by a faint radio “bridge”. Thisbridgewasnotseen inourprevious610MHz image.The VLSS J1431.8+1331 is located in the galaxy cluster bright source is a currently active radio galaxy with the radio MaxBCG J217.95869+13.53470 (z = 0.1599, Koester core clearly being visible in our VLA 1.4 GHz images (see et al. 2007) and associated with the central cD galaxy of Fig. 4 top middle and right panels). Probably, radio plasma the cluster. The cluster has a moderate X-ray luminosity of from the core flows westwards and then forms the north-south L 1 1044 erg s 1 based on the ROSAT count elongatedstructure. X,0.1 2.4keV − rate (V−oges et∼al.×1999). The GMRT 325 MHz image (see Thespectralindexmaps(see Fig. 4 bottompanels),are in- top left panel Fig. 4) shows a bright elongated source. To the dicative of a relatively flat spectral index of 0.5 for the ra- − west a somewhat fainter diffuse component can be seen. This diocorebetween325and610MHz.Spectralsteepeningisob- componentisnotassociatedwithanyopticalgalaxy(seeFig.5). served to the north and south of the elongated structure. The A third fainter source is located further to the southwest. The spectral index for the southern part of the elongated structure 6 R.J.vanWeerenetal.:Diffusesteep-spectrumsourcesfromthe74MHzVLSSsurvey Fig.2.Left:Spectralindexmapbetween325and610MHzataresolutionof11.75 7.65 .Contourlevelsarefromthe325MHzGMRTimage ′′ ′′ × anddrawnatlevelsof[1,2,4,8,...] 6σ .Right:Spectralindexbetween610and1425MHz.Contourlevelsarefromthe1425MHzVLA × rms imageanddrawnatlevelsof[1,2,4,8,...] 5σ .Thebeamsizeis6.7 6.7 . × rms ′′× ′′ Fig.3. Optical WHT color image for VLSS J1133.7+2324. GMRT Fig.5.OpticalWHTcolorimageforMaxBCGJ217.95869+13.53470. 610MHzcontoursareoverlaidinyellow.Thebeamsizeis6.6 3.9 . GMRT 610 MHz contours are overlaid in yellow. The beam size is ′′ ′′ × The VLA 1425 MHz high-resolution map is overlaid with red con- 5.3 4.8 .Contourlevelsaredrawnat[1,2,4,8,...] 4σ . tours. The beam size is 1.36 1.32 and the image has a noise of ′′× ′′ × rms ′′ ′′ 14µJybeam 1.Contourlevelsa×redrawnat[1,2,4,8,...] 4σ . − × rms ably old “bubbles” of radio plasma linked to this AGN, which is consistent with the curved radio spectrum. The presence of steepensto 3.5between610and1425MHz.Thespectralindex afaintradiobridgealsosuggestsarelationbetweenthissouth- ofthe south−westerncomponentis about 1.5between325and westerncomponentandtheradiogalaxy.Thesouthwesterncom- 610 MHz, there being smaller spectral i−ndex variations across ponentcanthereforebeclassifiedasaradiophoenix(iftheradio it than in the brighter western component. Between 610 and plasma has been compressed) or an AGN relic. XMM-Newton 1425MHz,thespectralindexsteepenstoabout 2.5.Thespec- observations of the cluster will be presented by Ogrean et al. tralcurvaturemap(α α )(seeFig−.4bottomright (submitted). 325 610 610 1425 panel),showsthattheso−uthw−estern−sourcehasaverycurvedra- dio spectrum. The southernend of the radiostructure from the 3.3.VLSSJ2217.5+5943,24P73 activeAGNis alsoquitecurved.Thehighspectralcurvatureis likelytobetheresultofspectralageing,thegradientinthespec- This source was discovered during the Synthesis Telescope of tral index away from the core providing evidence of this. The the Dominion Radio Observatory (DRAO) Galactic plane sur- two diffuse sources the southwest of the active AGN are prob- vey at 408 MHz and 1.42 GHz (Higgs 1989; Joncas & Higgs R.J.vanWeerenetal.:Diffusesteep-spectrumsourcesfromthe74MHzVLSSsurvey 7 Fig.4.Topleft:GMRT325 MHzmap. Contour levelsaredrawnasinFig.1.Topmiddle: VLA1425MHzmap. Contour levelsaredrawnas inFig.1.Topright:VLA1425MHzhigh-resolutionimage.TheimagewasmadeusingBriggsweightingwithrobustsetto 1.Contourlevels − aredrawnat √[1,2,4,8,...] 4σ .Bottomleft:Spectralindexmapbetween325and610MHzataresolutionof10.4 7.7 .Contourlevels × rms ′′× ′′ arefromthe325MHzGMRTimageanddrawnatlevelsof[1,2,4,8,...] 6σ .Bottommiddle:Spectralindexbetween610and1425MHz. × rms Contourlevelsarefromthe610MHzGMRTimageanddrawnatlevelsof[1,2,4,8,...] 5σ .Thebeamsizeis6.41 5.26 .Bottomright: × rms ′′× ′′ Spectralcurvaturemap.Contourlevelsaredrawnasintheleftpanelandtheresolutionis10.4 7.7 . ′′ ′′ × 1990). Green & Joncas (1994) found the source to be diffuse andextremespectralindex.Infact,therelicisverysimilartothe andhaveanultra-steepspectrum(α= 2.58 0.14).OurGMRT proposedphoenixinAbell13(Sleeetal.2001).Toconfirmthe − ± 610MHzobservations(seeFig.6bottomrightpanel)detecteda presenceofacluster,deepnear-infrared(NIR)imagingwillbe verycomplexfilamentarysource,resemblingtherelicsfoundin necessary. Abell13andAbell85(Sleeetal.2001).OurGMRT325MHz image, Fig. 6 top left panel, is similar to the 610 MHz image. InourcombinedWSRT 1.3 1.8GHzimage(toprightpanel), 3.4.VLSSJ0004.9 3457 − − thefainterwesternpartoftherelicisonlymarginallydetected, The radio source is located in a small galaxy cluster or group, whichisindicativeofasteepspectralindexinthisregion.Weset B02291(Zanichellietal.2001).Thecluster/groupislocatedat an upperlimit to the polarizationfractionof 5% forthe source aredshiftof0.3 0.1(vanWeerenetal.2009b).NoX-rayemis- at1.4GHz. ± sionfromthesystemisdetectedintheROSATAll-SkySurvey Thespectralindexmapbetween325and610MHzisshown (Vogeset al. 1999,2000),which implies that the system is not inthebottomleftpanelofFig.6.Thespectralindexvariesbe- very massive. An opticalPOSS-II colorcomposite is shown in tween 1.4 and 2.9 over the source. The western part of the − − Fig. 7 (bottom right panel). The various radio components are source has the steepest spectrum. Towards the southwest, the labeledalphabetically(seeFig.7toprightpanel). spectral index flattens to about 1.0. This part may be associ- − Our GMRT 325 MHz image of VLSS J0004.9 3457 (top atedwithaseparatecompactradioAGN. − left panel) displays a diffuse source (A) centered on a K- OuropticalWHTimage(bottomrightpanelFig.6)isdomi- mag=14.86galaxy.Thesourceextendssomewhatfurthernorth- natedbyforegroundstarsasthesourceislocatedintheGalactic wardsthaninthe610MHzimage(bottomrightpanel). plane, at Galactic latitude of 2.44 degrees. However, there are also several faint red galaxies seen in the image that may be- SourceBisassociatedwithanothergalaxy,Cdoesnothave long to a galaxy cluster, and these are marked by red circles. an optical counterpart and seems to be related to source A. Thebrightestgalaxy(locatedsouthwest)hasanR-bandmagni- Source D is a fainter source (resolved in the 610 MHz image) tudeof20.69.UsingtheHubble-Rrelation(deVriesetal.2007), located just east of VLSS J0004.9 3457 at RA 00h 04m 50s, − we estimate a redshiftof 0.15 0.1,includingan extinctionin Dec 34◦56′38′′.IntheCnB-arrayVLA1.4GHzimage,shown the R-band of 4.173 mag (Sch±legel et al. 1998). We note that inFi−g.7(topright),componentCislessprominentthaninthe thisredshiftestimate is basedon thecorrectedidentificationof 325MHzimage,whilesourceBisclearlyvisible. the cD galaxy in the cluster. If the source is indeed located at Thespectralindexmapbetween325and610MHzisshown z = 0.15,thenitslargestphysicalextentis270kpc.Weclassify in Fig. 8 (right panel). Source B has a flat spectral index of ∼ thesourceasaradiophoenixgiventhefilamentarymorphology 0.5.SourceDhasasteeperspectralindexof 1.1.Thespectral − − 8 R.J.vanWeerenetal.:Diffusesteep-spectrumsourcesfromthe74MHzVLSSsurvey Fig.6.Topleft:GMRT325MHzmap.ContourlevelsaredrawnasinFig.1.Topright:WSRT1.3 1.8GHzmap.Contourlevelsaredrawnasin − Fig.1.Bottomleft:Spectralindexmapbetween325and610MHzataresolutionof13.44 8.96 .Contourlevelsarefromthe325MHzimage ′′ ′′ × anddrawnasinFig.2.Bottomright:OpticalWHTcolorimagefor24P73.GMRT610MHzcontoursareoverlaidinyellow.Thebeamsizeis 6.4 4.3 .ContourlevelsaredrawnasinFig.5.Severalfaintgalaxiesintheimagearemarkedbyredcircles. ′′ ′′ × index of A steepens away from the center (defined as the peak spectralsteepeningawayfromthecoreisthentheresultofsyn- flux and located at the position of the K-mag=14.86 galaxy). chrotronandIClosses. Theeasternarc-likeextensioncouldbe The central region has a spectral index of 1.2. Outwards, the aradiorelicbasedonitselongatednatureandhighpolarization − spectral index steepens to < 2. Component C has a spectral fraction.Thehighpolarizationfractionisindicativeofthepres- − indexof about 1.5.A spectralindex map, for the frequencies ence of ordered magnetic fields. Therefore it is likely that this − 325,610,and1425MHz,isshowninFig.8(middlepanel).The componenttracesaregionintheICMthathasbeencompressed spectral curvature map, in the right panel of Fig. 8, shows the byashockwave.Radiomini-halosusuallyoccurinmassivere- least curvature(i.e., less than 0.5 units) for the western part of laxedgalaxyclusters.Thepossiblepresenceofaradiorelicin- AandsourceB.EmissiontotheeastofAshowsmorespectral dicatesmergeractivitysoitispossiblethatthe“mini-halo”can steepening,withacurvatureofabout1.0units. alsobelinkedtothemergeractivityofthesystem.Radioplasma Polarized emission from source A, B, and componentC is from the central AGN might have been re-accelerated or com- observedintheVLAimages,Fig.7(bottomleftpanel).Source pressed by this merger event. The source is somewhat similar B is polarized at the 8% level. The polarization fraction at the to MRC 0116+111studied by Gopal-Krishnaet al. (2002)and centerofAisroughly6%.Thearc-likesoutheastextension(C) Bagchietal.(2009).WefindthatMRC0116+111exhibitstwo ishighlypolarized,withapolarizationfractionbetween25and bubble-likeradiolobes,whereasVLSSJ0004.9 3457seemsto − 35%. consistofasinglecomponent.Themorphologyofthesourceis moresimilartothecore-halosysteminZwCl1454.8+2223and We tentativelyclassify thesourceasa200kpc“mini-halo” candidate core-halosystem in Abell 3444 (Venturiet al. 2008, (or core-halo), because the radio emission of diffuse source A 2007). The cluster/group would make an interesting target for surrounds a central galaxy in a cluster or galaxy group. The R.J.vanWeerenetal.:Diffusesteep-spectrumsourcesfromthe74MHzVLSSsurvey 9 Fig.7.Topleft:GMRT325MHzmap.ContourlevelsaredrawnasinFig.1.Topright:VLA1425MHzmap.ContourlevelsaredrawnasinFig.1. Bottomleft:VLA1425MHzpolarizationmap.Totalpolarizedintensityisshownasgrayscaleimage.VectorsrefertothepolarizationE-vectors, withtheirlengthrepresentingthepolarizationfraction.Areferencevectorforapolarizationfractionof100%isshowninthebottomleftcorner. Thepolarization fractions werecorrected for Ricean bias(Wardle& Kronberg 1974). No polarization E-vectorsweredrawn for pixelswitha SNRlessthan3inthetotalpolarizedintensitymap.Contoursshowthetotalintensityimage(StokesI)at1425MHz.Contourlevelsaredrawnat [1,16,256,4096,...] 0.147mJybeam 1.Bottomright:OpticalPOSS-IIcolorimageforVLSSJ0004.9 3457.GMRT610MHzcontoursare − × − overlaidinyellow.Thebeamsizeis6.4 4.3 .ContourlevelsaredrawnasinFig.5. ′′ ′′ × Fig.8.Left:Spectralindexmapbetween325and610MHzataresolutionof13.5 11.0 .Contour levelsarefromthe325MHzimageand ′′ ′′ × drawnasinFig.2.Middle:Power-lawspectralindexfitbetween325,610,and1425MHz.Contoursarefromthe325MHzimageanddrawnat levelsof[1,2,4,8,...] 4σ .Thebeamsizeis19.83 12.0 .Right:Spectralcurvaturemap.Contouraredrawnasinthemiddlepanel. × rms ′′× ′′ 10 R.J.vanWeerenetal.:Diffusesteep-spectrumsourcesfromthe74MHzVLSSsurvey futureX-rayobservationstostudytherelationbetweentheradio sourcesandthesurroundingICM. 3.5.VLSSJ0915.7+2511,MaxBCGJ138.91895+25.19876 The radio source is located in the cluster MaxBCG J138.91895+25.19876. The source consists of a northern component(Fig. 9 left panel) and a slightly more ex- tendedfaintercomponenttothesouth.Acompactsourcetothe westisassociatedwiththegalaxySDSSJ091539.68+251136.9. Thissourcehasaspectroscopicredshift(SDSSDR7, Abazajian etal.2009)of0.324.Thisclusterhasa photometricredshiftof 0.289 (Koester et al. 2007),but the galaxy seems to be part of the cluster, hence we adopt a redshift of 0.324 for the cluster. Thecompactsourceisresolvedin our610MHz GMRT image anddisplaysadoublelobestructure(seeFig.9rightpanel). Thespectralindexmapbetween325and610MHzisshown inFig.9(middlepanel).Thespectralindexmapisnoisybecause ofdynamicrangelimitationsfromthesource4C+25.24(1.35Jy at325MHz)locatedabout3 tothesoutheast.Theeasternpartof ′ thenortherncomponenthasthesteepestspectrumwithanindex ofα 2,althoughtheSNRislowinthisregion.Thecompact ∼− Fig.11. Optical WHT color image for VLSS J2043.9 1118. GMRT sourcetothewesthasaflatspectralindexofabout 0.2. − − 610MHzcontoursareoverlaidinyellow.Thebeamsizeis5.8′′ 4.2′′. Theclassificationofthesourceisunclear.Thesourcemight × ContourlevelsaredrawnasinFig.5.Aredcircleindicatestheproposed containoldradioplasmathatoriginatedintheAGNtothewest. opticalcounterpart. Inthiscase,thesourcecouldbeclassifiedasaradiophoenixor AGNrelic. galaxiesintheclusteris857kms 1(Shenetal.2008).Thebolo- − metricX-rayluminosityis1.914 1044ergs 1.Onthebasisof − 3.6.VLSSJ1515.1+0424,Abell2048 × theL σrelation(X-rayluminosityversusvelocitydispersion) X − fromShenetal. VLSS J1515.1+0424is located in the cluster Abell 2048 (z = 0.0972; Struble&Rood1999)totheeastoftheclustercenter. L σ Thesourcehas a largestextentof 310kpc(see Fig. 10top left log X =4.39log 0.530, (1) 1044ergs 1! 500kms 1!− panel),andhasacomplexmorphology.Onlythebrighterpartsof − − thesourceareseenintheVLA1.4GHzC-arrayimage(Fig.10 we predict a velocity dispersion of 765 40 km s 1 given the top rightpanel).No polarizedflux is detected fromthe source. ± − X-rayluminosity.Thisislowerthanthe observedvalue,which We setan an upperlimiton the polarizationfractionof 8%for is not inconsistent with the cluster having undergone a recent thesource,againrequiringaSNRof5foradetection.Anoptical mergerevent.A shockwavegeneratedbytheproposedmerger V, R, and I color image of the cluster with 610 MHz contours eventmighthavecompressedfossilradioplasmaandproduced overlaid does not reveal an obviousoptical counterpartfor the the radiophoenix.FutureX-rayobservationswill beneededto source. studythedynamicalstateoftheclusterandtherelationbetween The spectral index map between 325, 610, and 1425 MHz, theICMandtheradiophoenix. is shownin Fig. 10 (bottomleft panel). No systematic spectral indexgradientsare seen acrossthe source.A regionwith a flat spectral index (α > 0.5) is located under the southern “arm” 4. Opticalimagingaroundfivecompact ofthesourceatRA1−5h15m08.6s,Dec+04 23 08 .Thispart ◦ ′ ′′ steep-spectrumsources is associated with the galaxy 2MASX J15150860+0423085in frontofthecluster(z=0.047856fromSDSSDR7)(seeFig.10 We present optical images around five slightly more compact bottomrightpanel).Thespectralindexoftherelicissteepwith steep-spectrumradiosources,whichnaturewasfoundtobeun- anaveragevalueofabout 1.7between1425and325MHz. clearinvanWeerenetal.(2009b). − The complex morphologyof the radio source suggests that thesourcecanbeclassifiedasaradiophoenix.Thesteepcurved 4.1.VLSSJ2043.9 1118 radiospectrumisconsistentwiththisinterpretation.Ifthesource − is indeed a radio phoenix, the radio plasma should have orig- The radio source has a largest angular size of 41 . An optical ′′ inated in a galaxy that has gone through phases of AGN ac- counterpart(R band magnitudeof 20.1)is visible in our WHT tivity. A candidate is the elliptical galaxy MCG +01 39 011 image (see Fig. 11). The radio emission surrounds the galaxy − − (z = 0.095032; Slinglendetal.1998).Thisgalaxyiscurrently andthereisahintofafaintextensiontotheeast.Weestimatea activeandlocatedclosetotheeasternendofthesouthern“arm”. redshiftof0.5 0.3fortheopticalcounterpart,whichimpliesa ± However, there are several other elliptical galaxies around, al- physicalextentof250kpcfortheradiosource.Thesourcecould thoughatthemomenttheyarenotradio-loud.AROSATimage beamini-haloorcore-halosystemgivenitssteepspectralindex (seevanWeerenetal.2009b)oftheclustershowsasubstructure of 1.74 0.05(between74and1400MHz).Alternatively,we − ± to theeast ofthe maincluster,whichimpliesthatthecluster is are detecting radio plasma from an AGN that has undergonea presentlyundergoingamerger.Thevelocitydispersion,σ,ofthe significantamountofspectralageing.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.