ebook img

diffuse optical light in galaxy clusters. i. abell 3888 PDF

17 Pages·2005·1.04 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview diffuse optical light in galaxy clusters. i. abell 3888

View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Queensland eSpace TheAstronomicalJournal,131:168–184,2006January #2006.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. DIFFUSE OPTICAL LIGHT IN GALAXY CLUSTERS. I. ABELL 3888 J. E. Krick and R. A. Bernstein AstronomyDepartment,UniversityofMichigan,AnnArbor,MI48109;[email protected],[email protected] and K. A. Pimbblet DepartmentofPhysics,UniversityofQueensland,Brisbane,QLD4072,Australia;[email protected] Received2005February10;accepted2005September18 ABSTRACT We are undertaking a program to measure the characteristics of the intracluster light (ICL; total flux, profile, color,andsubstructure)inasampleof10galaxyclusterswitharangeofclustermass,morphology,andredshift. We present here the methods and results for the first cluster in that sample, A3888. We have identified an ICL component in A3888 in Vand r that contains 13%(cid:1)5% of the total cluster light and extends to 700 h(cid:2)1 kpc 70 ((cid:3)0.3r )fromthecenterofthecluster.TheICLcolorinoursmallestradialbinisV (cid:2)r¼0:3(cid:1)0:1,similartothe 200 centralclusterellipticalgalaxies.TheICLisredderthanthegalaxiesat400 h(cid:2)1 kpc<r<700 h(cid:2)1 kpc,although 70 70 theuncertaintyinanyoneradialbinishigh.BasedonacomparisonofV (cid:2)rcolorwithsimplestellarmodels,the ICLcontainsa componentthatformedmorethan7Gyrago(atz>1)witha high-metallicity(1:0 Z <Z P (cid:4) ICL 2:5 Z )andamorecentralizedcomponentthatcontainsstarsformedwithinthepast5Gyr(atz(cid:3)1).Theprofileof (cid:4) theICLcanberoughlyfittedbyashallowexponentialintheouterregionsandasteeperexponentialinthecentral region.Wealsofindaconcentrationofdiffuselightaroundasmallgroupofgalaxies1.4h(cid:2)1Mpcfromthecenter 70 of the cluster. In addition, we find three low surface brightness features near the cluster center that are blue (V (cid:2)r¼0:0)andcontainatotalfluxof0.1M .BasedontheseobservationsandX-rayandgalaxymorphology,we (cid:5) suggest that this cluster is entering a phase of significant merging of galaxy groups in the core, whereupon we expecttheICLfractiontogrowsignificantlywiththeformationofacDgalaxy,aswellastheinfallofgroups. Key words: cosmology: observations — galaxies: clusters: individual (A3888) — galaxies: evolution — galaxies: interactions — galaxies: photometry 1. INTRODUCTION TheICL isafossilremnantofclusterformationandevolu- tionandcanbeusedtostudythedominantphysicalprocesses Galaxy clusters contain a population of stars that are not involvedingalaxyevolutioninclusters.Hierarchicaldarkmat- members of individual galaxies but are bound to the cluster tersimulationssuggestthatgalaxiesfallingintodenseregions potential, producing diffuse intracluster light (ICL). This ICL would lose most of their mass. When mechanisms such as ra- componenthasbeenfoundinanumberofclustersthroughsur- diative cooling and star formation are included in the simu- facebrightnessmeasurementsanddirectdetectionsofresolved lations,galaxiescomposedofacentraldensecoreofstarsretain starsincludingplanetarynebulae,redgiants,supernovae(SNe), mostoftheirstellarmassthroughoutclusterinfallbutlosesome novae, and globular cluster systems. These investigations in- stars to the cluster potential. State-of-the-art simulations are dicatethattheopticalICLcomprisesbetween5%and50%of abletopredicttheexistenceofthisintraclusterpopulation,but the total optical cluster luminosity (see Feldmeier et al. 2004; basicquestionsastoitspropertiescanonlybeansweredbyunder- Gonzalezetal.2005;Zibettietal.2005,andreferencestherein). standingwhichphysicalmechanismsareimportant.Thiswork Conclusionsonthecolorofthe ICL vary widelyfromblueto seekstodiscoverwhenandhowintraclusterstarsareformedby red,withandwithoutcolorgradients(Schombert1988;Mackie studyingthetotalflux,profileshape,color,andsubstructurein 1992; Gonzalez et al. 2000; Zibetti et al. 2005). Current mea- theICLasafunctionofclustermass,morphology,andredshift. surements of the shape of the ICL generally favor a double ObservationsofthetotalfluxintheICLoverasampleofclus- deVaucouleursprofilesuchthatonefunctionfitsthebrightest terswillallowustoidentifytheeffectsofclusterenvironmenton clustergalaxy(BCG)andthesecondfunctionfitstheextended galaxyevolution.Forexample,ahigh-massclustershouldhavea envelope (Gonzalez et al. 2000; Bernstein et al. 1995; Zibetti higherICLfractionthanlow-massclustersiframpressurestrip- et al. 2005). Examples of tidal features such as plumes and pingorharassmentaredominantmechanisms.Infact,simulations bridgesarefoundinmultipleclustersasevidenceofinteractions bybothLin &Mohr(2004) and Muranteetal. (2004)predict thataddstarstotheICL(Gregg&West1998;Calca´neo-Rolda´n a strong relation between ICL fraction and mass. If, however, et al. 2000; Feldmeier et al. 2004). Long-slit spectroscopy of galaxy-galaxymergingisthedominantmechanismandmostof A2199 shows that the intracluster stars there have the same thegalaxyevolutionhappensearlyoninclustercollapse,thenthe velocitydispersionastheclustergalaxies(Kelsonetal.2002), ICLshouldnotcorrelatedirectlywithcurrentclustermass.The confirming that, in at least one cluster, the intracluster stars existenceofacDgalaxyinaclusterisevidenceofarichmerger arenotboundtotheindividualgalaxiesbuttracetheoverallclus- history,andtherefore,morphologyshouldalsocorrelatestrongly ter potential. Conversely, intracluster planetary nebula studies withICLfraction.TheICLfractionwillbeaffectedbyredshift, showevidenceforlessrelaxedvelocities(Arnaboldietal.2004; sincewithtimecomesanincreasednumberofinteractions. Gerhardetal.2005).Thereisnoconsensusonthevelocitydis- Observations of the color and substructure of the ICL will tributionofintraclusterstars. helpidentifytheorigin,formationepoch,metallicity,andpossibly 168 DIFFUSE OPTICAL LIGHT IN GALAXY CLUSTERS. I. 169 progenitormorphologiesofclustergalaxies.Forexample,ifthe a statistical sample representative of a wide range in cluster ICLisasredorredderthanthebrightclusterellipticalgalaxies, characteristics,namely,redshift,morphology,spatialprojected itislikelytobearemnantfromtheearlyepochsofclusterfor- density(richness),andX-rayluminosity(mass). mationwithlittlerecentaccretionoftidallydisruptedsystems. To the extent possible, we also selected clusters for which IftheICLisbluerthanthegalaxies,thensomerecentaccretion massestimatesandmembershipinformationareavailableinthe hasoccurred,eitherfromellipticalgalaxieswithlowmetallicity literature.Forexample,inadditiontopublishedX-raymasses, orspiralgalaxieswithyoungerstellarpopulations.Whilemul- threeoftheclustershavemassestimatesfromgravitationallens- tiple mechanisms are likely to play a role in the complicated ingmeasurements.Publishedredshiftsurveysprovidevelocity process of the formation and evolution of clusters, important dispersionsandmembershipinformationforallbuttwoclusters constraintscancomefromICLmeasurementinclusterswitha inthesurvey.Thosetwoclusters,aswellasfiveotherswithsmall widerangeofproperties. numbersofpublishedvelocities,wereincludedinaredshiftsur- In addition to constraining galaxy evolution, the ICL is an vey we undertook with IMACS on Magellan I (Baade). With important baryonic component in clusters. The ICL, which is theseadditionalobservationsthephysicalpropertiesofallclusters typically not included in the baryon census, will contribute to inoursamplecanbecomparedtotheICLcharacteristics.Table1 thebaryonfractionofclusters,andthatcontributionislikelyto liststherelevantinformationfortheclustersample. changewithtime.IftheICLfractiondoesindeedevolvewith The sample is divided into a ‘‘low’’ (0:05<z<0:1) and a redshiftandisasignificantfractionofthetotalclusterlight,it ‘‘high’’(0:15<z<0:3)redshiftrangeobservedwiththe1m willsystematicallybiastheinferredredshiftdependenceofthe Swopeand2.5mDuPonttelescopes,respectively.Thebottom baryonfraction.RecentworkbyAllenetal.(2004)hasuseda end of the redshift range is limited by the field of view of the change in baryon fraction with redshift of only a few percent 1mtelescopeanddetector,whichcorrespondsto0:9 h(cid:2)1 Mpc ; 70 to constrain cosmological parameters. When doing such pre- 1:4 h(cid:2)1Mpc(14A8;22A8)atz¼0:05.Thisfieldofviewallows 70 cisioncosmologyitwillbenecessarytoincludeICLintheclus- ustomeasuretheICL,aswellasoff-clusterbackgroundfluxin terlightbudget. thesameimageforallclustersinthesample.Thetopendofthe TheICLmayalsoplayanimportantroleintheglobalprop- redshiftrangereflectsX-raydataavailabilityandtheincreasing erties of the intracluster medium (ICM). It has recently been difficulty of measuring diffuse sources at high redshift due to suggestedthatanintraclusterstellarpopulation(ICSP)canac- (1þz)4 surfacebrightnessdimming. countforatleastsomeamountofheatingandmetalenrichment 2.1. A3888 oftheICM(Zaritskyetal.2004;Lin&Mohr2004;Domainko etal.2004).ConsideringonlySNewithingalaxies,thefullmetal- Thispaperfocusesononeclusterinoursample,A3888,which licityoftheICMcannoteasilybeaccountedfor(Lin&Mohr isarichnessclass2clusteratz¼0:15(Abelletal.1989).This 2004).However,sinceintraclusterSNeareinsituintheICM, Bautz-Morgan(B/M)typeI-IIclusterhasnocDgalaxy;instead, they contribute directly to the metallicity of the ICM and will thecorecomprisesthreedistinctsubclumpsofmultiplegalaxies thereforehaveadirectimpactonitsabundance.Althoughthese each.Atleasttwogalaxiesineachoftheseclumpsareconfirmed authorsfindthattheICLcannotfullyaccountforthehighabun- members (Teague et al. 1990; Pimbblet et al. 2002). On large dance of the ICM ((cid:3)0.3 Z ), further studies are warranted to scales (286, 535, and 714 h(cid:2)1 kpc) Girardi et al. (1997) find a (cid:4) 70 quantifyjusthowmanyintraclusterSNethereare.Evenifthe unimodal distribution for this cluster, with no detected sub- ICSP cannot account for the full metallicity of the ICM, it is structuresineitherthegalaxyspatialorvelocitydistribution.The possible that this population is responsible for the metallicity projected spatial distribution of galaxies in A3888 is slightly gradient found in clusters. If true, a correlation between ICL elongated,withanellipticityof0.43(Struble&Ftaclas1994). fluxandabundancegradientsinclustersshouldexist. X-raysurfacebrightnessesobtainedfromXMM-Newtonobser- Inthispaperwepresentthemethodsofthissurvey,aswellas vations also indicate an elongated, single-peaked distribution measurementsofthecolor,totalflux,andprofileshapeforthe for the hot gas. The cluster contains an X-ray-bright Seyfert I first cluster in our sample, A3888. In x2 we discuss the char- galaxy located at a projected distance of roughly 600 h(cid:2)1 kpc 70 acteristicsoftheentiresample.Detailsoftheobservationsand fromtheclustercenter(Reimersetal.1996). reductionarepresentedinxx3and4,includingflat-fieldingand ThemassofA3888canbeestimatedfromtwodifferentsets skybackground–subtractionmethods.Inx5wediscussobject ofobservations.Reiprich&Bo¨hringer(2002)calculategravi- detectionandremoval,aswellasclustermembership.Inx6we tational mass based on pointed ROSAT PSPC count rates and describeourresults,followedbyadiscussionofaccuracylimits theROSAT-ASCAL -T relation(Markevitch1998).Assuming X X inx7.Inx8wepresentadiscussionoftheresults.Conclusions an isothermal distribution and employing hydrostatic equilib- aresummarizedinx9. rium,theyfindM ¼25:5þ10:8 ;1014 h(cid:2)1 M ,wherer ¼ 200 (cid:2)7:4 70 (cid:4) 200 Throughout this paper we use H ¼70 km s(cid:2)1 Mpc(cid:2)1, 2:8 h(cid:2)1 Mpc, which is defined as the radius within which the 0 70 (cid:1) ¼0:3,and (cid:1) ¼0:7, which gives3.5 kpc arcsec(cid:2)1atthe meanmassdensityisequalto200timesthecriticaldensity.Ina M (cid:2) distanceofA3888. complementarymethod,masscanbedeterminedfrompublished galaxyvelocitydispersions.Basedonredshiftsfor50member 2. THE SAMPLE galaxieslocatedwithinaradiusof3.11h(cid:2)1Mpc(Teagueetal. 70 The 10 galaxy clusters in our survey were selected to meet 1990) and using the method described by Girardi & Mezzetti two general criteria. First, each cluster has a published X-ray (2001), we find that the mass of A3888 within r is M ¼ 200 200 luminosity that guarantees the presence of a cluster and pro- 40:2þ10:6 ;1014 h(cid:2)1 M . For the purpose of this work, these (cid:2)7:4 70 (cid:4) videsanestimateofthecluster’smass.Second,allareathigh two mass estimates are in good agreement, particularly since Galacticand ecliptic latitudealong linesof sightwithlowH i thisclusteriselongatedandlikelynotindynamicequilibrium. columndensity.Thisminimizescomplicationsduetoscattered 3. OBSERVATIONS light from Galactic stars and zodiacal dust and from variable extinctionacrosstheclusterfield.Oftheclustersthatmeetthe Observationsfortheentiresampleof10clustershavebeencom- abovequalifications,weselected10clustersasthebeginningof pleted.Thehigh-redshiftobservationsweremadewiththeduPont TABLE1 ClusterCharacteristics R.A. Decl. l b Richness L (cid:1) No.ofConfirmed n(Hi)a Lensing X v ClusterName (J2000.0) (J2000.0) (deg) (deg) z B/M Class (1044ergss(cid:2)1) (kms(cid:2)1) Members (1020cm(cid:2)2) Measurement A4059b........................... 2357 (cid:2)3440 356.8 (cid:2)76.06 0.048c I 1 3.09a 845þ280d 45e,f 1.1 ... (cid:2)140 A3880b........................... 2228 (cid:2)3034 17.99 (cid:2)58.50 0.058c II 0 1.86a 827þ120g 122h,i,j 1.1 ... (cid:2)79 A2734b........................... 0011 (cid:2)2852 19.46 (cid:2)80.98 0.062c III 1 2.55a 628þ61g 127k,f,j 1.8 ... (cid:2)57 A2556b........................... 2313 (cid:2)2138 41.37 (cid:2)66.97 0.087c II-III 1 2.47a 1247þ249d 5l,m,n 2.0 ... (cid:2)249 A4010b........................... 2331 (cid:2)3630 359.0 (cid:2)70.60 0.096c I-II 1 5.55a 625þ127g 30k,f 1.4 ... (cid:2)95 A3888............................. 2234 (cid:2)3743 3.96 (cid:2)59.40 0.151c I-II 2 14.52a 1102þ137o 69p 1.2 ... (cid:2)107 A3984b........................... 2315 (cid:2)3748 359.0 (cid:2)67.19 0.181c II-III 2 9.18a ... ...i 1.7 ... A0141b........................... 0106 (cid:2)2435 175.3 (cid:2)85.93 0.23c III 3 12.62a ... ...q 1.8 Dahleetal.(2002) AC118............................ 0014 (cid:2)30 2 8.90 (cid:2)81.24 0.308c III 3 22.05a 1947þ292r 363s,t,r 1.7 Smailetal.(1991) (cid:2)201 AC114............................ 2258 (cid:2)3447 8.32 (cid:2)64.78 0.31q II-III 2 12.7u 1388þ128o 380t,v,r 2.0 Smailetal.(1991) (cid:2)71 Note.—Unitsofrightascensionarehoursandminutes,andunitsofdeclinationaredegreesandarcminutes. a FromEbelingetal.(1996). b Clustersforwhichwehavedoneaphotometricandspectroscopicsurveyforadditionalmembershipinformation(seex2). c FromStruble&Rood(1999). d FromWuetal.(1999). e FromChenetal.(1998). f FromMazureetal.(1996). g FromGirardietal.(1998). h FromStein(1996). i FromCollinsetal.(1995). j FromDeProprisetal.(2002). k FromdenHartog(1995). l FromCiardulloetal.(1985). mFromKowalskietal.(1983). n FromBatuskietal.(1999). o FromGirardi&Mezzetti(2001). p FromTeagueetal.(1990). q FromAbelletal.(1989). r FromCouch&Sharples(1987). s FromBusarelloetal.(2002). t FromCouch&Newell(1984). u FromDeFilippisetal.(2004). v FromCouchetal.(2001). DIFFUSE OPTICAL LIGHT IN GALAXY CLUSTERS. I. 171 2.5mtelescopeatLasCampanasObservatory.Weusedthethinned, mean dark count is 0.6 counts per 900 s, which is less than 2048;2048TektronixTek5CCDwitha3e(cid:2)count(cid:2)1gainand 0.08%oftheskylevelandisthereforenotsignificant.However, 7e(cid:2)readnoise.Thepixelscaleis0B259pixel(cid:2)1(15(cid:2)mpixels), evenatthissmallcountlevelthereissomeverticalstructurein sothatthefullfieldofviewis8A8onaside,correspondingto thedarkthatamountsto1countper900soverthewholeimage. 1.8h(cid:2)1 Mpcperframe.Dataweretakenintwofilters,Gunn-r Toremove thislarge-scalestructure from thedataimages, the 70 (k ¼65508)andV(k ¼54008).Thesefilterswereselected combined dark frame was median-smoothed over 9;9 pixels 0 0 toprovidesomecolorconstraintonthestellarpopulationsinthe (2B3), scaled by the exposure time, and subtracted from the ICLwhileavoidingflat-fieldingdifficultiesatlongerwavelengths programframes.Small-scalevariationswerenotpresentinthe andprohibitiveskybrightnessatshorterwavelengths. dark.Errorsinboththebiasanddarksubtractionduetostruc- Observingrunsoccurredon1998August19–25,1999Sep- ture in the residuals are an additive offset to the background tember2–10,and2000September22–27.Specifically,A3888 level.Theseareincludedinourfinalerrorbudgetbasedonan wasobservedonthenightsof1999September2and8and2000 empiricalmeasurementofthestabilityofthebackgroundlevel September22–25.Bothobservingrunstookplaceinthedays inthefinalcombinedimage(seex7). leadinguptonewMoon.Thenightof1999September2 was the only nonphotometric night, and only three cluster images 4.2.Flat-Fielding were taken on that night. These were individually tied to the The accuracy of any low surface brightness (LSB) mea- photometricdata.Theaverageseeingduringthe1999and2000 surementislimitedbyfluctuationsonthebackgroundlevel.A runswas1B77and0B93,respectively.Acrossbothrunsweob- major contributor to those fluctuations is the large-scale flat- servedA3888foranaverageof5hrineachband.Inadditionto fieldingaccuracy.Pixel-to-pixelsensitivityvariationswerecor- theclusterframes,night-skyflatswereobtainedinnearby,off- rected in all cluster and night-sky flat images using nightly, cluster, ‘‘blank’’ regions of the sky with total exposure times high-S/N, median-combined dome flats with 70,000–90,000 roughly equal to one-third of the integration times on cluster totalcounts.Afterthisstep,alarge-scaleilluminationpatternof targets. Night-sky flats were taken in all Moon conditions. order 1% remained across the chip. This was removed using TypicalV-andr-bandskylevelsduringtherunwere21.3and combinednight-skyflatsof‘‘blank’’regionsofthesky.Tomake 21.1magarcsec(cid:2)2,respectively. thesenight-skyflats,objectsintheindividualblank-skyframes Clusterimageswereditheredbyone-thirdofthefieldofview werefirstmaskedbeforecombination.WeusedSExtractor(Bertin between exposures. The large overlap from the dithering pat- & Arnouts 1996) to identify all sources with a minimum of terngivesusampleareaforlinkingbackgroundvaluesfromthe 6pixelsandatotalfluxof2(cid:1)abovetheskybackground.Mask neighboring cluster images. Observing the cluster in multiple sizeswereincreasedby4–7pixelsoverthesemimajorandsemi- positionsonthechipisbeneficialbecauseoncombinationlarge- minor axes from the object catalogs to insure object rejection. scale flat-fielding fluctuations are reduced. Integration times The masked images were then median-combined with 2 (cid:1) re- weretypically900sasacompromisebetweensignal-to-noise jection. This produced an image with no evident residual flux ratio(S/N)andmoderatingthenumberofsaturatedstars. fromsourcesandkeptthelarge-scaleilluminationpatternintact. Observationsofthelow-redshiftclusterswillbediscussedin Fluctuationsarelessthan0.1%peaktopeakon1000 scales.The afuturepaper. finalcombinednight-skyflatswerethenmedian-smoothedover 4. REDUCTION 7;7 pixels (200), normalized, and divided into the program im- ages. The illumination pattern was stable among images taken In order to create a single, mosaicked image of the cluster duringthesameMoonphase.Programimageswerecorrected withauniformbackgroundlevelandaccurateresolved-source onlywith night-sky flats taken in conditionsofsimilar Moon. fluxes,theimagesmustbebiasanddarksubtracted,flat-fielded, The contribution of flat-fielding to our final error budget is fluxcalibrated,backgroundsubtracted,extinctioncorrected,and measuredempirically,asdescribedinx7. registeredbeforecombining.Theseissuesaredealtwithasde- scribedbelow. 4.3. Nonlinearity 4.1. Bias and Dark Subtraction AlthoughtheICLmeasurementisbasedonalownumberof counts,photometriccalibrationisbasedonbrightstandardstars. Preprocessingofthedata,includingoverscan,bias,anddark AccuratecalibrationisthendependentontheCCDhavingalinear subtraction, was done in the standard manner using mainly responsetoflux.ToascertainwhetherTek5waslinearwithflux IRAFtasks.Theaveragebiaslevelwasstableat(cid:3)800counts, over a wide dynamic range, a consecutive chain of dome-flat changingby1%throughoutthenight.Thereisstructureinthe imagesweretakenwithexposuretimesof2–100s,corresponding biasintheformofrandomfluctuations,aswellasahighlyre- to approximately 300–15,000 counts pixel(cid:2)1. Multiple passes peatable, large-scale ramping in the first 500 pixels of every throughtheexposuretimesequence(increasinganddecreasing) row.Toremovethisstructure,wefirstfitaneighth-orderpoly- weremadetoruleoutanyeffectsfromfluctuatinglampflux.We nomialto140overscancolumnsandsubtractthatfit,columnby find that the Tek5 CCD does have an approximately 2% non- column,fromeachimage.Wefurtheraveragetogether10bias linearity,whichwefittedwithasecond-orderpolynomialandcor- frames per night with 3 (cid:1) cosmic-ray (CR) rejection and then rected for in all the data. The same functional fit was found for boxcarsmoothintheverticaldirectionbeforesubtractingfrom both the 1999 and the 2000 data. Note that the exposure times thedata.Wechoosetosmoothintheverticaldirectionbecause usedforallobservationsarelongenoughthatshutterperformance wehavealreadyremovedverticalstructureinthepreviouspro- is not a problem. The uncertainty in the linearity correction is cessingstep.Testreductionofthebiasframesthemselveswith incorporatedinthetotalphotometricuncertaintydiscussedbelow. thisprocedurerevealsnoremainingvisiblestructure,andeach framehasameanlevelof0countstowithin(cid:1)0.05counts. 4.4. Photometric Calibration Twenty-five dark exposures were taken per observing run. We averaged these together with a 3 (cid:1) rejection to look for Photometriccalibrationwasperformedintheusualmanner. structure or significant count levels in the dark current. The Fiftytoseventystandardstars(Landolt1992;Jorgensen1994) 172 KRICK, BERNSTEIN, & PIMBBLET Vol. 131 were observed per night per filter over a range of air masses. Stellar magnitudes were measured with an aperture size of 5timestheFWHM,wheretheFWHMofthestarsintheimages wasdeterminedusingSExtractor.Wechoosethisaperturesize asacompromisebetweenaperturecorrectionandaddedback- ground noise. Photometric nights were analyzed together; so- lutionswerefoundineachfilterforazeropointandextinction coefficientwithanrmsof0.03mag(r)in1999Septemberand 0.02mag(randV)in2000September.Theseuncertaintiesare a small contribution to our final error budget but are included forcompletenessasdiscussedinx7.Observingthesamecluster fieldforlongperiodsthroughoutthenightallowsustomeasure anextinction coefficient from stars inthecluster fields,which wefindisfullyconsistentwiththe extinction coefficientmea- suredfromthestandardstars.Thethreeexposurestakeninnon- photometricconditionswereindividuallytiedtothephotometric datausingroughly10starswelldistributedaroundeachframe tofindtheeffectiveextinctionforthatframe.Wefindastandard deviationof0.03withineachframe,withnospatialgradientin theresiduals. We have compared our V- and r-band magnitudes for hun- dreds of galaxies in the cluster with R-band magnitudes from theLasCampanasAATRichClusterSurvey(LARCS;Pimbblet etal.2002).TothedetectionlimitoftheLARCSphotometry,and Fig.1.—Central(cid:3)1Mpc(4A9)ofA3888intheVband.Thegrayscaleis adoptingasingleaveragegalaxycolortoconvertbetweenfilters, linearovertherange20.4–29.5magarcsec(cid:2)2.Notethethreemaingroupsof galaxiesnearthecenterofthecluster.Adozenobjectsinthisimagearestars;the thetwosamplesareconsistentwithanrmsscatterof0.07mag. restaregalaxies. 4.5. Sky Background Subtraction Animportantissueforaccuratesurfacebrightnessmeasure- 4.6. Extinction Correction mentistheaccurateidentificationofthebackgroundskylevel. Afterbackgroundsubtraction,allfluxintheframeoriginates Theoff-clusterbackgroundlevelinanyimageisacombination abovetheatmosphereandissubjecttoatmosphericextinction ofatmosphericemission(airglow)andlightfromextraterrestrial (largeanglescatteringoutofthelineofsight).Thisisequally sources(zodiacallight,moonlight,starlight,andstarlightscat- true of resolved sources and diffuse sources less than several tered off of Galactic dust). Zodiacal light comes from solar degreesinextent.Whileextinctioncorrectionsareusuallyap- photons scattered off of ecliptic dust and is therefore concen- pliedtoindividualresolvedsources,thatisnotpossiblewiththe tratedintheeclipticplane,which,alongwiththeGalacticplane, diffuseICL.Wecorrectentireclusterimagesforthisextinction we were careful to avoid in sample selection, so the extrater- bymultiplyingeachindividualimageby10(cid:3)(cid:4)/2.5,where(cid:4)isthe restrialbackgroundlightwillnotvaryspatially.Lightfromthe airmassand(cid:3)isthefittedextinctiontermfromthephotometric extraterrestrial sources will also be scattered into the field of solution. This multiplicative correction is between 1.06 and viewbytheatmosphere.Airglowisemissionfromtherecom- 1.29fortheair-massrangeofourA3888observations. binationofelectronsintheEarth’satmospherethatwereexcited during the day by solar photons, and as such is a function of 4.7. Registration and Distortion solaractivity,timeelapsedsincesunset,andgeomagneticlatitude Tocombineimageswealignall41individualframestoone (Leinertetal.1998).Airglowandatmosphericscatteringvary centralreferenceframe.SExtractorpositionsofapproximately throughoutthenight,moonlightvariesfromnighttonight,and 10starsineachframeareusedasinputcoordinatestotheIRAF zodiacallightvariesfromyeartoyear.Thebackgroundvalues tasksgeomapandgeotran,whichfindandapplyx-andy-shifts fromframetoframecorrespondinglyvarytemporallybyupto androtationsbetweenimages.Thegeotransolutionisaccurate 10%throughoutonerunand20%fromyeartoyear. to 0.01 pixels (rms). As an independent check of registration Due to the temporalvariations in the background, it is nec- accuracy,weconfirmthatthecentercoordinatesofstarsinthe essarytolinktheoff-clusterbackgroundsfromadjacentframes original images, as compared to the combined image, are the tocreateonesinglebackgroundofzerocountsfortheentireclus- sametowithin0.01pixels.Thisuncertaintyisnegligibleforour termosaicbeforeaveragingtogetherframes.Todeterminethe measurement,whichismadeonmuchlargerscales.Inaddition, backgroundoneachindividualframewemeasureaveragecounts inapproximatelytwenty20;20pixelregionsacrosstheframe. theellipticitiesofindividualstarsdonotchangewithimagecom- bination,suggestingthatnosystematicerrorsinregistrationexist. Regionsarechosenindividuallybyhandtobearepresentative Stellarellipticitiesalsoshownovariationacrosstheframe,sug- sample of all areas of the frame that are more distant than 0:8 h(cid:2)1Mpcfromthecenterofthecluster.Thisiswellbeyond gestingthattherearenosignificantimagedistortions. 70 the radius at which ICL components have been identified in 4.8. Image Combination otherclusters(Feldmeieretal.2002;Gonzalezetal.2005)and isalsobeyondtheradiusatwhichwedetectanydiffuselightin Afterpreprocessing,backgroundsubtraction,extinctioncor- A3888.Theaverageofthesebackgroundregionsforeachframe rection, and registration, we combined the images using the issubtractedfromthedata,bringingeveryframetoazeroback- IRAFroutineimcombinewithrejectionsof(cid:2)3.5and+4.5(cid:1). ground.Theaccuracyofthebackgroundsubtractionisdiscussed Thisrangewaschosenasacompromisebetweenrejectingthe inx7. CRsandallowingforsomeseeingvariationsinthepeakfluxof No. 1, 2006 DIFFUSE OPTICAL LIGHT IN GALAXY CLUSTERS. I. 173 stars.Intotal,16and25900sexposuresintheVandrbands, respectively,wereaveragedtogether.Thefinalcombinedimage is 4096 pixels (3:6 h(cid:2)1 Mpc) on a side. The central region 70 (approximately 1 h(cid:2)1 Mpc on a side) of the final combined 70 V-bandimageisshowninFigure1. 5. ANALYSIS 5.1. Object Detection We use SExtractor both to find all objects in the combined framesandtodeterminetheirshapeparameters.Thedetection thresholdinboththeVandrimageswasdefinedsuchthatob- jectshaveaminimumofsixcontiguouspixels,eachofwhich aregreaterthan1.5(cid:1)abovethebackgroundskylevel.Thiscor- respondstoaminimumsurfacebrightnessof26.0magarcsec(cid:2)2 in V and 26.4 mag arcsec(cid:2)2 in r. The faintest object in the cataloghasatotalmagnitudeof27.0maginVand27.4magin r;however,wearecompleteonlyto24.8maginVand24.5mag in r. We choose these parameters as a compromise between detectingfaintobjectsinhigh-S/Nregionsandrejectingnoise fluctuations in low-S/N regions. Shape parameters are deter- minedinSExtractorusingonlythosepixelsabovethedetection threshold. Fig. 2.—PSFofthe100inch(2.5m)duPonttelescopeatLasCampanas Observatory.They-axisshowssurfacebrightnessscaledtocorrespondtothe 5.2. Object Removal and Masking totalfluxofazero-magnitudestar.Theprofilewithin500 wasmeasuredfrom unsaturatedstarsandcanbeaffectedbyseeing.Theouterprofilewasmeasured TomeasuretheICLweremovealldetectedobjectsfromthe fromtwostarswithsupersaturatedcoresimagedintwodifferentpositionsonthe framebyeithersubtractionofananalyticalprofileormasking. CCDontwodifferentobservingruns.Thebumpintheprofileat10000islikely Detailsofthisprocessaredescribedbelow. relatedtothepositionofthestarinthefocalplane.Ifthecoreofastarisimaged offtheCCD,itsprofiledoesnotshowthisfeature,suggestingthatthefeatureis 5.2.1.Stars causedbyareflectionofftheCCDitself.Theoutersurfacebrightnessprofile decreasesasroughlyr(cid:2)3,shownbythesolidline.Anr(cid:2)2.0profileisplottedto Scattered light in the telescope and atmosphere produce an showtherangeinslopes. extendedpoint-spreadfunction(PSF)forallobjects.Tocorrect forthiseffect,wedeterminethetelescopePSFusingtheprofiles stellarprofilewiththatmagnitudeandproducealargemaskto of a collection of stars from supersaturated 4 mag stars to un- covertheinnerregionsandanybleeding.We canaffordtobe saturated 14 mag stars. The radial profiles of these stars were liberalwithoursaturatedstarmasking,sincethereareveryfew fittedtogethertoformonePSFsuchthattheextremelysaturated saturatedstarsandnoneofthemarenearthecenteroftheclus- star was used to create the profile at large radii and the unsat- ter,whereweneedtheunmaskedareatomeasureanypossible uratedstarswereusedfortheinnerportionoftheprofile.This ICL. allowsustocreateanaccuratePSFtoaradiusof70,shownin 5.2.2.Galaxies Figure2. TheinnerregionofthePSF iswellfittedbyaMoffatfunc- TomakeanICLmeasurementwewouldideallyliketosub- tion. The outer region is well fitted by r(cid:2)3. There is a small tractascaledanalyticalprofileforeachgalaxythatwouldleave additionalhalooflightatroughly5000–10000 (200–400pixels) noresidualsandwouldallowustorecovertheareaonthesky around stars imaged on the CCD. Images of saturated stars covered by cluster galaxies. We have attempted to do this us- located off the field of view of the detector do not show this ingthreepubliclyavailablealgorithms:GIM2D(Simardetal. halo, indicating that it is due to a reflection of light off of the 2002),GALFIT(Pengetal.2002),andtheIRAFtaskellipse CCDitself.Wefindthatroughly1%ofthetotalfluxinthestar (Jedrzejewski1987).Withthesealgorithms,wehaveemployeda is in this halo. There are 13 saturated stars within 3.8 Mpc of widerangeofsurfacebrightnessprofiles,includingdeVaucouleurs, A3888 ranging from 11.6 to 15.2 V magnitudes. The nearest Se´rsic, exponential profiles, and combinations thereof. In ad- three saturated stars are 0.6, 0.8, and 1.0 h(cid:2)1 Mpc from the dition,wehaveusediterativetechniquestoalternatelyfitand 70 clustercenterandhave14.6,13.4,and11.6Vmagnitudes,re- removegalaxiesincrowdedfields.Thetechnicalchallengesin spectively. These stars do not directly contribute to the ICL fitting the galaxies, including galaxy deblending, PSF effects measurement because they are not near enough to the center, anddeconvolution,two-dimensionalprofilefitting,andspeed donothaveverybrightmagnitudes,andthePSFdoesnotput inperformingmanyFouriertransforms,havebeenpreviously verymuchpowerintothewings.Wedoacarefuljobofback- discussed by several groups (see, e.g., Peng et al. 2002 for a groundsubtraction,bytyingtooff-clusterflux,sothatthePSF review). alsodoesnotaffectthebackgroundmeasurement. Figure 3 shows representative results of modeling three For each individual, nonsaturated star we subtract a scaled galaxiesusingGALFIT:oneisolatedgalaxyandtwogalaxiesin r(cid:2)3profilefromtheframeinadditiontomaskingtheinner3000 increasingly dense regions. These examples show that the al- oftheprofile(theregionthatfollowsaMoffatprofile).Sincewe gorithmsperformwellforisolatedgalaxiesbutfailforgalaxies do not have accurate magnitudes for the saturated stars in our nearthecoreeitherbecauseofthedifficultyindeblendingmany owndata,andtobeascautiousaspossiblewiththePSFwings, overlappinggalaxyprofilesorbecausetheindividualgalaxies we have assumed the brightest possible magnitudes for these insuchdenseregionsdonotfollowsimpleanalyticalprofiles. stars given the full USNO catalog errors. We then subtract a Itisnotclearwhattheprofilesshouldbeofgalaxiesdeepinthe 174 KRICK, BERNSTEIN, & PIMBBLET Vol. 131 Fig.3.—Imagesofobservedgalaxies,GALFITmodels,andmodel-subtractedresidualimagesshownfromlefttorightforthreedifferentgalaxiesinA3888.All imagesareshownatthesamesurfacebrightnesslevels.Thetoprowshowsafairlyisolatedgalaxyintheouterregionsofthecluster,whichiswellmodeledbyGALFIT.The middleandbottomrowsshowgalaxiesinincreasinglydenserenvironments,depictingwellthelimitationsofgalaxymodelingalgorithmsforgalaxiesinverydenseregions. potentialwellsofclusters(Trujilloetal.2001;Feldmeieretal. We use the same masks for both bands so that all galaxies 2004).ThefactthatA3888isnotarelaxedclusterclearlymakes aremaskedtothesameradius,therebyensuringaself-consistent galaxy subtraction more difficult near the core than it would measurementoftheICLcolor.Weusether-bandimagetode- be in a cD cluster; A3888 has three main brightness peaks, finethemasks,asithasa deeperdetection threshold(and thus whichcontain3,7,and12galaxycoresintheirdensestregions, largerdetectionareas)thantheV-bandcatalog.Objectsareiden- respectively. tified using SExtractor, and masks are based on the isophotal Asitisnotpossibletocleanlyfitthegalaxiesinthiscluster detection area with a threshold of 26.4 mag arcsec(cid:2)2 (1.5 (cid:1) suchthattheresiduals(positiveornegative)donotinterferewith abovesky).Tobeconservativeinrejection,wescalethesemi- theICLmeasurement,wehavechosentomaskthegalaxies.This majorandsemiminoraxesidentifiedbySExtractortoincrease givesusawell-definedmeasurementoftheICLattheexpense theareaofeachgalaxymaskbyamultiplicativefactorof 2–2.3, offorfeitingsomearea.Althoughwecouldmodelandsubtract dependingonthemagnitudeofthegalaxy.Toexploretheeffect themoreisolatedgalaxiesintheouterregionsofthecluster,itis ofmasksizeontheprofileshapeoftheICL,wemaketwoad- intheseregionsthatwecangenerouslymaskthegalaxiesand ditionalimageswithmasksizesthatare30%smallerand30% stillhaveenoughpixelsforanICLmeasurement.Notethatwe largerthantheoriginalmasks.WethenmeasuretheICLthree do not replace masked pixels. Masked regions are simply re- times with the three versions of mask sizes. Additional minor movedentirelyfromtheICLmeasurement. maskingisdonebyhandtoremoveanyremainingfluxassociated No. 1, 2006 DIFFUSE OPTICAL LIGHT IN GALAXY CLUSTERS. I. 175 Fig. 5.—Color-magnitudediagramofgalaxiesinA3888.Allgalaxiesde- tected in our data are plotted with gray symbols. Those galaxies that have membershipinformationintheliteratureareoverplottedwithopentriangles (members)orsquares(nonmembers).Theredsequenceisclearlyvisible.Solid linesindicateabiweightfittotheredsequencewith1(cid:1)uncertainties. Fig.4.—Fullymasked,finalV-bandimageofthecentral1.5h(cid:2)1Mpc(7A3)of higher redshift background galaxies, and not as concentrated 70 A3888,smoothedtoaidinthevisualidentificationofsurfacebrightnesslevels. towardthecenteroftheclusterasallgalaxies.Thenumberof Masksareshownintheirintermediatesize;seex5.2.2.Largecircularmaskscorre- thoseveryredgalaxiesperprojectedareais38%(cid:1)11%higher spondtothelocationsofbrightstars.Thesixgray-scalelevelsshowsurfacebright- within400kpcthanwithout.Althoughsomeofthesegalaxies nesslevelsofupto28.5,27.7,27.2,26.7,andbrighterthan26.2magarcsec(cid:2)2. are undoubtedly members of the cluster, their spatial distribu- Theellipseisophotesareoverlaidfrom6500to19000.Thetidalfeature,C,also showninFig.11,isclearlyvisibleatcenternearthebottomoftheimage. tiondoesnotallowustomakeconclusivestatementsabouttheir membership.Approximately42%ofthegalaxiesintheimage areidentifiedasmembersbythismethod.Ofthegalaxieswith with resolved objects. These few regions are associated with spectroscopically determined velocities, 78% of the 55 con- small overlapping sources that are not correctly deblended by firmedmembersareincludedinthecut;54%ofthe13known SExtractor. nonmembers are also included. The red cluster sequence is a The total masked area within the central 1.2 Mpc of the goodtoolforidentifyingclusters,butitisnotaperfectmethod clusterineachofthethreemasksizesis34%,41%,and49%, of determining membership, as it is unable to cleanly distin- respectively. The masked fraction is much higher in the very guishbetweenmemberandnonmembergalaxies. centeroftheclusterandreachesnearly100%intheinner3000. Wemeasurethetotalfluxinallgalaxiesidentifiedasmem- Theincreaseinthemaskedfractionisnotdirectlyproportional bers using corrected isophotal magnitudes from SExtractor. to the increase in mask size because the masks often overlap. For these, SExtractor assumes a Gaussian profile to infer the Figure4showsthefinalV-bandimagewithintermediate-sized fluxbeyondtheisophotaldetectionthreshold,correspondingto masks. 26.0Vmagarcsec(cid:2)2and26.4rmagarcsec(cid:2)2.Asexpected,the corrected magnitudes are brighter than the isophotal magni- 5.3. Cluster Membership and Flux tudesbyafullmagnitudeatthefaintendofourdetectionlimit. An interesting characteristic of the ICL lies in its compari- Thetotalfluxingalaxieswithin700h(cid:2)1kpcofthecenterofthe 70 sontoclusterpropertiesthatincludetheclustergalaxiesthem- cluster, as determined from the same galaxy catalog that was selves.Wecomparetwomethodsbelowformeasuringcluster used for galaxy masking, is 3:9;1012 L in the V band and (cid:4) membership and flux: (1) we identify member galaxies using 4:9;1012L intherband.Weexpecttheerroronthetotalflux (cid:4) ourowntwo-bandphotometry;and(2)weintegratethefluxina fromthisestimatetobegreaterthan30%,whichismainlydue publishedgalaxyluminosityfunctionforthiscluster. touncertaintyinthemembershipdetermination. Some published velocities are available in the literature We can also determine cluster flux using the Driver et al. (Teagueetal.1990;Pimbbletetal.2002)andcanbeusedtoex- (1998)luminositydistributionforthiscluster,whichisbasedon plicitlyidentifymembergalaxies.However,theseredshiftsur- a statistical background subtraction of noncluster galaxies. It veysarenotcompletetoourdetectionthresholdandtherefore wouldbepossibletodothiswithourowndata;however,Driver cannot provide membership information for all detected gal- etal.(1998)havemoreuniform,large-areacoveragetoseveral axies.Alternatively,wecanestimateclustermembershipusing magnitudesbelowM attheredshiftofthecluster.Inaddition, (cid:5) acolor-magnituderelation(Fig.5)fromourVandGunn-rim- theauthorspaycarefulattentiontoobservingbackgroundfields ages. There is a clear red sequence of galaxies in which the thatareupto750 fromtheclustercenter,atapproximatelythe brightest galaxies have V (cid:2)r¼0:3(cid:1)0:15. Those galaxies sameairmass,seeing,exposuretime,andUTastheclusterfields. thatliewithin1(cid:1)ofabiweightfittotheredsequencearetaken Consequently,thebackgroundfieldshavethesamenoisechar- tobeclustermembers(functionalformtakenfromBeersetal. acteristics and detection threshold as the cluster images and 1990).Theslopeoftheredsequenceis0.1mag(color)/4mag samplethesamelarge-scalestructures.Theycanthereforebeused (galaxy r-magnitude). Those galaxies that are redder than the to reliably determine the contamination of the cluster fields. redsequencearebothgenerallyfainter,implyingthattheyare Bernsteinetal.(1995)giveacarefulaccountofthesignificant 176 KRICK, BERNSTEIN, & PIMBBLET Vol. 131 considerationsinusingthismethod,allofwhicharetakeninto accountbyDriveretal.(1998). We explore one minor effect not discussed by Driver et al. (1998): the effect of gravitational lensing on the background galaxycounts.Therearetwocompetingeffectsthatchangethe number and brightness of galaxies behind the cluster as com- paredtobackgroundgalaxycountsinanoff-clusterfield.First, magnificationofthebackgroundgalaxieswillartificiallyinflate thebackgroundcountsbehindthecluster,resultinginanunder- estimationofclustergalaxyflux.Second,allbackgroundobjects behind the cluster will appear radially more distant from the cluster center, which will artificially decrease the background counts, resulting in an overestimate oftheclustergalaxy flux. The change from an overall magnification to demagnification happensatz’0:5.FollowingthemethodofBroadhurstetal. (1995) to determine the strength of the demagnification for A3888atz¼0:15,wefindanegligibledegradationintheV-and r-band flux (<0.2%) and therefore do not correct for it in the Fig.6.—SurfacebrightnessprofileoftheICL,aswellasthetotalclusterlight Driveretal.(1998)backgroundcounts. plottedasafunctionofdistancealongthesemimajoraxisinarcseconds.Theaxis Driveretal.(1998)usetheirR-bandluminositydistribution atthetopofthefigureindicatesthecorrespondingphysicalscaleinh(cid:2)1Mpc.We 70 to determine a dwarf-to-giant ratio; however, we choose to fit plotbothV-andr-banddatatogetherforcomparison.Thebottomtwolineson theplotaretheICLprofiles;ther-bandlightissurroundedbyfilledshading,and it with a classical Schechter function (M(cid:5) ¼(cid:2)22:82(cid:1)0:28; R theVbandissurroundedbyhatchedshading.Theshadingsshowthedifference (cid:5)¼(cid:2)0:97(cid:1)0:09; and (cid:4)2(cid:6) ¼0:71), which can then be used in ICL profiles produced by increasing or decreasing the area of the galaxy todeterminealuminositydensityforthecluster.Wenotethat masks,asdiscussedinx5.2.2.Thetoptwolines(withoutshading)representthe theluminositydistributionisnotperfectlyfittedbyaSchechter totalclusterlightasmeasuredinthesameellipticalisophotesastheICL;the dashedlinerepresentstheV-bandlight,andthesolidlinerepresentstherband. functionatthebrightend,duemainlytoasmallnumberofex- Alsoshownarethecumulative1(cid:1)errorsforbothbandsasdiscussedinx7and tremely bright galaxies, as is typical of clusters. Adopting a summarizedinTable3. volume equal to that over which we are able to measure the ICL,1.4Mpc3,andintegratingtheluminosityfunctiondownto veryfaintdwarfgalaxies,M ¼(cid:2)11,thetotalluminosityfrom NotethatwearenotabletomeasuretheICLatradiismaller R galaxiesintheclusterisð5:9(cid:1)0:94Þ;1012 L intheRband. than6000becausethatregionisheavilymasked.MostotherICL (cid:4) Given galaxy colors from Fukugita et al. (1995), the total lu- measurementsfocusonthisinnerregion,leavinglittleoverlap minosityfromgalaxiesinA3888isð3:4(cid:1)0:6Þ;1012 L inV betweenthissurveyandpreviousworkinotherclusters.Inclus- (cid:4) andð4:3(cid:1)0:7Þ;1012L intherband.Thedifferencebetween terscontainingacDgalaxy,thediffusecomponentofthecluster (cid:4) this value of total flux and that determined from our color- hasbeenfoundtoblendsmoothlyintothecDenvelope,andmask- magnitudeestimateofmembershipislikelyduetouncertainties inginthecoreofsuchclustersisnotnecessary(seemostrecently in our membership identification and differences in the detec- Gonzalezetal.2005). tionthresholdsofthetwosurveys.Althoughthetwoestimates We identify the surface brightness profile of the total clus- aregenerallyconsistent,weadoptthetotalfluxasderivedfrom terlight(i.e.,includingresolvedgalaxies)forcomparisonwith the luminosity distribution throughout the remainder of the the ICL within the same radial extent. To do this, we make a paper. new‘‘cluster’’image,withcolor-determined,nonmembergal- axiesmaskedout(seex5.3).Asurfacebrightnessprofileofthe 6. RESULTS cluster light is then measured from this image using the same elliptical isophotes as were used in the ICL profile measure- 6.1. Surface Brightness Profile ment. This profile, in contrast to the ICL, is quite irregular, After subtracting the stars and masking the galaxies, we fit reflectingtheclusteringofgalaxies.Substructureinthegalaxy the resulting image with the IRAF routine ellipse, a two- distributionisanindicationofayoungdynamicalageforthis dimensional,interactive,isophote-fittingalgorithm.Again,the cluster. maskedpixelsarecompletelyexcludedinthisprocedure.There Figure6showsthesurfacebrightnessprofilesoftheICL,as arethreefreeparametersintheisophotefitting:center,position wellasthetotalclusterlightasafunctionofsemimajoraxisin angle, and ellipticity. We fix the center (R:A:¼22h34m26s:0, both the Vand r bands. Results based on all three versions of decl:¼(cid:2)37(cid:6)44007B2 [J2000.0]) and position angle ((cid:2)70(cid:6)) to masksize(asdiscussedinx5.2.2)areshown.Theuncertainty valuesfoundbyellipsebasedontheinnerisophotesandlet intheICLsurfacebrightnessisdominatedbytheaccuracywith the ellipticity vary as a function of radius. Fitted ellipticities which the background level can be identified, as discussed in rangefrom0.2to0.5.Allowingthecenterandpositionangleto x7.ErrorbarsinFigure6showthecumulativeuncertaintiesin varyresultsinworsefits.Stablefitsarefoundfrom6000to25000. Table3. FromthefittedisophotesweidentifyafairlysmoothICLprofile Two characteristics are evident from the surface brightness over the range of 26 to approximately 29 mag arcsec(cid:2)2. The profiles.First,theinnerregion(200–400h(cid:2)1kpc)hasanotably 70 erroronthemeanwithineachellipticalisophoteisnegligible, steeperprofilethantheouterregion.Whiletheentireprofilecan asdiscussedinx7.Itispossiblethatthedifferentseeinginthe beadequatelydescribedwithinthe1(cid:1)uncertaintiesbyasingle V-andr-bandimagescouldunevenlyaffecttheprofiles.Toad- exponential,adoubleexponentialgivesabetterfitintherband dressthisissue,theV-andr-bandimageshavebeenconvolved ((cid:4)2improvesby50%)andamarginallybetterfitintheVband. (cid:6) tothesameseeingandthesurfacebrightnessprofilesremeasured. ThesefitsareshowninFigures7and8.Wehavealsofittedthe Nosignificantchangewasfoundintheprofiles. ICLprofilewithdeVaucouleursandSe´rsicprofiles.Acceptable No. 1, 2006 DIFFUSE OPTICAL LIGHT IN GALAXY CLUSTERS. I. 177 Fig.7.—V-bandICLand2(cid:1)errorbarsoverplottedwithexponentialfits.The best-fitsingle(dashedline)anddouble(grayline)exponentialsareshown. fits can be found; however, the best-fit values are unphysical, Fig.9.—X-raycontourstakenfromXMM-Newtonarchivaldataoverlaidon namely, they have high exponents for the Se´rsic and unrealis- ourV-bandopticalimage.Logarithmiccontoursareshownfrom1to20counts. ticallylargeeffectiveradiiforthedeVaucouleursprofiles.The Thebrightpointsource600h(cid:2)1 kpcfromtheclustercenterisaSeyfertI 70 secondgeneralcharacteristicoftheICListhatitismorecon- galaxy. centratedthanthegalaxies,whichistosaythattheICLfallsoff morerapidlywithradiusthanthegalaxylight. diffuseICLhasanaveragecolorofV (cid:2)r’0:3(cid:1)0:1.Beyond 400 h(cid:2)1 kpc the ICL becomes increasingly redder such that 6.2. Spatial Distribution 70 by700h(cid:2)1kpctheICLhasanaveragecolorofV (cid:2)r’0:7(cid:1)0:4. 70 TheICLisalignedtowithin10(cid:6) ofthepositionangleofthe Theonlycharacteristiccolorofthegalaxieswehavetocompare hotintraclustergas.Figure9showscontoursofXMM-Newton with the ICL is the red-sequence color (V (cid:2)r¼0:3(cid:1)0:15). archivalobservationsoverlaidonouropticalimage.Weinter- We have no definitive membership information for those gal- pret the alignment of the diffuse ICL with the hot gas in the axies off the red sequence. The color of the ICL in the inner clusterasanindicationthatweareindeedmeasuringlightthat 400 h(cid:2)1 kpc is roughly equivalent to the red elliptical galaxies 70 followsthegravitationalpotentialofthecluster.Inaddition,the residing in the same part of the cluster but significantly redder ICL radial surface brightness profile is significantly different thanseveraltidalfeatureswedetect(seex6.5).Thecolorofthe fromthegalaxysurfacebrightnessprofileinbothVandr,sug- ICL beyond 400 h(cid:2)1 kpc is redder than the red-sequence gal- 70 gestingthattheICLcomponentisatleastinpartdistinctfrom axies.ThecolorofthediffuseICLcanbeapproximatedasasim- theindividualgalaxiesinthecluster. plelinearfunctionofradius,withaslopeof+0.1per100h(cid:2)1kpc 70 anday-interceptof(cid:2)0.1.Figure10showsthecolorprofileand 6.3.Color corresponding1(cid:1)errorbars.Whilethisfitisclearlysimplistic, We measure an average V (cid:2)r color of the ICL by binning together three to four pointsfrom the ICL radial profile. Be- tween200and400h(cid:2)1 kpc,theinnermostmeasuredradii,the 70 Fig. 10.—ICL color vs. radius in coarse radial bins basedon thesurface brightnessinVandr,asshowninFig.6.Theloweraxisshowstheradiusin arcseconds,andtheupperaxisshowstheradiusinmegaparsecs.Thedashedline isthebest-fitlinearfunction.Theaveragecolorsoftheredclustersequenceand Fig.8.—SameasFig.7,butintherband. thetidalfeaturesarealsoshownforcomparison.

Description:
color, and substructure) in a sample of 10 galaxy clusters with a range of cluster mass, . is a richness class 2 cluster at z ¼ 0:15 (Abell et al. 1989).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.